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An elaborate variational wave function is used for studying superconductivity in the �repulsive� two-
dimensional Hubbard model, including both nearest- and next-nearest-neighbor hoppings. A marked asymme-
try is found between the “localized” hole-doped region and the more itinerant electron-doped region. Super-
conductivity with d-wave symmetry turns out to be restricted to densities where the Fermi surface crosses the
magnetic zone boundary. A concomitant peak in the magnetic structure factor at �� ,�� clearly points to a
magnetic mechanism.

One of the central issues in the field of high-temperature
superconductors has been—and for some researchers still
is—the question whether pairing in the cuprates arises from
purely repulsive interactions, as proposed by Anderson two
decades ago.1 This question has been studied extensively in
the framework of the two-dimensional �2D� �repulsive� Hub-
bard model �and the related t-J model�. Recent progress,
both in dynamical mean-field theory2,3 and in variational
calculations,4 has strengthened the case for the existence of a
superconducting phase in the Hubbard model, with a
�d-wave� gap parameter reasonably close to the experimental
values for intermediate interaction strengths �U of the order
of the bandwidth�. This conclusion has been challenged on
the basis of Monte Carlo simulations,5 which we believe to
be not conclusive, as discussed below.

Most previous studies of the Hubbard model have been
restricted to nearest-neighbor hopping, where electron dop-
ing does not differ from hole doping. Here we show that the
addition of second-neighbor hopping �which breaks the
electron-hole symmetry� changes this behavior substantially.
While the hole-doped side is “localized” and shows kinetic-
energy-driven superconductivity with a large condensation
energy, the electron-doped side is itinerant with a potential-
energy-driven superconductivity and a small condensation
energy.

The Hubbard Hamiltonian Ĥ= Ĥ0+UD̂ consists of a hop-
ping term �“kinetic energy”�

Ĥ0 = − �
i,j,�

tij�ci�
† cj� + cj�

† ci�� �1�

and an on-site repulsion UD̂, where D̂=�ini↑ni↓ is the num-
ber of doubly occupied sites, ni�=ci�

† ci�, and the operator
ci�

† �ci�� creates �annihilates� an electron at site i with spin �.
We use the trial ground state

��� = e−hĤ0/te−gD̂��0� , �2�

where g and h are �real� variational parameters and ��0� is a
BCS state with d-wave symmetry. The first term in Eq. �2�
promotes delocalization and yields a substantial improve-
ment with respect to the Gutzwiller wave function �h=0�. In
fact, it has been demonstrated that ansatz �2� is very close to
the exact ground state both for small 2D systems6 and for the
solvable 1 /r chain.7

In our previous study of the simple Hubbard model �tij
= t for nearest-neighbor sites and 0 otherwise�,8 we have
found that wave function �2� exhibits d-wave pairing below a
hole concentration of 0.18. At first sight this result seems to
contradict recent Monte Carlo simulations,5 where no signa-
ture for superconductivity was found, but a closer look
shows that there is no discrepancy. In fact, three of the four
hole densities considered in Ref. 5 �0.18, 0.22, 0.28� are in a
region where our variational ground state is also nonsuper-
conducting. For the remaining hole density of 0.09 the order
parameter �for U / t=6, the lattice size is 8�8, as chosen in
Ref. 5� is likely to be too small4 to be detected by the simu-
lation.

The restriction to nearest-neighbor hopping leads to a
�bare� Fermi surface which disagrees qualitatively with pho-
toemission experiments on layered cuprates.9 Therefore we
consider from now on the more realistic case of both nearest-
�t� and next-nearest-neighbor hoppings �t�� with canonical
parameters U=8t and t�=−0.3t. The bare single-particle
spectrum,

�k� = − 2t�cos kx + cos ky� − 4t� cos kx cos ky ,

leads to the Fermi surfaces of Fig. 1. The innermost line
corresponds to the Van Hove filling where the Fermi surface
passes through the saddle points at �� ,0� and �0,��. These
crossings between the Fermi surface and the magnetic zone
boundary �the “hot spots”� move inward as the density n is
increased and finally merge �outermost line�. Hot spots are
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FIG. 1. �Color online� Fermi surface for three different electron
densities.
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restricted to 0.726�n�1.206. Our results, to be discussed
below, indicate that superconductivity occurs only in this
range.

