
Institute for Communication Technologies (ITC)
www.itc.com.unisi.ch

Faculty of Communication Sciences

Università della Svizzera italiana
via Buffi 13, CH-6900 Lugano, Switzerland

Technical report No. 5, 2008

Formal Specification of Artificial Institutions
Using the Event Calculus

Nicoletta Fornara and Marco Colombetti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20644337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Formal Specification of Artificial Institutions

Using the Event Calculus∗

Nicoletta Fornara1 and Marco Colombetti1,2

1Università della Svizzera italiana,
Via G. Buffi 13, 6900 Lugano, Switzerland

2Politecnico di Milano,
Piazza Leonardo Da Vinci 32, Milano, Italy

Abstract

The specification of open interaction systems, which may be dynami-
cally entered and left by autonomous agents, is widely recognized to be a
crucial issue in the development of distributed applications on the inter-
net. The specification of such systems involves two main problems: the
first is the definition of a standard way of specifying a communication
language for the interacting agents and the context of the interaction; the
second, which derives from the assumption of the agents’ autonomy, is
finding a way to regulate interactions so that agents may have reliable ex-
pectations on the future development of the system. A possible approach
to solve those problems consists in modelling the interaction systems as
a set of artificial institutions. In this chapter we address this issue by
formally defining, in the Event Calculus, a repertoire of abstract concepts
(like commitment, institutional power, role, norm) that can be used to
specify artificial institutions. We then show how, starting from the formal
specification of a system and using a suitable tool, it is possible to simulate
and monitor the systems evolution through automatic deduction.

1 Introduction

The specification of open interaction systems, which can be dynamically entered
and left by heterogeneous, autonomous, and self-interested agents, is widely
recognized to be a crucial issue in the development of distributed applications
on the Internet. The interacting agents may be heterogeneous because they may
be developed by different designers; as a consequence, no assumptions can be
made on their internal architecture and it is impossible to access their internal
states. Agents may be self-interested because they act on behalf of different
human counterparts that, in general, do not share a common goal. Finally,

∗Supported by the Hasler Foundation, Project 2204, “Artificial institutions: Specification
of open distributed interaction systems”

2



agents are autonomous because they are not centrally controlled, but act on the
basis of private strategies.

The specification of such systems involves two main problems: the first is
the definition of a standard way of specifying a communication language for
the interacting agents and of the context of the interaction; the second, which
derives from the assumption of the agents autonomy, is finding a way to reg-
ulate interactions so that agents may have reliable expectations on the future
development of the system. A possible approach to solve those problems con-
sists in modelling the interaction systems as a set of artificial institutions. By
this term we mean the digital counterpart or extension of a human institution,
like for example the institution of language, the institution of property, or the
institution of auctions.

In our view the definition of a specific artificial institution [20] consists of:
(i) a component, called meta-model, which includes the definition of basic enti-
ties common to the specification of every institution, like the concepts of com-
mitment, institutional power, role, and norm, and the actions necessary for
exchanging messages; (ii) a component specific to the institution in question,
which includes the specification of the powers and norms that apply to the
agents playing roles in the institution, and the definition of the concepts per-
taining to the domain of the interaction (for example the actions of paying or
delivering a product, bidding in an auction, etc.). The aim of this chapter is to
give a formal definition of the domain-independent component and to illustrate
the domain-dependent component through a meaningful example.

In the literature on multi-agent systems, various concepts that have some
similarities or analogies with our idea of an artificial institution have been pro-
posed. In the Nineteen-eighties, Carl Hewitt introduced the concept of open
systems [24]; in [3] Artikis and colleagues give a detailed definition of the term
open societies and use the term institution as a synonym, without distinguish-
ing, as we do, an open system from an artificial institution; Noriega, Sierra and
colleagues use the term electronic institution [32, 12] to indicate “the rules of
the game-a set of conventions that articulate agents’ interactions.” According to
Arcos and colleagues “The essential roles [electronic institutions] play are both
descriptive and prescriptive: the institution makes the conventions explicit to
participants, and it warrants their compliance.” [2, pag 193]; therefore elec-
tronic institutions are very similar to our artificial institutions, even if usually
they do not allow for the violation of rules and thus do not address the man-
agement of sanctions. In [39] Vázquez-Salceda and colleagues concentrate their
attention on the organizational perspective of an open system. There are more-
over works that are mainly focused on the normative component of a system,
usually called Normative Framework [27] or Normative System [5].

