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Abstract Regulatory gene networks contain generic modules, like those involving feed-
back loops, which are essential for the regulation of many biological functions (Guido
et al. in Nature 439:856–860, 2006). We consider a class of self-regulated genes which are
the building blocks of many regulatory gene networks, and study the steady-state distribu-
tion of the associated Gillespie algorithm by providing efficient numerical algorithms. We
also study a regulatory gene network of interest in gene therapy, using mean-field mod-
els with time delays. Convergence of the related time-nonhomogeneous Markov chain is
established for a class of linear catalytic networks with feedback loops.
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1. Introduction

Modeling of the regulation of all genes in a given cell is a tantalizing problem in biology
and medicine (see, e.g. Guido et al., 2006). Recent developments allow rapid experimental
determination of the expression of nearly all genes in a given biological setting, to an
extent that in-depth analysis and proper mathematical understanding of these vast arrays
of data have become limiting. Qualitative models of regulatory networks, where particular
genes code for proteins that activate or repress other genes, are being assembled, but
models taking the stochastic and quantitative nature of gene regulation remain scarce,
and they often rely on assumptions or simplifications that rest untested experimentally.
Thus, it would be useful to build validated mathematical models of particular regulatory
modules, as a first step towards constructing models of genome-wide gene expression.
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Fig. 1 The self-regulated gene.

Here, we consider a class of self-regulated genes, as depicted in Fig. 1. This auto-
regulated module is a very common building block of many gene networks, as it may form
the basis of stochastic gene switches that contribute to biological decisions such as cell
differentiation, and has been studied extensively in the literature in some special settings,
as in Hornos et al. (2005), Kepler and Elston (2001) or Peccoud and Ycart (1995). The
belief that stochastic simulation is the only way to handle such problems is widely spread
among researchers, and exact methods are only known in some very particular cases, see
Peccoud and Ycart (1995) or Hornos et al. (2005). In a previous work (Fournier et al.,
2007), we provided the exact steady-state distribution of the stochastic expression level of
the autoregulated gene solving the chemical master equation in a general setting. We will
present a direct version of the method and study more deeply this stationary distribution
by providing efficient numerical algorithms. We will also consider a synthetic regulatory
network acting as a genetic switch that was studied in living cells (Imhof et al., 2000).

1.1. A self-regulated gene

The system is composed of a promoter and a gene, as schematized in Fig. 1. As stated
previously, one source of molecular noise is the random nature of the states taken by the
promoter (on/off). Figure 1 shows protein monomers produced by the RNA polymerase
during the transcription and translation processes. Protein monomers react quickly to form
dimers: we assume a quasi-equilibrium where fast reactions equilibrate instantaneously.
For a global amount of n proteins, the proportion of dimers at quasi-equilibrium is a well
defined function of n. Dimers can bind to some sites near the promoter, and therefore
enhance transcription, corresponding to a positive feedback loop. These binding events
can be assumed to be fast with respect to events like protein formation. They are however
included in some chain of events which ends with a state where the right positioning of
the RNA polymerase is possible. This will correspond to the on state O1. When these con-
ditions are not satisfied, the promoter is off O0. The rates of transitions between these two
states are functions of the proportion of dimers, and therefore of n when the cell contains
n proteins. These random events are usually modeled by supposing that the probability
that the promoter switches from the off to on state in a small time interval of length h ≈ 0
is of order g(n)h for n proteins, where the function g can be chosen according to the
specificity of the setting. To be as general as possible, and to eventually allow negative
feedback loops, we also assume that the probability of transition of the reverse reaction
is given by some function κ(n). Basal activity is introduced by supposing that g(0) is
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positive, so that the required conditions for an eventual transcription event can be realized
without protein dimers. The remaining involved chemical reactions are essentially protein
monomers production and degradation, which are summarized in Fig. 1. Transcription is
stopped when the promoter is off, so that we assume that the probability μ0h that a protein
is created during a small time interval of length h vanishes, with μ0 = 0. When the pro-
moter is on, transcription is possible, and the probability that a transcription event occurs
is of order μ1h. Degradation of protein dimers is summarized by the rate ν(n), for some
function ν, which is usually linear as a function of n. The time evolution of the state of
this self-regulated gene is described by a pair of time-continuous stochastic process N(t)

and Y (t), where N(t) gives the number of proteins present in the cell at time t and where
Y (t) takes the values 0 and 1 corresponding to the off and on states of the promoter. The
usual way of simulating N(t) and Y (t) proceeds by running the Gillespie algorithm (see
e.g. Cao et al., 2005 and Gillespie, 2001). The mean steady-state expression level is thus
obtained through Monte Carlo experiments.

1.2. A regulatory network for efficient control of transgene expression

A more elaborate gene network consists of three genes. A first gene encodes a tran-
scriptional repressor. Because this gene is expressed from an unregulated promoter, it
mediates a stable number of repressor. This repressor binds to and inhibits the promot-
ers of the two other genes, coding for a transactivator protein and for a quantifiable or
a therapeutic protein, respectively (Fig. 2A). The activity of the repressor is inhibited
by doxycycline, a small antibiotic molecule that acts as a ligand of the repressor and
thereby controls its activity. Addition of the antibiotic will inhibit the repressor and re-
lieve repression, allowing low levels of expression of the regulated genes and synthesis
of some transactivator protein. This, in turn, allows further activation of the two regu-
lated genes, in a positive feedback loop (Fig. 2B). When introduced in mammalian cells,
this behaves as a signal amplifier and as a potent genetic switch, where the expression
of a therapeutic gene can be controlled to vary from almost undetectable to very high
levels in response to the addition of the antibiotic to the cells (Fournier et al., 2007;
Imhof et al., 2000).

1.3. Results

Section 2 considers the Gillespie algorithm for simulating the time evolution of the num-
ber of proteins N(t) and of the state of the related promoter Y (t), by focusing on the
associated steady-state distribution π . In a previous work (Fournier et al., 2007), we gave
an explicit formula for the steady state associated with self-regulated genes, based on the
embedded jump chain of the time-continuous Markov process. Here we introduce a direct
version dealing with the time-continuous process. For concrete computation, we have to
use a bounded state space with a total number of proteins that cannot exceed a fixed but
arbitrary integer Λ. Algorithm 1 gives an efficient way of computing π , while Theorem 2
gives the convergence of the sequence of steady-state distributions measures indexed by
Λ to the unique invariant distribution of the process defined on the unbounded state space
N×{0,1}. We also provide information on the variance of the gene product at steady state
using generating functions and differential equations.

ht
tp

://
do

c.
re

ro
.c

h

3



Fig. 2 The regulatory network.

Section 3 proposes a mean-field model with time delays, generalizing a model con-
sidered recently in this setting by Goutsias and Kim (2006), by including stochastic
signals related to promoters. The feedback rates g(N(t)) and κ(N(t)) are replaced by
g(E(N(t − θ))) and κ(E(N(t − θ))). In Fournier et al. (2007), we studied the reg-
ulatory gene network in living cells; the obtained experimental results were in good
concordance with the model’s predictions. The related functions E(t) = E(N(t)) and
G(t) = P (Y (t) = 1) satisfy the time delayed differential system

dE

dt
= μG(t) − νE(t),

dG

dt
= g
(
E(t − θ)

)(
1 − G(t)

)− κ
(
E(t − θ)

)
G(t),

which can be deduced from the chemical master equation, see Section 5. As it is well
known, this kind of differential systems can possess oscillating or periodic solutions, see
e.g. Bratsun et al. (2005). We show that there is a globally asymptotically stable equilib-
rium point when g is such that g(n)/n is decreasing as function of n and κ(n) ≡ κ . We
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next provide Algorithm 2 for computing the steady-state variance. Section 4 deals with
two time scales stochastic simulations and processes evolving at quasi-equilibrium. We
also consider a generic dimerization process which occurs in most biochemical reaction
networks, and provide an efficient Algorithm 3 for computing the first two moments of the
related steady-state distribution, which are then used when dealing with systems evolv-
ing at quasi-equilibrium. Finally, Section 5 focus on the regulatory network; we model
extrinsic and intrinsic noise using a mean-field model, which permits to study the fluctu-
ations of the variance of the number of therapeutic proteins as function of the number of
doxycycline molecules.

2. Mathematical models related to the self-regulated gene

In what follows, we consider the time-continuous Markov chain known as the Gillespie
algorithm for simulating the self-regulated gene with arbitraries feedback mechanisms,
and give precise formulas for the related steady-state distribution π . This defines a generic
class of gene networks, which are the building block of most of the existing regulatory net-
works. We will then use our method to study a family of mean-field models in Sections 3
and 5.4. The related steady-state distribution is obtained as the product of steady-state dis-
tributions of sub modules corresponding to self-regulated genes. A complete understand-
ing of basic modules like the self-regulated gene is thus fundamental for understanding
the global network, see e.g. Guido et al. (2006) and Section 5.4. For more details on the
model, see Fournier et al. (2007).

The module is composed of a promoter and a gene. Its time evolution is given by the
following set of chemical reactions:

P ν(n)−→∅, ∅ μl−→P, l = 0,1,

represents degradation of gene product when they are n molecules, here proteins (P ), and
protein production, where l = 0 means that the promoter is off: no transcription factor (a
complex composed of gene product) is bound to some operator sites near the promoter,
so that the RNA polymerase cannot bind well in the neighborhood of the basal promoter.
We assume here that the transcription rate μ0 is such that μ0 ≈ 0. When l = 1, meaning
that the promoter is on, transcription occurs at a rate μ1 = μ. The fluctuations of the state
of the promoter are described by the following reaction

O0
g(n)←→
κ(n)

O1,

where Ol , l ∈ {0,1}, indicates the state of the promoter. The transitions from the on to

off states O1
κ(n)−→O0 occur at rate κ(n), and the reverse reactions at rate g(n). Here g and

κ are two functions of the number of proteins modeling positive and negative feedback
loops.

Basal activity is introduced at the level of the reaction O0
g(n)−→O1, by supposing that

g > 0. The Gillespie algorithm for simulating the above chemical reactions is a bivariate
Markov process η(t) = (N(t), Y (t)), with N(t) � Λ and Y (t) = 0,1, where N(t) denotes
the number of proteins present in the cell at time t , and Y (t) represents the state of the
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Fig. 3 Visualization of the state space as a strip. The possible transitions are represented by the arrows
with corresponding rates.

operator. The time evolution of Y (t) is coupled to that of N(t) to model autoregulation,
using functions g and κ . For small time interval (t, t + h), h ≈ 0, the probability that the
operator switches from the off to the on state is of order g(N(t))h.