The BCS state ��0� in Eq. �2� introduces, in addition to g
and h, two other parameters: the amplitude � of the super-
conducting gap function and the “chemical potential” 	. To
compute the variational energy, the exponent of the operator

e−gD̂ is first decoupled by applying a discrete Hubbard-
Stratonovich transformation,10 which introduces an Ising
spin at each site. All operators are then quadratic in creation
and annihilation operators, and therefore the fermionic de-
grees of freedom can be integrated out. The remaining sum
over Ising spin configurations is performed by a Monte Carlo
simulation. In order to avoid the minus sign problem, calcu-
lations are carried out in the grand canonical ensemble with
an average density fixed by 	, which is therefore not a varia-
tional parameter. To reduce the statistical error, the optimiza-
tion procedure is based on the method proposed by Ceperley
et al.11 and Umrigar et al..12 We have used periodic-
antiperiodic boundary conditions.

The minimization of the energy E for fixed average den-
sities yields the results of Tables I and II for hole and elec-
tron dopings, respectively. We notice that the parameter g,
which controls the crossover between itinerant �small g� and
localized �large g� many-particle states, remains large for
hole doping but decreases rapidly for electron doping. There-
fore, while the hole-doped region 0.75�n�0.95 is a local-
ized doped Mott insulator, the electron-doped part 1.05�n
�1.2 rapidly undergoes a crossover to an itinerant regime as
n increases. �We estimate a crossover parameter gcr�3.�
This striking difference may root in the bare single-particle
density of states at the Fermi energy, which is much larger
for hole than for electron doping. We notice that our wave

function is excellent for the itinerant regime and somewhat
less reliable for the localized regime.7

Figures 2 and 3 show, respectively, the gap parameter �
and the superconducting order parameter 
= ��ci↑

† cji↓
† �� as

functions of doping concentration x=1−n. The correspond-
ing results for t�=0 �Ref. 8� are completely electron-hole
symmetric and are reproduced only in the right panels. On
the hole-doped side superconductivity exists for 0�x
�0.25 �� remains finite, but 
 vanishes for x→0�, i.e., in a
larger region than for t�=0. In contrast, on the electron-
doped side the superconducting region is reduced to −0.2
�x�−0.05. Thus we find indeed that superconductivity is
restricted to densities where the �bare� Fermi surface passes
through hot spots �see Fig. 1�. Remarkably, for electron dop-
ing the gap is suppressed very close to half filling even in the
absence of competing antiferromagnetic long-range order.
The marked difference between electron and hole dopings is
confirmed by the condensation energy Econd=E�0�−E���,
which is 1 order of magnitude smaller for electron doping
than for hole doping, as depicted in Fig. 4.

TABLE I. Chemical potential, parameters g and h, and energy
per site for hole doping �n�1� and an 8�8 lattice.

n 	 g h E / t

0.7500 −0.9921�1� 4.2�1� 0.113�2� −0.858�1�
0.7800 −0.9612�3� 4.0�1� 0.112�2� −0.829�1�
0.8125 −0.9107�3� 3.9�1� 0.111�2� −0.795�1�
0.8400 −0.788�1� 3.7�1� 0.111�2� −0.763�1�
0.9000 −0.728�1� 3.8�1� 0.111�2� −0.676�1�
0.9500 −0.603�1� 4.0�1� 0.114�2� −0.591�1�

TABLE II. Chemical potential, parameters g and h, and energy
per site for electron doping �n�1� and an 8�8 lattice.

n 	 g h E / t

1.0500 0.7666�1� 3.6�1� 0.109�2� −0.222�1�
1.0800 0.6440�1� 3.4�1� 0.106�2� −0.069�1�
1.1000 0.5488�1� 3.2�1� 0.104�2� 0.040�1�
1.1300 0.4380�1� 3.0�1� 0.100�2� 0.206�1�
1.1600 0.3870�1� 2.9�2� 0.096�3� 0.374�1�
1.2000 −0.2996�1� 2.6�2� 0.091�3� 0.608�1�
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FIG. 2. �Color online� Optimized gap parameter as a function of
doping for two different lattice sizes. For comparison, the result for
t�=0 is also shown �from Ref. 8�.
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FIG. 3. �Color online� Superconducting order parameter as a
function of doping for an 8�8 lattice.
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Figure 5 shows the kinetic, potential, and total energies as
functions of the gap parameter for the two densities n
=0.78 and 1.16. For hole doping the energy gain is clearly
due to a decrease in kinetic energy, while for electron doping
the decrease in potential energy gives the main contribution
to the condensation energy. The same behavior has been con-
sistently obtained for other densities. The quantity

W = − 2�
k�

�2�k�

�kx
2 �nk�� , �3�

also plotted in Fig. 5, is—up to a minus sign—proportional
to the integrated optical conductivity originating from intra-
band transitions.13 For the simple Hubbard model �t�=0� W
is equal to the kinetic energy, but for t��0 the two quantities
differ. For hole doping W has a pronounced minimum in the
region of the optimal gap, corresponding to an increase in
oscillator strength, while for electron doping W increases
monotonically with �, akin to the BCS behavior where the

oscillator strength is reduced at the onset of superconductiv-
ity.