In this chapter we formalize OCeAN (Ontology, CommitmEnts, Authoriza-
tions, Norms) [19, 20], a meta-model for the specification of artificial institutions,
using a variant of the Event Calculus, the Discrete Event Calculus (DEC) in-
troduced by Mueller [30]. Based on many-sorted first order logic, DEC is suited
for reasoning about action and change: by means of axioms it is possible to
describe how certain properties of a domain change according to the occurrence



of events or actions at different time points. The DEC formalization of OCeAN
consists of a set of events, fluents, and axioms that describe the entities, and
their evolution in time, that can be used in the specification of a wide range
of artificial institutions. The specification of an interaction system is therefore
given by the conjunction of those axioms with some domain-dependent defini-
tion of fluents, events, and axioms, plus the definition of the initial state of the
system.

A fundamental advantage of using the Event Calculus for the specification
of systems is that, exploiting suitable tools, it is possible to perform different
types of reasoning, and in particular: prediction, where given an initial situation
and a sequence of events the resulting situation is deduced; planning, where the
sequence of actions that bring from an initial situation to a goal situation is
discovered; and postdiction, where given a final state and a sequence of events
one seeks an initial state. In this work we will mainly concentrate deduction,
that is: given a description of a system based on the fundamental concepts of
our meta-model, an initial situation, and an event narrative (i.e., a sequence of
events that happens in the system), we are interested in tracking the evolution
of the state of the system for simulation and monitoring purposes. To this aim,
in Section 4 we use the Discrete Event Calculus Reasoner 1.01 [30, Chapter
13], a tool that relies on various satisfiability solvers and provers to perform
reasoning.

The main contribution of this chapter with respect to our previous works
[16, 19, 20, 17] is the formal definition of the OCeAN meta-model using the
Discrete Event Calculus. The adoption a formal language for the specification
of our meta-model leads us to revise and spell out in details certain concepts.
In particular we have studied how to define powers at design time in terms of
the roles played by the agents, and to dynamically let agents assign and remove
powers during run-time. We have also refined our notion of role considering the
possibility to define roles related to different institutional entities and the need
to assign and dismiss roles during the dynamic evolution of the system. Finally
we have revised mechanisms for the enforcement of norms through a detailed
management of sanctions.

This chapter is organized as follows. In Section 2 we compare our approach
with other existing proposals. In Section 3 we present our meta-model of ar-
tificial institutions. In Section 4 we give some examples of the formalization
of a system and describe the simulation of their temporal evolution. Finally
in Section 5 we draw some conclusions and discuss some possible directions for
future research.

2 Background

In the literature there are some contributions using the Event Calculus for the
formalization of various concepts that are relevant for agent interactions in open

1http://decreasoner.sourceforge.net/



systems. Yolum and Singh in [41] concentrate their attention on the formal spec-
ification of social commitment for the flexible specification of protocols. They
reason about a given specification using Shanahan’s abductive Event Calculus
planner [36]. Their notion of commitment is quite similar to ours, even if their
specification of the content (or condition) of commitments is context-dependent,
and they do not have a notion of temporal proposition to express the interval
of time when an action has to be (or not to be) performed.

Artikis et al. in [3] study the specification and animation of open computa-
tional systems using the Event Calculus. The software platform presented for
automated animation of the global state of the system is very interesting. Their
fundamental concepts (like power, normative position, and role) are close to
the ones introduced in our work; the main difference is that in their work these
concepts and the corresponding axioms are limited to the example proposed
(the formalization of the Contract Net Protocol [38]), whereas in our work we
present a set of concepts, and the axioms that characterize them, with the aim
of defining an application-independent meta-model for the definition of open
interaction systems.

In [13] Farrell and colleagues use an XML version of the Event Calculus called
ecXML to specify contracts, for example a mail service agreement between a
Service Provider and a Service Customer. This work highlights the importance
of simulating and monitoring the evolution of contracts by means of a Java
implementation of a reasoner. However, our use of the Discrete Event Calculus
has the advantage of allowing for a richer variety of types of reasoning (e.g.,
planning), thanks to the existence of tools like the Discrete Event Calculus
Reasoner 1.0. Moreover, like in the previous case our model is more general,
and would treat contracts as a special type of artificial institutions.

Another interesting declarative approach to the definition of an Agent Com-
munication Language, called SC-IFF [1], is based on the Social Integrity Con-
straints language. It is based on the notion of expectation (considered similar to
a commitment) and on the idea of defining the semantics of communicative acts
by specifying the future desirable communicative acts that have to be performed,
within a certain instant of time, after the performance of a given communicative
act; this without an explicit representation of the context of the interaction that
in our model is obtained with the definition of various types of fluents, making
the content of the acts simpler. The verification of one specification is possible
thanks to a proof-procedure based on Abductive Logic Programming.