Let p0
n(t) = P (N(t) = n,Y (t) = 0) and p1

n(t) = P (N(t) = n,Y (t) = 1) give the prob-
ability of having n proteins at time t when the states of the promoter are O0 and O1, re-
spectively. We assume here that 0 � n � Λ for some fixed but arbitrary integer Λ. The re-
lated Gillespie algorithm is given as a time-continuous Markov chain η(t) = (N(t), Y (t))

(see e.g. Gillespie (1977)), where N(t) ∈ {0,1, . . . ,Λ} and Y (t) ∈ {0,1}, with transition
rates given by

P
(
(n, y), (n + 1, y)

)= μy, P
(
(n, y), (n − 1, y)

)= ν(n),

P
(
(n, y), (n,1 − y)

)= κ(n) when y = 1, and,

P
(
(n, y), (n,1 − y)

)= g(n) when y = 0.

Figure 3 provides a visualization of the state space and the possible transitions with cor-
responding rates. The chemical master equation associated with the reaction scheme is
then given by

dps
n(t)

dt
= μs

(
ps

n−1(t) − ps
n(t)
)+ ν(n + 1)ps

n+1(t) − ν(n)ps
n(t)

+ (−1)s
(
κ(n)p1

n(t) − g(n)p0
n(t)
)
, (1)

where s ∈ {0,1}, see e.g. Kepler and Elston (2001).
The steady-state distribution π associated with (1) is obtained by letting t → ∞: π is

defined as

πn(0) = lim
t→∞p0

n(t) and πn(1) = lim
t→∞p1

n(t),

and solves the linear system obtained from (1) by imposing dps
n/dt = 0:

0 = μs

(
πn−1(s) − πn(s)

)+ ν(n + 1)πn+1(s) − ν(n)πn(s)

+ (−1)s
(
κ(n)πn(1) − g(n)πn(0)

)
, s = 0, 1.
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πn(0) is the probability to find n proteins and that the promoter is off; πn(1) is defined
similarly but for the on state. The probability of observing n proteins at equilibrium is just
πn(0) + πn(1).

In what follows, we derive the steady-state distribution π . This probability measure is
used in the mean-field delayed model of Section 3 and in Section 5 for the study of the
network.

2.1. Computing the steady state

In this section, we assume that μ0 = 0, and that μ1 = μ, where an explicit formula for
the steady state is available. The degradation propensity function ν(n) and the feedbacks
κ(n) and g(n) are arbitrary positive functions.

The method of generating functions can be used in some particular special cases to
compute the invariant measure, see Peccoud and Ycart (1995) for the simple case without
feedback with ν(n) = ν · n, κ(n) ≡ κ and g(n) ≡ g, or Hornos et al. (2005) for the case
with linear negative feedback ν(n) = ν · n, κ(n) ≡ κ · n and g(n) ≡ g, or the recent work
of Visco et al. (2008a, 2008b) where interesting phase diagrams are provided. Although
this method provides a powerful tool for analytic description, the method of generating
functions is very particular in the sense that a little change in the form of one of the feed-
back propensity function can induce major changes in the generating function, and for
each particular propensity function one has to derive the whole set of equations anew.
Furthermore, an explicit form for the generating function can only be found when the
feedback propensity functions are simple, either constant or linear in the protein numbers.
In practice, the feedback propensity functions are related to the number of sites in the pro-
moter on which the proteins bind, either directly in monomer form or in more complicated
bound forms like dimers or higher order polymers, see Dill and Bromberg (2003).

In Fournier et al. (2007), we presented a general formula for the steady state for ar-
bitrary degradation and feedback propensity functions. The method relies on the asymp-
totic behavior of the jump matrix of the embedded discrete jump chain. We provide here
a direct version of this method allowing to compute the invariant distribution of the time-
continuous Markov process directly. We recall that we consider a bounded total number
of protein N(t) ≤ Λ, a restriction that is biologically meaningful due to the finite volume
of a cell but that is mainly supposed for technical reasons since the formula is recursive
and we have to find a starting point (πΛ(0),πΛ(1)) to begin with. However, the condition
is not restrictive and we show in Theorem 2 that the sequence of steady-state distributions
indexed by the boundary Λ converges weakly to the unique invariant distribution of the
unbounded process on N × {0,1}.

Consider the transfer matrices

αn = ν(n + 1)

μ

⎡⎣ κ(n)+μ

g(n)+ν(n)
1

κ(n)

g(n)+ν(n)
1

⎤⎦ , 0 < n < Λ,

α0 = ν(1)

μ

⎡⎣ κ(0)+μ

g(0)
1

κ(0)

g(0)
1

⎤⎦ ,

and the vector wΛ = (κ(Λ),g(Λ) + ν(Λ)).
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Theorem 1. For 0 ≤ n ≤ Λ, the invariant distribution

πn = (πn(0),πn(1)
)= lim

t→∞
(
P
((

N(t), Y (t)
)= (n,0)

)
,P
((

N(t), Y (t)
)= (n,1)

))
of the time-continuous Markov process {η(t)}t>0 on the strip {0,1, . . . ,Λ}×{0,1} is given
by

πn = wΛαΛ−1αΛ−2 · · ·αn

ZΛ

for 0 ≤ n < Λ, and πΛ = wΛ

ZΛ

,

with the normalization constant

ZΛ = wΛ · (1,1)T +
Λ−1∑
j=0

wΛαΛ−1αΛ−2 · · ·αj · (1,1)T .

Proof: At equilibrium, (1) reads

0 = π0R0 + π1D1,

0 = πn−1U + πnRn + πn+1Dn+1, 0 < n < Λ,

0 = πΛ−1U + πΛRΛ,

with the 2 × 2 matrices U = [ 0 0
0 μ

]
, Dn = [ ν(n) 0

0 ν(n)

]
and

Rn =
[
−(g(n) + ν(n)) g(n)

κ(n) −(κ(n) + ν(n) + μ)

]

for 1 ≤ n ≤ Λ − 1, and the boundaries R0 = [−g(0) g(0)

κ(0) −(κ(0)+μ)

]
,

DΛ =
[
ν(Λ) 0

0 ν(Λ)

]
and RΛ =

[
−(g(Λ) + ν(Λ)) g(Λ)

κ(Λ) −(κ(Λ) + ν(Λ))

]
.

Simple linear algebra shows that the above defined matrices αn, 0 ≤ n < Λ, satisfy the
relation πn = πn+1αn. Indeed one only has to check that for 0 < n < Λ, the 2×2 matrices
αn−1U + Rn are invertible and that the matrices αn solve the matrix continuous fraction

α0 = −D1R
−1
0 ,

αn = −Dn+1(αn−1U + Rn)
−1, 0 < n < Λ. �

The formula given in Theorem 1 must be used with care numerically since, when Λ

is large, both the numerator and denominator rapidly diverge. It can be improved with
the following normalization algorithm, that is exactly the same as the one used for the
embedded jump chain in Fournier et al. (2007). Let R

2
≥0 := {w = (w1,w2),w1,w2 ∈ R≥0}

with the 1-norm ‖w‖ := w · (1,1)T .
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Algorithm 1.

(STEP 1): Define ṽn for n = Λ − 1 to 0 as

ṽΛ := wΛ

‖wΛ‖ , and ṽn := ṽn+1αn

‖ṽn+1αn‖ .

(STEP 2): Given the ṽn, define v0 = ṽ0 and, for n = 1 to Λ, set

vn := ṽn

‖ṽnαn−1‖ · ‖ṽn−1αn−2‖ · · · ‖ṽ1α0‖ .

(STEP 3): Compute the steady-state distribution as

πn = vn

VΛ

, where VΛ :=
Λ∑

i=0

vi · 1.

It immediately results from their definition that the ṽn and vn satisfy ‖ṽn‖ = 1,

vn = ṽΛαΛ−1αΛ−2 · · ·αn

‖ṽΛαΛ−1‖ · ‖ṽΛ−1αΛ−2‖ · · · ‖ṽn+1αn‖ · ‖ṽnαn−1‖ · · · ‖ṽ1α0‖ ,

the denominator of the above expression is independent of n and ṽΛ is proportional to wΛ.
Hence vn is proportional to the invariant measure πn, and (STEP 3) of the algorithm
effectively compute the actual steady-state distribution.

Proposition 1 below provides conditions under which the normalization constant VΛ

remains bounded as Λ is large. The function ν(n) gives the monomer degradation rates
for n proteins, and is assumed to be increasing with ν(0) = 0, and strictly positive for
n ≥ 1. Usually, ν(n) is taken to be a constant times n, here we assume the less restrictive
condition that infn≥1 ν(n)/n is strictly positive to allow situations where for example pro-
teins that are present as chemical complexes (dimer, trimer, . . .) cannot be degraded, or
situations where ν(n)/n → ∞ as n → ∞.

Lemma 1. If infn≥1 ν(n)/n is strictly positive, there exists a constant k > 0 depending
only on μ, ν, κ, g (and not on Λ) such that for all n ≥ 1, ‖ṽnαn−1‖ ≥ nk.

Proof: Each ṽj lies in the line segment S ⊂ R
2 between the points (0,1) and (1,0) and

depends on Λ. To break this dependence, we prove the results for an arbitrary vector
v = (t,1 − t) ∈ S, t ∈ [0,1].

vαn = ν(n)

μ

(
	, t + (1 − t)

)= ν(n)

μ
(	,1),

with 	 > 0 for all n. Hence, uniformly in S,

‖vαn‖
n

≥ ν(n)

nμ
≥ inf

n≥1

ν(n)

nμ
=: k > 0. �

With Lemma 1 we can give bounds uniformly in Λ:
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Proposition 1. Assume that infn≥1 ν(n)/n is strictly positive. There exists M > 0, de-
pending only on μ, ν, κ, g (and not on Λ), such that

1 ≤ VΛ =
Λ∑

n=0

‖vn‖ ≤ M.

Proof: Notice that ‖v0‖ = ‖ṽ0‖ = 1. The 1-norm of vn is

‖vn‖ = ‖ṽn‖
‖ṽnαn−1‖ · · · ‖ṽ1α0‖ = 1

‖ṽnαn−1‖ · · · ‖ṽ1α0‖
and with Lemma 1

VΛ = 1 +
Λ∑

n=1

‖vn‖ ≤ 1 +
∞∑

n=1

k−n

n! = e1/k =: M.