We attribute this asymmetry between hole and electron
dopings to the different values of the correlation parameter g
�see Tables I and II�, which puts the hole-doped system into
the localized regime, while the electron-doped system is
more itinerant. To make the point clear we consider the
simple Hubbard model �t�=0� both in the small U �itinerant�
and large U �localized� limits. In the small U limit supercon-
ductivity is produced by the Kohn-Luttinger mechanism,14

where the condensation energy is expected to increase as a
function of U / t, whereas in the large U limit the condensa-
tion energy arises from magnetic exchange and thus is likely
to increase with t /U. The change in kinetic energy is then
obtained through the Hellman-Feynman theorem,

Ekin��� − Ekin�0� = − t
�

�t
Econd, �4�

which is positive in the small U limit and negative in the
large U limit.

Additional information can be gained from the magnetic
structure factor

S�q�� =
1

N
�
i,j

eiq� ·�R� i−R� j���ni↑ − ni↓��nj↑ − nj↓�� , �5�

displayed in Fig. 6. S�q�� exhibits a clear maximum at �� ,��,
which is largest close to half filling and decreases as doping
increases. There is very little difference between electron and
hole dopings, presumably because in the large U limit spin
correlations depend mostly through the exchange constants
J=4t2 /U and J�=4t�2 /U on the microscopic parameters and
therefore are essentially independent of the sign of t�.

We have seen above that superconductivity is restricted to
the region where two points of the Fermi surface can be
connected �at least approximately� by the antiferromagnetic
wave vector �� ,��. This together with the strong peak of
S�q�� for q� = �� ,�� supports the point of view that supercon-
ductivity in the two-dimensional Hubbard model is due to a
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FIG. 4. �Color online� Condensation energy per site for an
8�8 lattice.
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FIG. 5. �Color online� Changes in kinetic, potential, and total
energies as well as in the quantity W as functions of the gap param-
eter for an 8�8 lattice. �−W is proportional to the oscillator
strength for intraband transitions.� The relative uncertainties are
smaller than the symbol sizes.
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magnetic mechanism. This conclusion is now widely ac-
cepted, but the question whether the mechanism is of the
resonating valence bond �RVB� type1 or arises from the ex-
change of spin fluctuations15 is presently under debate.16,17

We cannot solve this problem on the basis of our variational
calculations, but the distinction between localized and itiner-
ant regimes can give additional useful insight. According to
our results the former is appropriate for the hole-doped re-
gion, where superconductivity is associated with a decrease
in kinetic energy; the latter regime is found for electron dop-
ing, where superconductivity arises from a more conven-
tional gain in potential energy.

The results described above compare surprisingly well
with experiments on cuprates, better than our earlier
calculations8 where only nearest-neighbor hopping has been
taken into account. This concerns the phase diagram, in par-
ticular, for electron-doped materials for which a recent sys-
tematic study18 gives a dome shape �for Tc� strikingly similar
to our Fig. 2. Photoemission data give values of the super-
conducting gap � in the range 10–20 meV for hole-doped
compounds 	La2−xSrxCuO4+y �LSCO� �Ref. 19� or Bi2201
�Ref. 9�
 and �5 meV for an electron-doped compound
	NdCeCO �Ref. 20�
. Choosing t=300 meV �neutron data�,

our maximum gap parameters are 15 and 7 meV for hole and
electron dopings, respectively. An increase in oscillator
strength, predicted by our calculations for hole doping, has
been reported on the basis of optical spectroscopy for an
underdoped sample,21 but the situation is less clear on the
overdoped side. We are not aware of corresponding measure-
ments on electron-doped materials.

In conclusion, our variational search for d-wave supercon-
ductivity in the two-dimensional Hubbard model gives a dif-
ferentiated picture, namely, a large �moderate� correlation pa-
rameter for hole �electron� doping, a gain in kinetic
�potential� energy due to pairing, and a large �small� conden-
sation energy. Our wave function is expected to be better
suited for describing the electron-doped region, which is less
localized than the hole-doped region. A more elaborate study
is needed to improve our understanding of the pseudogap
phase observed in the cuprates for weak hole doping.
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