In the literature there are significant contributions on the specification of
open multiagent systems adopting the institutional or organizational paradigm.
The main difference between our approach and other proposals [3], [39], [2],
[27], [21], [8], [7] is its completeness: we define a set of concepts and an Agent
Communication Language (ACL) (inclusive of declarations) that if adopted as a
standard would make it possible for an agent to interact with different systems
without being redesigned. The semantics of communicative acts and of norms
are both based on a notion of social commitment that is objective and external
- two fundamental characteristics in systems where the internal architecture of
the interacting agents is unknown and no assumption can be made on their



collaborative or competitive behavior. The systematic use of commitment has
also the advantage of reducing the number of different constructs on which
agents have to reason when planning their actions.

Among the previously mentioned articles the one which is closely related to
our work is [39] where the OMNI framework for modelling agent organizations
is presented. Given that they adopt an organizational perspective their model
allows to specify the global goals of the system independently from the partic-
ipating agents, similarly to our proposal they tackle the problem of specifying
norms, whereas a crucial distinction that is not highlighted is the one between
the power and the permission to perform an action, a crucial distinction when
the semantics of declarations is defined.

3 The OCeAN meta-model

In our previous works [16, 19, 20, 17] we have presented and thoroughly dis-
cussed the OCeAN meta-model of artificial institutions that can be used to
specify at a high level open interaction systems, where heterogeneous and au-
tonomous agents may interact. In our view the fundamental components that
characterize artificial institutions are: a core ontology for the definition of a set of
concepts, actions/events, and institutional actions, used in the interaction; the
counts-as relation and the notion of power, that are necessary for the concrete
performance of institutional actions; and the norm construct, used to impose
obligations and prohibitions to perform certain actions on agents interacting
with the system, that are crucial for the specification of flexible interaction pro-
tocols, like for example the ones used in electronic auctions [40]. In particular
powers and norms are expressed at design time in terms of the roles played by
the agents. Such concepts, and in particular the fundamental notion of com-
mitment, are used in Section 3.7 to specify an Agent Communication Language
(ACL). Moreover to represent the content and the condition of commitments
and norms, and their relation with time, we will introduce the notions of a
temporal proposition and of an evaluated temporal proposition. Summarizing,
in this chapter we introduce: the sorts agent, action, and institutional action
(iaction), which are fundamental for our meta-model; the following fluents for
describing basic concepts:

• Temporal Proposition (TP) and Evaluated Temporal Proposition (ETP);
• Commitment and Precommitment ;
• Power and Context ;
• RoleOf and HasRole;
• Norm;

and the events/actions that impact on such fluents, described by means of
axioms. We will also introduce an action for exchanging messages and define a
set of axioms that specify an Agent Communication Language (ACL).



3.1 Specification of an interaction system

In our view an open dynamic interaction system is a system that agents may use
to interact with each other by means of a set of communicative acts. Those inter-
actions may be in particular regulated by a set of norms that prescribe a flexible
interaction protocol. The specification of an open dynamic interaction system
(as exemplified in Section 4) consists of: (i) the set of fluents, events/actions and
axioms that compose the OCeAN meta-model and will be presented in Section
3; (ii) those fluents, events/actions and axioms necessary for the specification of
a category of artificial institutions (e.g., for the specification of the institution
of auctions we have to introduce a fluent for representing auctions and axioms
to create suitable powers and norms); (iii) those fluents, events/actions and ax-
ioms specific to a certain subtype of the category of institutions of interest (e.g.,
the English or the Dutch Auctions [19, 40]; (iv) when it is the case, the defini-
tion of artificial multi-institutions [9] that use other artificial institutions (the
analysis of the definition of an institution using other institutions in important,
but is beyond the scope of this chapter); (v) finally those fluents, events/actions
and axioms specific to a concrete system (like those necessary to represent the
products on sale and to specify the initial state of the system). To simulate the
evolution of the system it is also necessary to define the history of the events
that happen in the system at every instant of time.

3.2 The Formalism

3.2.1 Event Calculus

The formalism that we use to define the main concepts of an artificial institution
is a version of the Event Calculus: the Discrete Event Calculus (DEC). The
Event Calculus [26, 29, 30, 34, 35] is a formalism for reasoning about action
and change that has been introduced by Kowalski and Sergot in 1986 and since
then has evolved considerably [31]. In this work we use a version of the Event
Calculus, the Discrete Event Calculus (DEC), introduced by Mueller [30] to
improve the efficiency of automated reasoning by limiting time to the integers.
DEC is adopted in the Discrete Event Calculus Reasoner 1.0, a tool that we used
to test the axioms of our model of artificial institutions and to run a simulation
of the specification of a system, as discussed in Section 4.