Lemma 1 shows that the preceding algorithm is efficient. But this lemma can also be
used to demonstrate that the steady-state distribution of the continuous time process η(t)

converges when Λ → ∞. We can also show that this limiting distribution is the invariant
distribution of the process on the unbounded strip. We will write π(Λ)

n and v(Λ)
n instead

of πn and vn. The previous results deal with a finite state space, where the number of
proteins is bounded by Λ. Even if this model is realistic (an organism cannot contain an
infinite number of proteins), it is relevant to check what happens when Λ is large. In other
words, we want to show that under a sufficient condition, the invariant measure converges
in Λ. We thus define π(Λ) = (π(Λ)

n )0≤n≤Λ, and consider the family of probability measures
Π = (π(Λ))Λ∈N embedded in N × {0,1}. The proof of the following Theorem is given in
Appendix A. �

Theorem 2. The sequence of invariant measures π(Λ) converges weakly as Λ → ∞ to
the invariant distribution of the process defined on the unbounded strip.

2.2. The method of generating functions for the mean and variance

We consider the problem of computing the mean and variance of the gene product N(t)

at steady state, that is when t is large, using generating functions. As discussed in Sec-
tion 2.1, generating functions allows in some cases to compute the steady-state distrib-
ution, see e.g. Hornos et al. (2005) or Peccoud and Ycart (1995), with simple feedback
functions. See also the more recent works of Visco et al. (2008a, 2008b) where phase
diagrams are obtained using generating functions for linear feedback. Here we show that
even when the feedbacks are arbitrary, the method can be used to gain insight in the re-
lations between variance, mean and probability to be ON. To avoid boundary conditions,
we suppose here that the number of protein is arbitrary (Λ = ∞), and the only assumption
concerning the propensity functions is that ν(n) = ν n, i.e. degradation is directly propor-
tional to the number of proteins, while κ(n) and g(n) are arbitrary positive functions and
μ0 is not necessarily 0.
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Let πn(y) = limt→∞ P (N(t) = n,Y (t) = y) and

α(z) =
∑
n�0

πn(1)zn, β(z) =
∑
n�0

πn(0)zn,

be the partial generating functions related to the steady state, and

R(z) :=
∑
n�0

(
πn(1)κ(n) − πn(0)g(n)

)
zn.

From the master equation (1) at equilibrium, we deduce

0 = −R(z) + μ1(z − 1)α(z) + ν(1 − z)
dα(z)

dz
, and

0 = +R(z) + μ0(z − 1)β(z) + ν(1 − z)
dβ(z)

dz
.

Adding these two relations and assuming that z �= 1 gives

dα(z)

dz
+ dβ(z)

dz
= μ1α(z) + μ0β(z)

ν
.

This shows that the following general relations hold:

E
(
N(∞)

)= μ1

ν
P
(
Y (∞) = 1

)+ μ0

ν
P
(
Y (∞) = 0

)
,

Var
(
N(∞)

)= μ1

ν

dα(z)

dz

∣∣∣∣
z=1

+ μ0

ν

dβ(z)

dz

∣∣∣∣
z=1

+ E
(
N(∞)

)(
1 − E

(
N(∞)

))
,

where we recall that

α(1) = P
(
Y (∞) = 1

)
,

dα(z)

dz

∣∣∣∣
z=1

= E
(
N(∞)Y (∞)

)
and

dβ(z)

dz

∣∣∣∣
z=1

= E
(
N(∞)

(
1 − Y (∞)

))
.

These formulas make sense since, when the promoter is on (resp. off), the process evolves
as a birth and death process with birth rate μ1 (resp. μ0) and death rate νn, and has a Pois-
son distribution of parameter μ1/ν (resp. μ0/ν) as a stationary distribution, of mean and
the variance given by μ1/ν (resp. μ0/ν). The last term is related to promoter fluctuations,
see the following example.

Example 1. Assume that g(n) ≡ g and κ(n) ≡ κ . Let F(t) = ∑
n�0 nP (N(t) = n,

Y (t) = 1). The master equation yields

dF(t)

dt
= gE(t) + μ1G(t) − F(t)(g + κ + ν),
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dE(t)

dt
= μ1G(t) + μ0(1 − G(t)) − νE(t),

where E(t) = E(N(t)). Using the differential relation dG(t)/dt = g(1 − G(t)) − κG,
one gets that

G(∞) = g

g + κ
.

Notice that G(∞) is related to the stationary law of the 0/1 Markov chain given by the
transition rates p(0,1) = g and p(1,0) = κ , which models the fluctuations of the state of
the promoter. Then

Var
(
N(∞)

) = d2α(z)

d2z

∣∣∣∣
z=1

+ d2β(z)

d2z

∣∣∣∣
z=1

+ E(∞) − E(∞)2

= μ1

ν
F (∞) + μ0

ν
H(∞) + E(∞) − E(∞)2,

where we set H(t) = E(t) − F(t). It follows that

Var
(
N(∞)

)= μ1

ν
G(∞) + μ0

ν

(
1 − G(∞)

)+ μ1

ν
F (∞) + μ0

ν
H(∞) − E(∞)2.

We finally obtain, after some algebra,

Var
(
N(∞)

)= μ1

ν
G(∞) + μ0

ν

(
1 − G(∞)

)+ τ2

τ1 + τ2

(μ1 − μ0)
2

ν2
Var
(
Y (∞)

)
,

where the characteristic times τ1 and τ2 are defined by

τ1 = 1

ν
and τ2 = 1

g + κ
.

The interpretation of this formula is obtained by observing that, when the promoter is
on with probability G(∞), the process evolves as a birth and death process with steady-
state distribution given by a Poisson distribution of parameter μ1/ν. The interpretation
of the second term is similar. The third term corresponds to the variance of a Bernoulli
random variable (on/off) multiplied by a factor accounting for characteristic times related
to protein degradation and promoter fluctuation. When μ0 = 0, the coefficient of variation
can be then given as

CV2
N = Var(N(∞))

E(N(∞))2
= 1

E(N(∞))
+ τ2

τ1 + τ2

Var(Y (∞))

E(Y (∞))2
,

as given in Paulsson (2005). The above relations yield moreover that

CV2
N = g + κ

ρg
+ νκ

g(g + ν + κ)
,

where ρ = μ1/ν, and it follows that CV2
N is decreasing as a function of g and increasing

as a function of κ .

ht
tp

://
do

c.
re

ro
.c

h

12



3. Mean-field models

Most mathematical works on gene networks, like Gadgil et al. (2005), consider networks
with linear transition rates in which the state space of each chemical species equals N.
Results on networks involving catalytic transitions rates are very scarce. Lipan and Wong
(2005) also focus on such models but allow time dependent transition rates. In this situ-
ation, one gets interesting linear differential equations for the first and second moments,
and for covariance functions. When some state space is finite, boundary effects transform
the equations which become more involved.

The model for the self-regulated gene defined in Section 2 is similar to a mathematical
model for an epidemic of schistosomiasis provided by Nasell and Hirsch (1972, 1973).
In their model, the authors consider a similar Markov chain, where they replace every
external random variables in the transitions probabilities by functions of their expected
values. This means for example that the transition rate P ((n, y), (n + 1, y)) = yμ is re-
placed by P ((n, y), (n + 1, y)) = E(Y (t))μ, and P ((n, y), (n,1 − y)) by κ(E(N(t)))y +
g(E(N(t)))(1−y), since for this last transition, the external random variable correspond-
ing to this transition is N(t). One gets a time-nonhomogeneous Markov chain. One can
show that the pair (E(N(t)),E(Y (t))) converges to a limit (E(N(∞)),E(Y (∞))) (see
e.g. Nasell and Hirsch, 1972). This model is then asymptotically equivalent to the model
of the self-regulated gene given in Example 1 where μ1 = μ0 = E(Y (∞))μ: it is easy
to check that the stationary distribution of N(∞) is Poisson of parameter μ1/ν when
ν(n) ≡ νn. The mean and the variance are then equal to μ1/ν. The behavior of the prop-
agation of noise in gene networks can be counter-intuitive, as shown for example by Pe-
draza and van Oudenaarden (2005), where the mean gene expression at steady state is
increasing as function of some inducer, but where the variance exhibits a peak. The same
phenomenon occurs with the therapeutic network of Section 5. This shows that this model
cannot predict this qualitative behavior. We shall adopt a different point of view below by
conserving the external variable Y (t) and taking only the average of N(t).

Models in which one considers the average of N(t) in transition rates, but not involving
promoters and therefore Y (t), have been considered more recently in the gene regulation
setting by Goutsias and Kim (2006), where the authors introduce biologically meaningful
delays in feedback interactions. They replace occurrences in transition rates of κ(N(t))

and g(N(t)) by expressions involving their expected values, that is by κ(E(N(t −θ))) and
g(E(N(t − θ))) for some delay θ . Time delays are biologically very meaningful since, in
fact, proteins move around at random and the delay θ might represent the average time a
protein takes to move back in the neighborhood of the promoter. As stated in the Introduc-
tion, their models however do not involve Y (t) ∈ {0,1}, and therefore promoters. For the
self-regulated gene, assuming linear degradation transition rates of the form ν(n) = νn,
the limiting steady state is again Poisson, so that this model is not completely satisfactory
for predicting the propagation of noise in gene expression levels.

In a previous work Fournier et al. (2007), we proposed a mean-field model, which
includes promoter states and time delays, extending a model of Bratsun et al. (2005). The
regulatory network was studied in living cells, and the experimental data were in good
agreement with the model’s predictions. We also provided a rationale for introducing
mean-field interactions: The many steps and relatively slow transitions between states of
chromatin in mammalian cells between the permissive and the non-permissive states of
chromatin may dampen the noise that stems from the stochastic binding of a low number

ht
tp

://
do

c.
re

ro
.c

h

13



of activator proteins to the promoter and from noise amplification resulting from the gene
auto-activation feedback. In this setting chromatin may act as a noise-filtering device that
allows graded response from stochastic events. This new Markov chain η(t) evolves in
the same state space, but has transition rates given by (we assume that μ0 = 0 and μ1 =
μ > 0)

q
(
N(t + h) = n + 1, Y (t + h) = y|N(t) = n,Y (t) = y

)= y μ h + o(h),

q
(
N(t + h) = n,Y (t + h) = 1 − y|N(t) = n,Y (t) = y

)
= κ
(
E
(
N(t − θ)

))
h + o(h) when y = 1,

q
(
N(t + h) = n,Y (t + h) = 1 − y|N(t) = n,Y (t) = y

)
= g
(
E
(
N(t − θ)

))
h + o(h) when y = 0,

and

q
(
N(t + h) = n − 1, Y (t + h) = y|N(t) = n,Y (t) = y

)= ν n h + o(h).

The main difference with the basic model is that transition rates like p((n, y),

(n,1 − y)) = κ(n) are replaced by time nonhomogeneous rates qt ((n, y), (n,1 − y)) =
κ(E(N(t − θ))), so that the related Markov chain is time nonhomogeneous. Let us denote
by Qt the related transition matrix at time t , of instantaneous steady-state distribution
πt , with πtQt = 0. In what follows, we shall use the family of transition matrices Q(b,c)

given by

q(b,c)

(
(n, y), (n + 1, y)

)= y μ, q(b,c)

(
(n, y), (n − 1, y)

)= ν n,

q(b,c)

(
(n, y), (n,1 − y)

)= b when y = 1, and

q(b,c)

(
(n, y), (n,1 − y)

)= c when y = 0,

of steady-state distribution π(b,c). Then Qt = Q(b(t),c(t)), where b(t) = κ(E(N(t − θ)))

and c(t) = g(E(N(t − θ))).
When dealing with time nonhomogeneous Markov chains, the main problem is that the

law of the stochastic process P (η(t) = (n, y)) does not necessarily converges toward the
limiting steady-state distribution (when it exists) limt→∞ πt , and can lead to oscillations,
as provided for example in Bratsun et al. (2005), or in Goutsias and Kim (2006). The
first thing we can do is to check the asymptotic behavior of the functions b(t) and c(t).
Suppose that these functions converge toward positive numbers b(∞) and c(∞). Then
one ask if the following holds

lim
t→∞P

(
η(t) = (n, y)

)= lim
t→∞ πt(n, y) = π(b(∞),c(∞))(n, y) ? (2)

Assume that this is true: Then one gets that the steady-state behavior of the self-regulated
gene is given by computing the steady-state and the basic statistical descriptors related to
the Markov chain of transition kernel Q(b(∞),c(∞)), which is much simpler. We will see
that in such a situation, one can get exact formulas for the mean and for the variance of
the number of proteins (see also Example 1).
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Equation (2) holds under fairly general assumptions. Theorem 6 of Appendix A gives
that

lim
t→∞P

(
η(t) = (n, y)

)= π(b(∞),c(∞))(n, y),

when the limiting process of transition kernel Q(b(∞),c(∞)) is ergodic,∫ ∞

0

(√
b(t) −√b(∞)

)2
dt < +∞, and∫ ∞

0

(√
c(t) −√c(∞)

)2
dt < +∞, (3)

and under an additional hypothesis which is automatically satisfied in our model (see the
Appendix A).

The chemical master equation yields differential equations for G(t) = P (Y (t) = 1)

and E(t) := E(N(t)), given by

dE

dt
= μG(t) − νE(t),

(4)
dG

dt
= c(t)(1 − G(t)) − b(t)G(t).

Remark 1. Bratsun et al. (2005), and Goutsias and Kim (2006), consider delayed differ-
ential systems similar to the system given by (4) with solutions oscillating toward limit
cycles. The steady state exists however only when the solutions of this system converge
as t → ∞. We will see that this is the case for a linear positive feedback.

Algorithm 2.

(STEP 1): Check the convergence of the orbits of the system given by (4), for a given
initial condition G(0), E(t), −θ � t � 0. When convergence holds, proceed to the next
step

(STEP 2): Let e∞ = E(∞), with e∞ = μ/νG(∞). Solve the equation

g(e∞)

(
1 − ν

μ
e∞
)

− κ(e∞)
ν

μ
e∞ = 0.

(STEP 3): Let

τ2 := (g(e∞) + κ(e∞)
)−1

.

Compute the coefficient of variation as

CV2
N = Var(N(∞))

E(N(∞))2
= 1

e∞
+ τ2

τ1 + τ2

(1 − G(∞))

G(∞)
,

where τ1 = 1/ν.
For more insight in these formulas, see the remarks in Example 1.
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3.1. Convergence for linear positive feedbacks

Recall that c(t) = g(E(N(t − θ)) and assume that κ(n) ≡ κ . We generalize the linear case
by assuming that g(x)/x is decreasing. Notice that even when g(x) is affine in n, this does
not mean that the stochastic system is linear: for example, assuming fast promoters or a
quasi-equilibrium, one gets a time-nonhomogeneous birth and death process with birth
rate μc(t)/(c(t)+κ) and death rate νn. We prove below that the above dynamical system
is such that there is a globally asymptotically stable critical point (E(∞),G(∞)) with

G(∞) > 0 and c(∞) > 0

(see Gabriel et al., 1981, for more general mathematical results). In this case, the mean
and the variance of the number of proteins are obtained by studying the transition kernel
Q(κ,c(∞)).

In the following, we focus on the system (4) that reads in our setting

dE

dt
= μG(t) − νE(t),

(5)
dG

dt
= g
(
E
(
N(t − θ)

))(
1 − G(t)

)− κG(t),

where g(·) is continuously differentiable and increasing over R+, g(0) > 0, g(E)

E
is de-

creasing, the initial condition E(t) is continuous and non-negative over [−θ,0] and
0 ≤ G(0) ≤ 1. We use the notation ḟ for the derivative df/dt . We proceed step by step to
show that condition (3) holds.

In Lemma 2, we prove that the evolution equations defining the system are well de-
fined, providing a unique solution, then we show in Lemma 3 that the system converges
to the unique biologically meaningful critical point of the system and in Lemma 4 that
the speed of convergence is exponential. The methods used are adapted from Gabriel et
al. (1981). Finally, using our hypothesis on the function g, it is easy to conclude that the
condition (3) holds, and the main result is stated in Theorem 3.

The theory of delayed differential equations is very different from the usual theory of
differential equations, here the initial condition is no more a point in the finite dimensional
space R+ × [0,1] but a continuous non-negative function E(t) over the interval [−θ,0]
and a value G(0) ∈ [0,1]. To solve the system (5), we have to first integrate the second
equation over the interval [0, θ ], then plug the solution in the first equation and integrate
using the variation of constant over the interval [0, θ ] and begin the whole procedure anew
over the interval [θ,2θ ] with initial condition given by E(t) over the interval [0, θ ], and
so on.

Lemma 2 (Existence and uniqueness). For any initial condition E(t) non-negative and
continuous over [−θ,0] and 0 ≤ G(0) ≤ 1, there exists a unique solution of the system
(5) defined over [0,+∞). Furthermore,

0 < E(t) ≤ max
{
E(0),μ/ν

}
, t ≥ 0,

and

0 < G(t) < 1, t > 0.
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Proof: For any initial condition 0 ≤ G(0) ≤ 1 and E(t) non-negative and continuous over
[−θ,0], (5) admits obviously a unique solution over [0, θ ]. If G(0) > 0, then by continuity
G remains strictly positive over some open interval to the right of 0. If G(0) = 0, then
according to the second equation of (5), Ġ(0) > 0 and the same conclusion holds. The
same reasoning shows that G < 1 over some open interval to the right of 0. Clearly, if they
exist, t0 = inf{t ∈ (0, θ ], G(t) = 0} and t1 = inf{t ∈ (0, θ ], G(t) = 1} are both strictly
positive. By definition, Ġ(t0) ≤ 0 and by continuity, G(t0) = 0. The second equation of
(5) entails Ġ(t0) > 0. We have a similar contradiction for t1, thus 0 < G(t) < 1 over (0, θ ].
The variation of constant formula entails

0 < E(t) ≤ max
{
E(0),μ/ν

}
over (0, θ ].

Iterating the procedure provides existence and uniqueness of a solution defined over
[0,+∞) and the preceding inequalities are preserved. �

We are interested in the possible equilibria of (5) in R+ ×[0,1], i.e. the solutions (E0,G0)

in R+ × [0,1] of

0 = μG0 − νE0, 0 = g(E0)(1 − G0) − κG0.

Clearly G0 = 0 and G0 = 1 lead to contradictions. We thus have 0 < G0 < 1 and conse-
quently E0 > 0. Plugging G0 = ν

μ
E0 in the second equation yields

g(E0)

E0

(
μ

ν
− E0

)
= κ.

If g(0) > 0 and g(E)

E
is decreasing over (0,+∞), then g(E)

E
(

μ

ν
− E) is strictly decreasing.

Since it starts at +∞ and becomes ultimately negative, we conclude to the existence of a
unique solution (E0,G0) ∈ R

2 × [0,1].
We will use the fluctuation Lemma 6 given in Appendix A to prove the convergence to

the critical point (E0,G0).

Lemma 3 (Convergence). For any initial condition E(t) non-negative and continuous
over [−θ,0] and 0 ≤ G(0) ≤ 1, the unique solution (E(t),G(t)) converges to (E0,G0)

as t → ∞.

Proof: The fluctuation Lemma 6 and the monotonicity of g imply that

0 ≥ μG − νE, 0 ≥ g(E)(1 − G) − κG
(6)

0 ≤ μG − νE, 0 ≤ g(E)(1 − G) − κG.

We prove the last inequality to exemplify the method. We choose tn ↑ +∞ so that
G(tn) → G and Ġ(tn) → 0 as n → +∞. Since the sequence {E(tn)}n≥1 is bounded, there
exists a subsequence (tnk

)k≥1 so that E(tnk
) converges as k → ∞ to a certain value that

we call E∞. Evaluating the equation for G over the subsequence (tnk
)k≥1 and letting

k → +∞, we get

0 = g(E∞)(1 − G) − κG ≤ g(E)(1 − G) − κG

ht
tp

://
do

c.
re

ro
.c

h

17



since g is increasing and G ≤ 1. The proof of the other inequalities in (6) is similar.
We already know that 0 < G, E > 0 and G < 1, and (6) entails G ≤ ν

μ
E and G ≥ ν

μ
E,

and in particular E ≤ μ

ν
G <

μ

ν
. Consequently

κν

μ
E ≤ κG ≤ g(E)(1 − G) ≤ g(E)

(
1 − ν

μ
E

)
,

hence

κ ≤ g(E)

E

(
μ

ν
− E

)
.

Repeating the same argument for E, one gets

κ ≥ g(E)

E

(
μ

ν
− E

)
.

By assumption, g(E)

E
(

μ

ν
− E) is decreasing, so that the two last equations then give that

E ≤ E0 and E ≥ E0. Clearly we have E = E = E0, so that E(t) converges as t → +∞.
According to Lemma 3.1 in Coppel (1965), E(t) and its first two derivatives being
bounded on [θ,+∞), we have limt→+∞ Ė(t) = 0 and the relation Ė = μG − νE entail
the convergence of G(t) as t → +∞. �

From this Lemma, we deduce that the propensity function

a3(t, y) = g
(
E
(
N(t − θ)

))
y

converges to g∞ y = g(E0) y as t → ∞. To show that the convergence speed is exponen-
tial, we use Theorem 7 cited in Appendix A.

Lemma 4 (Exponential convergence). The convergence of (E(t),G(t)) to (E0,G0) is
exponential.

Proof: Near a critical point, the asymptotic behavior of the system is determined by the
asymptotic behavior of the linearized system[

Ė(t)

Ġ(t)

]
= A ·

[
E(t)

G(t)

]
+ B ·

[
E(t − θ)

G(t − θ)

]
,

where A and B are the matrices

A =
[−ν μ

0 −(g(E0) + κ)

]
, B =

[
0 0

g′(E0)(1 − G0) 0

]
.

We show that all roots λ of the characteristic equation det(A + e−λθB − λI) = 0 have
negative real parts. The characteristic equation is here

λ2 + λ
(
ν + g(E0) + κ

)+ ν
(
g(E0) + κ

)− μg′(E0)(1 − G0)e
−λθ = 0,
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and all roots λ of this equation have negative real part if and only if all roots z of

H(z) := (z2 + pz + q
)
ez + r = 0

have negative real parts, with

p := (ν +g(E0)+κ
)
θ, q := ν(g(E0)+κ)θ2, r := −μg′(E0)(1−G0)θ

2,

and the change of variable z := λθ . According to Theorem 7 given in Appendix A, since
r < 0 and

p2 = 2q + ν2θ2 + (g(E0) + κ
)2

θ2 ≥ 2q,

we have to check that −q < r < 0 and r sin(a2)/(pa2) ≤ 1, where a2 is the unique root
of the equation cot(a) = (a2 − p)/q which lies in the interval (2π,3π). The second in-
equality is clear since r/p < 0 and sin(x)/x ≥ 0 on (2π,3π). For the inequality −r < q ,
notice that g′(x) ≤ g(x)/x since g(x)/x is decreasing, and using the equilibrium equation
g(E0)(1 − G0) = κG0 = νκ

μ
E0, we have

−r = μg′(E0)(1 − G0)θ
2 ≤ μ

g(E0)

E0
(1 − G0)θ

2 = νκθ2 < ν
(
κ + g(E0)

)
θ2 = q.

Hence all roots of the characteristic equation have negative real parts and the system is
asymptotically stable. Since our system is autonomous, asymptotic stability implies uni-
form asymptotic stability. According to Theorem 4.6 in Halanay (1966), the convergence
is exponential. �

Using the exponential convergence of E(N(t − θ)) and the hypothesis on g, it is now easy
to show that condition (3) is satisfied.

Theorem 3. Assume that g(n) = g0 + g1n with g0 > 0 and that κ(n) ≡ κ . The limiting
distribution of the time-nonhomogeneous process (N(t), Y (t)) is such that

lim
t→∞P

(
N(t) = n,Y (t) = y

)= π(κ,g(E0))
n (y),

where π(g(e∞),κ) is the steady-state distribution given by Theorem 1 for a self-regulated
gene with the simpler transitions

P
(
(n, y), (n + 1, y)

)= y μ, P
(
(n, y), (n − 1, y)

)= νn,

P
(
(n, y), (n,1 − y)

)= κ when y = 1,

P
(
(n, y), (n,1 − y)

)= g(E0) when y = 0.

The steady-state coefficient of variation of N(∞) is given by

CV2
N = 1

E0
+ τ1

τ1 + τ2

κ

g(E0)
,
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where

τ2 = 1

g(E0) + κ
, τ1 = 1

ν
.

Proof: According to Theorem 6 in Appendix A, we only have to show that condition (3)
holds. Using the positiveness and boundedness of g(E(t − θ)), 0 < g(0) ≤ g(E(t − θ)) ≤
g(μ/ν), and the expansion√

g
(
E(t − θ)

)−√g(E0) = g(E(t − θ)) − g(E0)√
g(E(t − θ)) + √

g(E0)
,

we have

|g(E(t − θ)) − g(E0)|
2
√

g(μ/ν)
≤
∣∣∣∣√g

(
E(t − θ)

)−√g(E0)

∣∣∣∣≤ |g(E(t − θ)) − g(E0)|
2
√

g(0)

and condition (3) is in our case equivalent to∫ ∞

0

(
g
(
E(t − θ)

)− g(E0)
)2

dt < ∞.

Let ε be positive, ε < E0 and Tε be such that |E(t − θ)−E0| < ε for all t ≥ Tε . Using the
mean value theorem, for all t ≥ Tε , there exists a ξt in the interval delimited by E(t − θ)

and E0 such that∣∣g(E(t − θ)
)− g(E0)

∣∣= g′(ξt )
∣∣E(t − θ) − E0

∣∣.
Since for all t ≥ Tε , E0 − ε < min(E(t − θ),E0), and furthermore 0 ≤ g′(x) ≤ g(x)/x

and g(x)/x is decreasing,

∣∣g(E(t − θ)
)− g(E0)

∣∣= g′(ξt )
∣∣E(t − θ) − E0

∣∣≤ g(ξt )

ξt

∣∣E(t − θ) − E0

∣∣
≤ g(E0 − ε)

E0 − ε

∣∣E(t − θ) − E0

∣∣=: Lε

∣∣E(t − θ) − E0

∣∣,
and finally with the exponential convergence of E(t − θ) to E0, condition (3) holds∫ ∞

0

(
g
(
E(t − θ)

)− g(E0)
)2

dt ≤
∫ Tε

0

(
g
(
E(t − θ)

)− g(E0)
)2

dt

+ Lε

∫ ∞

Tε

(
E(t − θ) − E0

)2
dt < ∞. �

Remark 2. When the positive feedback rate g(E(N(t − θ))) is such that g(x)

x
is increas-

ing, for example when g is a polynomial of degree ≥ 2, there can possibly exist several
biologically meaningful equilibrium points and it cannot be excluded that for some initial
conditions the solutions of (5) oscillate endlessly.
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When g is constant but the negative feedback κ(E(N(t −θ))) is an increasing function
of E(N(t − θ)), the biologically meaningful equilibrium point is unique but similar appli-
cation of the fluctuation lemma as in the proof of Lemma 3 yields the trivial observation
that E ≤ E0 ≤ E, and oscillating solutions cannot be excluded in this case either.

4. Two-time-scale stochastic simulations

The self-regulated gene and the network presented in the Introduction involve slow and
fast species, like therapeutic proteins and activator dimers. We recall existing known prob-
abilistic results concerning quasi-equilibrium. Let ε > 0 be a small parameter, which will
be useful for describing fast species. In what follows, ηε(t) is a random vector describ-
ing the number of molecules of each species present in the cell at time t . For exam-
ple, considering the self-regulated gene, Nε(t) gives the number of protein molecules at
time t , and Y ε(t) = 0, 1 gives the state of the promoter. The pair ηε

s (t) = (Nε(t), Y ε(t))

stands for the slow process. ηε
f (t) models the fast process, and the global process is

ηε(t) = (ηε
s (t), η

ε
f (t)).

A generic example of fast reaction is dimerization, as given by the chemical reaction

M + M βε+←→
βε−

D,

where M represents protein monomers and D protein dimers. Protein dimers form a fast
species, while protein (involved in dimers or monomers) is a slow species. The rates of
these reactions are fast when for example the rate constants βε− and βε+ are such that
βε− = c−/ε and βε+ = c+/ε, for positive constants c− and c+, when ε ≈ 0. In this setting,
the number of protein monomers is then given by Nε(t) − 2Dε(t), where Dε(t) gives the
number of protein dimers present in the cell at time t . Here

ηε
s (t) = (Nε(t), Y ε(t)

)
and ηε

f (t) = Dε(t).

When ε ≈ 0, a quasi-equilibrium is attained, meaning that for given ηε
s (t) = k, one can

assume a local steady state for the number of dimers. More generally, we assume that
the slow process evolves in some finite space Es = {1, . . . ,L}, and that, given k ∈ Es ,
ηε

f (t) ∈ N is described by a Markov transition kernel Ak(t)/ε (see below). We follow
essentially (Zhang and Yin, 1997). We assume that the generator Q(t) = Qε(t) of the
Gillespie algorithm ηε(t) can be decomposed as

Qε(t) = 1

ε
A(t) + B(t),

where A(t) and B(t) are matrix valued functions. Following Zhang and Yin (1997), as-
sume that A(t) has the block diagonal form

A(t) =

⎛⎜⎜⎝
A1(t) 0 0 · · · 0

0 A2(t) 0 · · · 0
· · · · · · · · · · · ·
0 0 0 · · · AL(t)

⎞⎟⎟⎠ ,
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where each block Ak(t)/ε is a transition matrix representing the transitions rates of the
fast variables given ηε

s = k. The generator B(t) gives the slow transition rates and in
particular transitions of the form ((k,u), (j, v)), where u,v ∈ N and k, j ∈ Es . Following
Zhang and Yin (1997), we partition the state space E as

E = E1 ∪ E2 ∪ · · · ∪ EL,

where each Ek contains mk elements, with

Ek = {ek1, ek2, . . . , ekmk
}, k ∈ Es.

Each Ek corresponds to some subset of {k} x N, with k ∈ Es .

Hypothesis. We suppose that the process is time-homogeneous, that is that both A(t) and
B(t) do not depend on t , and that each generator Ak is irreducible with a unique invariant
probability measure σ k = (σ k(ek1), . . . , σ

k(ekmk
)), such that σ kAk = 0.

Following Zhang and Yin (1997), each Ek can be aggregated, and represented by a
single state k, corresponding to a particular slow state; The Markov process ηε(t) of tran-
sition kernel Qε is then approximated by an aggregated process η̄ε(t) defined by

η̄ε(t) = k if ηε(t) ∈ Ek, k = 1, . . . ,L.

This process converges in distribution as ε → 0 toward a Markov process η(t) generated
by the kernel Q = (γkj )k,j∈Es , with

γkj =
mk∑
u=1

mj∑
v=1

σ k(eku)B(eku, ejv), k �= j.

4.1. Transcription with fast dimerization

The model is similar to that given in Section 2, with dimerization as a fast component,
see e.g. Burrage et al. (2004), Cao et al. (2005), or Goutsias (2005). It is described by the
following set of chemical reactions:

M ν−→∅, ∅ μl−→M, l ∈ {0,1},

O0 + D g(d)←→
κ(d)

O1, M + M βε+←→
βε−

D,

where D represent dimers, g is function of the number of dimers, and the rates βε− and βε+
involve a small number ε > 0 modeling the speed of dimerization, see below. The number
Nε(t) of proteins P present at time t is related to the number of dimers as 0 � 2Dε(t) �
Nε(t), and the number of free monomers is such that M + 2D = P .

The running process is a Markov process ηε(t) = (Nε(t), Y ε(t),Dε(t)), 0 � 2Dε(t) �
Nε(t), t � 0. The dimerization process Dε(t) is given by the transition rates

P
(
ηε

s (t + h) = ηε
s (t),D

ε(t + h) = Dε(t) + 1
)
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= βε
+
(
Nε(t) − 2Dε(t)

)(
Nε(t) − 2Dε(t) − 1

)
h + o(h),

P
(
ηε

s (t + h) = ηε
s (t),D

ε(t + h) = Dε(t) − 1
)= βε

−Dε(t)h + o(h),

where the slow process is ηε
s (t) = (Nε(t), Y ε(t)).

The transition rates of Dε(t) depend on Nε(t) but are independent of the state of the
promoter. We can fit the setup of this section by setting

βε
− = c−

ε
and βε

+ = c+
ε

,

for positive constants c− and c+. Then, the result of Section 4 yield that the slow process
at quasi-equilibrium (ε ≈ 0) is well described in the above discussion: For a given slow
state k = (n, y), one gets

g(n) =
∑

0�d�[n/2]
σ (n,y)(d)g(d), σ (n,y) = μn,

where the quasi-equilibrium stationary measure σ (n,y) corresponds to the stationary mea-
sure μn of the dimerization process (see below). A typical example is given by g(Dε(t)) =
λDε(t) + g(0), that is depends linearly on the number of dimers at time t . Then, at quasi-
equilibrium one gets

g(n) =
∑

0�d�[n/2]
μn(d)

(
λd + g(0)

)= λEn + g(0),

where we set En :=
∑

0�d�[n/2]
dμn(d),

where [· · · ] denotes the integer part. The algorithms developed in Section 2 can be ap-
plied efficiently if one can compute the rates g(n). The next section develops efficient
algorithms for computing g(n) when g(d) is linear, quadratic or a higher polynomial in
the number d of dimers. The polynomial g(d) is proportional to the polynomial known
in biochemistry as the binding polynomial, see for example (Dill and Bromberg, 2003),
Chapter 28, or Section 5.1. Its degree is given by the number of sites to which dimers bind
to on the promoter and to model high cooperativity, one usually uses a Hill model with
g(d) proportional to 1 + dkr , with kr the number of sites on the promoter. The next sec-
tion considers the problem of computing various moments like En at quasi-equilibrium.
This is a generic problem, and the usual way of dealing with moment problems consists
in providing various kind of (Gaussian) approximations, see e.g. Cao et al. (2004, 2005)
or Goutsias (2005). We here provide exact algorithms based on iterative procedure, which
are computationally efficient, and which permit to avoid adding more approximative steps
when dealing with stochastic simulations at quasi-equilibrium.

4.2. Dimerization

Dimerization appears in most biochemical processes, and is usually considered as a fast
reaction. The aim of this section is to give mathematical statements relevant for computa-
tional purposes (see also Cao et al., 2005, Darvey et al., 1966 or Kepler and Elston, 2001).

ht
tp

://
do

c.
re

ro
.c

h

23



Given a fixed number of proteins n, the dimerization process is given by the reaction

M + M c+←→
c−

D,

where we recall that M and D represent protein monomers and dimers. The infinitesimal
transitions probabilities are such that

P
(
D(t + h) = i + 1|D(t) = i

)= c+(n − 2i)(n − 2i − 1)h + o(h),

P
(
D(t + h) = i − 1|D(t) = i

)= c− i h + o(h).

The stationary distribution μn of the process is given explicitly by

μn(i) =
(

c+
c−

)i 1

(n − 2i)! i! · 1

Zn

, 0 � i � n2, n2 := [n/2],

where

Zn =
n2∑
i=0

(
2c+
c−

)i 1

(n − 2i)! i! · 2i
.

It can be shown that the generating function at equilibrium M(s) =∑n2
i=0 μn(i)si can

be written using confluent hypergeometric functions

M(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sn2

1F1(−n2, 3
2 ,− c−

4c+s
)

1F1(−n2, 3
2 ,− c−

4c+ )
if n is odd,

sn2
1F1(−n2, 1

2 ,− c−
4c+s

)

1F1(−n2, 1
2 ,− c−

4c+ )
if n is even.

This gives a theoretical way of computing the invariant measure as

μn(i) = M(i)(0)

i! , 0 ≤ i ≤ n2,

and the mean number of dimers in the stationary regime is given by

En = M ′(1).

Numerical computation based on this last formula is tedious and in the case described
in Section 5.3 we have to compute moments repeatedly for each n between 0 and Λ.
The recursive method described in the next section provides an alternative adapted to this
situation.

4.3. An approach of the invariant measure adapted to numerical computation

We provide a different approach, which will allow efficient computations of the mean
and second moment. If the feedback function in the slow process is linear or quadratic
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in the number of dimers, the infinitesimal transition rates of the slow process at quasi-
equilibrium will only depend on the first two moments. Set y = c+/c−, so that Zn =∑n2

i=0
yi

(n−2i)! i! . Using the following polynomial identities:

n2∑
i=1

iyi

(n − 2i)!i! = yZn−2 and
n2∑
i=1

i2yi

(n − 2i)!i! = y2Zn−4 + yZn−2,

the mean En :=∑0�i�n2
iμn(i) and second moment E

2
n :=∑0�i�n2

i2μn(i) are given by

En = 1

Zn

n2∑
i=1

iyi

(n − 2i)!i! = y
Zn−2

Zn

(7)

E
2
n = 1

Zn

n2∑
i=1

i2yi

(N − 2i)!i! = y2 Zn−4

Zn

+ y
Zn−2

Zn

= En

(
1 + En−2

)
.

In what follows, we give another description of Zn based on the involutions of the permu-
tation group Sn. This approach will allow to compute the ratios Zn−2/Zn recursively.

4.3.1. A description of Zn based on the involutions of Sn

Let In denote the involution subgroup of the permutation group Sn, i.e. the set of permu-
tation of n points σ ∈ Sn so that σ 2 is the identity. For σ ∈ In, fix(σ ) denotes the number
of fixed points of σ . For any number n − 2i between 0 and n, the number of involutions
with n − 2i fixed points is given by

∑
σ∈In

fix(σ )=n−2i

1 =
(

n

2

)
·
(

n − 2

2

)
· · ·
(

n − 2(i − 1)

2

)
· 1

i! = n!
(n − 2i)! i! · 2i

,

so that, setting q := √
c−/2c+ = (2y)−1/2, Zn can be written as

Zn =
n2∑
i=0

(
2c+
c−

)i 1

(n − 2i)! i! · 2i
= 1

n!
∑
σ∈In

(
2c+
c−

) n−fix(σ )
2 = q−n

n!
∑
σ∈In

qfix(σ ).

Let Qn denote the polynomial Qn(q) :=∑σ∈In
qfix(σ ), so that the partition function and

the mean (7) can be written as

Zn = q−n

n! Qn(q), and En = n(n − 1)

2

Qn−2(q)

Qn(q)
. (8)

According to Randrianarivony (1997), one can identify Qn as the Taylor coefficient of a
Stieltjes type continued fraction. Here we proceed in a recursive way, using the following
two propositions.

Proposition 2. Qn(q) satisfies the relation Qn+1(q) = q Qn(q) + Q′
n(q).
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Proof: Each involution σ ∈ In induces 1 + fix(σ ) involutions in In+1, namely the one
that fixes the point n + 1 and the fix(σ ) ones that interchange a fixed point of σ with
n + 1. Partitioning In+1 as the set of involutions that fixe n + 1, and those that do not, we
see that the first set contains exactly the involutions of In except that they have one more
fixed point, namely n + 1. For each σ ∈ In that fixes at least one point, the second set
contains fix(σ ) involutions with one fixed point less, namely the one that is interchanged
with n + 1. More precisely, the partition of In+1 is given by

In+1 = {σ ∈ In+1;σ fixes n + 1} ∪ {σ ∈ In+1;σ does not fix n + 1}
= In ∪

⋃
σ∈In

⋃
σ fixes k

{
σ ◦ (k, n + 1)

}
where (k, n + 1) is the permutation of k and n + 1. Therefore, we have the recurrence
relation

Qn+1(q) =
∑

σ∈In+1

qfix(σ ) =
∑
σ∈In

qfix(σ )+1 +
∑
σ∈In,

fix(σ )≥1

∑
1≤k≤fix(σ )

qfix(σ )−1

= q
∑
σ∈In

qfix(σ ) +
∑
σ∈In,

fix(σ )≥1

fix(σ )qfix(σ )−1 = q Qn(q) + Q′
n(q).

�

Proposition 3. The derivative of Qn is given by Q′
n(q) = n · Qn−1(q), and hence

Qn+1(q) = q Qn(q) + n · Qn−1(q). (9)

Proof: One can easily compute Q1(q) = q and Q2(q) = q2 + 1. If Q′
n(q) = nQn−1(q)

for some n, using Proposition 2 for the first and last equality and by the induction hypoth-
esis for the second one, we have

Q′
n+1(q) = Qn(q) + qQ′

n(q) + Q′′
n(q)

= Qn(q) + qnQn−1(q) + nQ′
n−1(q) = (n + 1)Qn(q). �

Remark 3. Let hq(t) :=∑∞
n=0 Qn(q) tn

n! . Multiplying both sides of (9) by tn

n! and sum-
ming over all possible n leads to the equation h′

q(t) = (t + q)hq(t), with initial condition
hq(0) = Q0(q) = 1, which has the unique solution

hq(t) = e
t2
2 +qt .

This function is the moment generating function of a normal random variable of mean q

and variance 1, so that Qn(q) is the moment of order n of a random variable X ∼ N (q,1).

Algorithm 3. Due to the fast increase of its coefficients, Qn cannot be efficiently com-
puted for large n. However, the computation of the mean En only involves the ratio
Qn−2/Qn.
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Let cn(q) := Qn−1(q)

Qn(q)
. From Qn−2(q)

Qn(q)
= cn−1(q) · cn(q) = 1

n−1 (1 − q cn(q)), one obtains
the continued fraction

1

cn+1(q)
= q + ncn(q). (10)

From Q0(q) = 1 and Q1(q) = q , the first term c1 is given by c1(q) = 1/q .
The mean and the second moment (8) or (7) can then be computed recursively as

En = n

2

(
1 − q cn(q)

)
,

E
2
n = n

2

(
1 − q cn(q)

)(
1 + n − 2

2

(
1 − q cn−2(q)

))
.

Theorem 4. cn(x) → 0 as n → ∞.

Proof: Suppose that the lim sup of the sequence of non-negative numbers {cn(x)}n≥1 is
strictly positive,

lim sup
n→∞

cn(x) = a > 0.

Using relation (10), one gets

a = lim sup
n→∞

cn(x) = 1

x + lim infn→∞ ncn(x)
=: 1

x + b
,

where b := lim infn→∞ ncn(x) has to be finite. Isolating cn(x) in (10) yields

cn(x) = 1

ncn+1(x)
− x

n

and we get

a = lim sup
n→∞

cn(x) = lim sup
n→∞

(
1

ncn+1(x)
− x

n

)
= 1

lim infn→∞ ncn+1(x) · n+1
n+1

= 1

b
.

Since x > 0 and b < ∞, this leads to the contradiction 1
x+b

= 1
b
.

Notice that the limiting proportion of dimers is given 1
2 for large n, more precisely

limn→∞ En

n
= 1

2 , for every set of positive parameters c+, c−.
In our concrete Example of Section 4.1, we are mainly interested in computing higher

moments for n proteins. We will show below that the computation of higher moments
only requires the knowledge of the first moments for a lower number of proteins. More
precisely, let Pj+1(i) denote the polynomial

Pj+1(i) := i · (i − 1) · · · (i − 2) · · · (i − j) =: ij+1 −
j∑

l=1

al,j i
l .

With the convention that Ei = 0 for i < 0, the higher moments can be computed as com-
binations of the means for lower total number of proteins.
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Lemma 5. En(Pj+1(D)) = En−2j · En−2(j−1) · · ·En−2 · En.

Proof: We show that both terms are equal to yj+1 Zn−2(j+1)

Zn
.

Zn · En

(
Pj+1(D)

)= n2∑
i=1

Pj+1y
i

(n − 2i)! i! =
n2∑
i=1

i · (i − 1) · · · (i − 2) · · · (i − j) yi

(n − 2i)! i!

=
n2∑
i=1

yi

(n − 2i)!(i − j − 1)! · 1{i>j }

=
n2∑

i=j+1

yi

(n − 2(i − j − 1) − 2(j + 1))! (i − j − 1)!

=
n2−(j+1)∑

i=0

yi+j+1

(n − 2(j + 1) − 2i)! i!
= yj+1Zn−2(j+1),

and with (8), we have

En−2j · En−2(j−1) · · ·En−2 · En = y
Zn−2(j+1)

Zn−2j

· y Zn−2j

Zn−2(j−1)

· · ·y Zn−2

Zn

= yj+1 Zn−2(j+1)

Zn

. �

From the preceding lemma, we can give a formula for arbitrary moments:

Theorem 5. The moment of order (j + 1) of D is given by

E
j+1
n = En−2j · En−2(j−1) · · ·En−2 · En +

j∑
l=1

al,jE
l
n.

Proof: From the definition of the coefficients al,j ,

En

(
Pj+1(D)

)= E
j+1
n −

j∑
l=1

al,jE
l
n,

hence with Lemma 5 the statement holds.
Theorem 5 provides then a way of performing efficiently the computation of g(n) (see

Section 4.1) for any polynomial function of the number of dimers.

5. Modeling the regulatory gene network

We first recall the basic mathematical steps which lead to the mathematical model stud-
ied in Fournier et al. (2007). We shall see that the time evolution of the gene products
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involved in the network described in the Introduction can be modeled by the following set
of chemical reactions:

A ν n−→∅, ∅ μl−→A, μl = μl, l = 0,1, OA
0 + A g(n)←→

κ
OA

1 ,

where the symbol A stands for activator proteins, and OA
l , l = 0,1 denotes the state of

the promoter related to the activator, and by the chemical reactions related to therapeutic
proteins as given by

OT
0 + A h(n)←→̂

κ
ÔT

1 , X ν̂x−→∅, ∅ μ̂l−→X , μ̂l = μ̂l, l = 0,1,

where A denotes activator proteins, and OT
l is defined in a similar way for the promoter

of the therapeutic gene and X symbolizes therapeutic proteins.

5.1. Equilibrium equations

The modeling of the time evolution of the number of molecules involved in the regulatory
network is obtained by assuming that extrinsic noise, here the random fluctuations of the
number of repressor and doxycycline molecules attains a chemical equilibrium. We first
describe mathematically the effect of this extrinsic noise on the promoters associated with
the activator and therapeutic genes. We follow Section 28 of Dill and Bromberg (2003).
Consider a multiple binding of a ligand X with 1 � i � k different binding sites on a
polymer P ,

P + iX −→ PXi, i = 1 · · ·k,

with equilibrium constants

Ki = [PXi]
[P ][X]i .

The binding polynomial is defined by

Q(X) = 1 +
k∑

i=1

KiX
i,

where in the sequel X will denote the number of ligand molecules. The proportion of P

molecules that are in the ith ligand state is [PXi ]
[P ] Q

, and the average number of bound sites
is

M(X) = d ln(Q)

d ln(X)
=
∑k

i=0 iKiX
i

Q(X)
.

Example 2. If the k binding sites are independent, there is no cooperativity, and one has

Q(X) = (1 + KX)k,
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with

M(X) = kKX

1 + KX
.

Example 3. If a P molecule binds to exactly k ligand molecules at a time, one gets the
Hill model kX + P −→ PXk , with equilibrium constant K , and

Q(X) = 1 + KXk,

M(X) = kKXk

1 + KXk
.

5.2. Transgene expression

5.2.1. Reaction of TetR repressor and doxycycline
The reaction between the doxycycline (Dox) and the repressor (R) is described as
R + Dox −→ RD with some forward rate, and RD −→ R + D with some backward
rate; Considering equilibrium of constant KRD , we can write KRD = [RD]/([R][Dox]),
where [Dox] gives the number of molecules of doxycycline. The free proportion of (R)

molecules, i.e. not involved in the RD complex, can, when considered as ligand, bind to
the kr sites of the TetR operators (the binding sites where repressor molecules can bind,
see e.g. Imhof et al., 2000), inhibiting thus both the transactivator and the synthesis of
the transgene product. We next estimate the average fraction F(R, [Dox]) of sites free of
repressor. Let kr denote the number of sites where repressor molecules can bind. Using a
Hill model of cooperativity (see Example 3), one gets that the average number of bound
sites is then given by

Mr

([R])= krKr [R]kr

1 + Kr [R]kr
.

Then,

F
(
R, [Dox])= kr − Mr([R])

kr

= 1

1 + Kr [R]kr
.

The total number of repressor, denoted by Rtot, is such that

[Rtot] ≈ [R] + KRD[R][Dox] = [R](1 + KRD[Dox]),
when we neglect the amount of repressor involved in the kr binding sites. Set [Rtot] =
Rmax. Then

F
(
R, [Dox])= (1 + KRD[Dox])kr

(1 + KRD[Dox])kr + KrR
kr
max

.

5.2.2. Transactivator
The transactivator is repressed by the bound repressors, and activated by the positive feed-
back loop; The above considerations suggest a stochastic model of transactivation with

g(d) = V F
(
R, [Dox])da + g(0),
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where a denotes the number of binding sites on the activator, d denotes the number of
transactivator dimers, and where V is a parameter. g(0) > 0 is introduced here to model
basal activity for the off to on transitions.

5.3. The regulatory network at quasi-equilibrium

We assume that the promoter switch from the off to on state at rate

g
(
Dε(t)

)= V F
(
R, [Dox])(Dε(t)

)a + g(0),

where Dε(t) is the number of transactivator dimers present at time t , a is the number
of activator binding sites and V is a parameter. This models the positive feedback loop.
We suppose that degradation occurs at a rate proportional to the number of monomers
Nε(t) − 2Dε(t), with constant of proportion ν. The transactivator process is given by the
triplet (Nε(t), Y ε(t),Dε(t)), where we assume fast dimerization, as given in the preceding
paragraph. The time evolution of the network is described by the random process

ηε(t) = (Nε(t), Y ε(t),Dε(t),Xε(t),Zε(t)
)
,

where Xε(t) denotes the number of therapeutic proteins (X ) present in the cell at time
t , and where Zε(t) = 0,1 denotes the state of its associated promoter (off/on). These
chemical reactions are described schematically as

M νm−→∅, ∅ μl−→M, l = 0,1, OA
0 + D g(d)←→

κ
OA

1 ,

M + M βε+←→
βε−

D, OT
0 + D h(d)←→̂

κ
OT

1 , X ν̂x−→∅, ∅ μ̂l−→X , l = 0,1,

where OT
l , l = 0,1 accounts for the state of the promoter related to the therapeutic gene,

M denotes activator proteins (monomers), μl = μl, l = 0,1, X denotes therapeutic pro-
teins and μ̂l = μ̂l, l = 0,1. We again assume a quasi-equilibrium with fast dimerization,
to get the limiting process

η(t) = (N(t), Y (t),X(t),Z(t)
)
,

associated with the set of coupled chemical reactions

A νn−→∅, ∅ μl−→A, l = 0,1, OA
0 + A g(n)←→

κ
OA

1 ,

OT
0 + A h(n)←→̂

κ
OT

1 , X ν̂x−→∅, ∅ μ̂l−→X , l = 0,1,

with quasi-equilibrium transition rates given by (see Section 4)

ν(n) = νEμn(n − 2d),

g(n) = V F
(
R, [Dox])Eμn(da) + g(0),

h(n) = V̂ F
(
R, [Dox])Eμn(da) + h(0).
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5.4. A semi-stochastic mean-field model

We consider the time evolution of the network in a semi-stochastic version by supposing
that the rates g(N(t)) and h(N(t)) are replaced by c(t) = g(E(N(t − θ))) and ĉ(t) =
h(E(N(t − θ̂ ))). The method is similar to what is presented in Section 3. Consider the
family of transition kernels Lc,̂c = (qĉc((n, y, x, z)(n′, y ′, x ′, z′)) given by

qĉc

(
(n, y, x, z)(n + 1, y, x, z)

)= yμ,

qĉc

(
(n, y, x, z)(n − 1, y, x, z)

)= ν n,

qĉc

(
(n, y, x, z)(n,1 − y, x, z)

)= κy + (1 − y)c,

qĉc

(
(n, y, x, z)(n, y, x + 1, z)

)= zμ̂,

qĉc

(
(n, y, x, z)(n, y, x − 1, z)

)= ν̂x,

qĉc

(
(n, y, x, z)(n, y, x,1 − z)

)= κ̂z + (1 − z)̂c.

The nice feature of this kernel is that its steady-state distribution is the product πκ,c ⊗πκ̂,̂c

of the stationary distributions associated with the self-regulated genes given by the two
sets of chemical reactions

A νn−→∅, ∅ μl−→A, l = 0,1, O0
c←→
κ

O1,

X νx−→∅, ∅ μ̂l−→X , l = 0,1, Ô0
ĉ←→̂
κ

Ô1.

Both measures can be computed efficiently by using either the method of transfer matrices
or the exact analytical expressions obtained through generating functions. Coming back
to the time evolution of the network under a mean-field model, the method is similar to
that given in Section 3 and consists in two basic steps:

• Find the limiting values c(∞) = limt→∞ c(t) and ĉ(∞) = limt→∞ ĉ(t), when they ex-
ist;

• Compute the steady-state distribution πκ,c(∞) ⊗πκ̂,̂c(∞), and the related means and vari-
ances.

Let (N(∞), Y (∞),X(∞),Z(∞)) be distributed according to the steady-state distrib-
ution. Proceeding as in Example 1, the coefficient of variation related to the activator
satisfies

CV2
N = Var(N(∞))

E(N(∞))2
= 1

E(N(∞))
+ τ2

τ1 + τ2

Var(Y (∞))

E(Y (∞))2
,

where

E
(
N(∞)

)= μ

ν

c(∞)

c(∞) + κ
, τ1 = 1

ν
, and τ2 = 1

c(∞) + κ
.

Similarly the CV of the transgene product is such that

CV2
X = Var(X(∞))

E(X(∞))2
= 1

E(X(∞))
+ τ̂2

τ̂1 + τ̂2

Var(Z(∞))

E(Z(∞))2
,
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where

E
(
X(∞)

)= μ̂

ν̂

ĉ(∞)

ĉ(∞) + κ̂
,

τ̂1 = 1

ν̂
, and τ̂2 = 1

ĉ(∞) + κ̂
.

In what follows, we consider c(∞) and ĉ(∞).

5.4.1. c(∞) and ĉ(∞) for linear feedbacks
In the linear case, c(t) = g(E(N(t − θ))) = g0 + g1E(N(t − θ)) and ĉ(t) = h(E(N(t −
θ))) = h0 + h1E(N(t − θ̂ )). We thus consider the averages

E(t) = E
(
N(t)

)
, G(t) = E

(
Y (t)

)
and

Ê(t) = E
(
X(t)

)
, Ĝ(t) = E

(
Z(t)

)
,

Fig. 4 Assay of the regulation of EGFP expression in living cells. The experimental curve obtained in
Imhof et al. (2000) (in black) giving the average expression of therapeutic proteins as function of the
number [Dox] of doxycycline molecules is compared to the curves obtained from the mean-field model,
where the green and blue curves provide the mean expression levels of activator and therapeutic proteins,
respectively. Since our approach is mainly qualitative, the scales are arbitrary and represent possible curves
predicted by the model in a well chosen parameter regime. (Color figure online.)
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which satisfy the system of delayed differential equations

dG(t)

dt
= (g0 + g1E(t − θ)

)(
1 − G(t)

)− κG(t),
dE(t)

dt
= μG(t) − νE(t),

dĜ(t)

dt
= (h0 + h1E(t − θ̂ )

)(
1 − Ĝ(t)

)− κĜ(t),
dÊ(t)

dt
= μ̂Ĝ(t) − ν̂Ê(t).

The results of Section 3.1 yield that the above delayed differential system has a glob-
ally asymptotically stable equilibrium point (E(∞),G(∞), Ê(∞), Ĝ(∞)), with

E(∞) = μ

ν
G(∞),

(
g0 + g1

μ

ν
G(∞)

)(
1 − G(∞)

)= κG(∞),(
h0 + h1

μ

ν
G(∞)

)(
1 − Ĝ(∞)

)= κ̂Ĝ(∞) and Ê(∞) = μ̂

ν̂
Ĝ(∞).

Finally

c(∞) = g0 + g1E(∞) and ĉ(∞) = h0 + h1Ê(∞).

A qualitative comparison between the evolution of the mean protein production predicted
by the model when varying the doxycycline level and experimental data is shown in Fig. 4.

6. Conclusion and discussion

In this work, we considered a class of self-regulated genes which are the building blocks
of most of the existing gene networks. We provided efficient numerical algorithms for
computing the steady-state distribution of the number of produced proteins. These results
permit to handle more complex situations, and to understand the effect of positive or nega-
tive feedbacks in the network’s dynamics. In a recent review paper, Karlebach and Shamir
(2008) provides a schematic comparison of regulatory networks models. As compared to
other methods, the single molecule level stochastic simulation has the highest level of
detail, faithfulness to biological reality and ability to model dynamics, but on the other
hand the amount of data needed for modeling is larger, the size of implemented models
is smaller, the speed of analysis and the ability to perform inference are lower. Our ex-
act solution to the chemical master equation permits to increase drastically the speed of
computation and might also be useful in reverse engineering problems when inferring for
example the parameters defining chemical reactions. Next, we considered in Sections 3
and 5 mean-field models with time delays which are of special interest in synthetic bi-
ology or in biotechnology, where small engineered regulatory networks are inserted at
random in host genomes. Mathematical results in this setting are very scarce, and it is
known that such systems can exhibit oscillations (see e.g. Bratsun et al., 2005 or Goutsias
and Kim, 2006). Section 3 provides convergence results for mean-field models with time
delays, which might open ways for handling more complex gene networks. Experimental
results performed in living cells were in good agreement with our predictions. This shows
that such models can provide the relevant information concerning complex systems, and
that mathematical models can be efficiently used for the design of new regulatory gene
networks in synthetic biology or in biotechnology.
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Appendix A

A.1 Proof of Theorem 2

A sequence {Pn} of probability distributions on a countable and discrete state space E

converges to the probability distribution P on E if and only if each of its subsequences
{Pn′ } contains a further subsequence {Pn′′ } that converges to P . A family Π of probability
distributions on E is relatively compact if every sequence of elements of Π contains a
convergent subsequence (to a probability distribution on E), and tight if for every positive
ε there exists a compact set K such that P (K) > 1 − ε for all P in Π . Tightness implies
relative compactness, see e.g. Billingsley (1968).

We first show that the family of probability distributions Π = (π(Λ))Λ∈N is tight.
Lemma 1 implies that there exists k not depending on Λ such that∥∥v(Λ)

n

∥∥≤ 1

n! kn
, n ≥ 1.

Since VΛ ≥ 1, we have also

∥∥π(Λ)
n

∥∥= ‖v(Λ)
n ‖
VΛ

≤ 1

n! kn
, n ≥ 1.

Hence, for all ε > 0 there exists Mε (not depending on Λ) such that

∞∑
j=Mε

∥∥π(Λ)
j

∥∥≤
∞∑

j=Mε

1

j ! kj
< ε.

Consequently, Π is relatively compact and there exists a convergent subsequence
(π(Λk))k∈N of Π . Define π(∞) = limk→∞ π(Λk). We check now that π(∞) is the invari-
ant distribution of the continuous time process defined on the unbounded strip. For each
n ∈ N we have

π(∞)
n = lim

k→∞
π(Λk)

n = lim
k→∞

(
π

(Λk)

n+1 Dn+1 + π(Λk)
n Rn + π

(Λk)

n−1 U
)

= π
(∞)

n+1 Dn+1 + π(∞)
n Rn + π

(∞)

n−1 U.

This shows that π(∞) is indeed an invariant distribution of the limit chain. In fact, what
preceded is also valid for any converging subsequence. Besides, the invariant distribution
is unique because the process is irreducible. Thus, we conclude that π(Λ) converges as
Λ → ∞ to π(∞), which is the invariant distribution of the process defined on the un-
bounded strip. �

A.2 Fluctuation lemma

The following result is a slight modification of Lemma 4.2 in Hirsch et al. (1985):

Lemma 6. Let f : R+ → R be bounded and differentiable, ḟ denoting its derivative.
There exist increasing sequences tn ↑ +∞ and sn ↑ +∞ , such that

f (tn) → f , ḟ (tn) → 0, and f (sn) → f , ḟ (sn) → 0
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as n → +∞, where for a function f we denote

f := lim sup
t→+∞

f (t), f := lim inf
t→+∞ f (t).

A.3 Convergence of time-nonhomogeneous Markov chains

We consider a nonhomogeneous Markov chain X(t) taking values in N, of instantaneous
transition matrix Qt = (qt (i, j))i,j∈N. The following Theorem is proved in Abramov and
Liptser (2004).

Theorem 6. Assume that we can find non-negative constants q(i, j) such that∑
j �=i

q(i, j) < +∞,

∫ ∞

0

(√
qt (i, j) −√q(i, j)

)2
dt < +∞,

and ∫
0�s�t, q(i,j)>0

qs(i, j) ds =
∫ t

0
qs(i, j) ds.

Let Q0 = (q(i, j))i,j∈N, and let X0(t) be the related N-valued Markov chain. Suppose
that Q0 is ergodic, that is that there is a unique probability measure π such that πQ0 = 0
and

lim
t→∞P

(
X0(t) = j |X0(s) = i

)= πj , ∀s, i, j.

Then

lim
t→∞P

(
X(t) = j |X(s) = i

)= πj , ∀s, i, j.

A.4 Zeros of an exponential polynomial

We consider the exponential polynomial H(z) = (z2 + pz + q)ez + r , where p is real
and positive, q is real and non-negative, and r is real. The following theorem is proved in
Bellman and Cooke (1963), p. 449.

Theorem 7. Denote by ak (k ≥ 0) the sole root of the equation cot(a) = (a2 − q)/p

which lies on the interval (kπ, kπ + π). We define the number w as follows:

1. if r ≥ 0 and p2 ≥ 2q , w = 1;
2. if r ≥ 0 and p2 < 2q , w is the odd k for which ak lies closest to

√
q − p2/2;

3. if r < 0 and p2 ≥ 2q , w = 2;
4. if r < 0 and p2 < 2q , w is the even k for which ak lies closest to

√
q − p2/2.

Then, a necessary and sufficient condition that all roots of H(z) = 0 lie to the left of the
imaginary axis is that

1. r ≥ 0 and r sin(aw)/(paw) < 1 or
2. −q < r < 0 and r sin(aw)/(paw) < 1.
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