3.2.2 Conventions

The Event Calculus is based on many-sorted first order logic [30]. To make
formulas more readable, we adopted a number of notational conventions.

Throughout the paper predicate symbols, function symbols and nonnumeric
constants start with an uppercase letter, and variables start with lowercase
letters. Variables that are not explicitly quantified are assumed to be universally
quantified. The notation ψ ≡def ϕ defines ψ as an abbreviation of ϕ. We adopt
the unique name axioms [30, pag 31], whose meaning is that different constants
refer to different objects.



If a sort is a subsort of another sort we separate the child sort from the
parent sort with a colon; for example, agent:object means that agent is subsort
of the sort object. In general, the sort of a variable is determined by removing
the final digits from the variable; for example, the variable agent1 has sort
agent. When an axiom contains only one variable of a given sort, the name of
the variable coincides with the name of the sort (i.e., the variable agent has
sort agent). Sometimes, to have a more perspicuous variable name we do not
follow this convention; in such cases the sort of the variable is specified in the
text before the axiom using colon as separator, for example debtor:agent.

The sort of function symbols, including fluents, and of their arguments is
specified through prototypes: the prototype s0 f(s1, ..., sn), where s0, s1, ..., sn

are sorts, means that function symbol f is to be applied to n terms of sorts
s1, ..., sn, and that the resulting term is of sort s0.

3.2.3 Discrete Event Calculus

The predicates of the Event Calculus are used “for saying what happens when,
for describing the initial situation, for describing the effects of actions, and for
saying what fluents hold at what times” [35]. The Event Calculus introduces
the basic sorts event, fluent, and timepoint with variables e, f , and t. The
predicates of the Event Calculus that will be used in this paper are:

• Happens(e, t): event e happens at timepoint t. In the Event Calculus the
performance of an action is regarded as an event. We assume that two
events of the same type never happen at the same time instant; therefore
an event type plus an instant of time univocally identify an event token.

• HoldsAt(f, t): the fact described by fluent f holds at timepoint t.

• Initiates(e, f, t): event e initiates fluent f at t. Its intuitive meaning is
that if event/action e occurs at t then f will holds after t. Note that at a
different time instant the occurrence of the same event may not start the
fluent f .

• Terminates(e, f, t): event e terminates fluent f at timepoint t. If e occurs
at time t then f will no longer hold after t.

The ReleasedAt(f, t) predicate, used in the following DEC axioms, means
that fluent f is released from the commonsense law of inertia at time point
t. The axioms of the Discrete Event Calculus (DEC) that are crucial for the
comprehension of this paper are as follows (for a complete list see [30, pag 27]).

DEC5 (HoldsAt(f, t) ∧ ¬ReleasedAt(f, t + 1)∧
¬∃e(Happens(e, t) ∧ Terminates(e, f, t))) → HoldsAt(f, t + 1)

DEC6 (¬HoldsAt(f, t) ∧ ¬ReleasedAt(f, t + 1)∧
¬∃e(Happens(e, t) ∧ Initiates(e, f, t))) → ¬HoldsAt(f, t + 1)

DEC9 (Happens(e, t) ∧ Initiates(e, f, t)) → HoldsAt(f, t + 1)

DEC10 (Happens(e, t) ∧ Terminates(e, f, t)) → ¬HoldsAt(f, t + 1)



3.3 Fundamental sorts

To the basic sorts of the Event Calculus we add the following sorts: agent,
to represent the agents that interact with the system; action:event, a subsort
of event, to represent those events that are brought about by agents, for ex-
ample we may need to introduce the action for delivering a product: action
Deliver(agent,agent,product); iaction:event, a subsort of event, to represent in-
stitutional actions, that is, actions that change institutional attributes, which
exist only thanks to common agreement. Note that agents cannot perform in-
stitutional actions by exploiting causal links occurring in the natural world, as
would be done to open a door; rather, as we shall see Section 3.8.1, institutional
actions have to be performed by means of suitable declarations.

We also introduce the fluent

fluent Done(agent, action),

to represent that an action has been performed by an agent. In the paper we
will sometime use the variable actor:agent to represent the agent that performs
the action. For every type of action it is then necessary to introduce an axiom to
initiate the relevant Done fluent when such an action takes place, for example:

Axiom Dn
Initiates(Deliver(actor, agent, product), Done(actor,Deliver(actor, agent, product)), t)

3.4 Temporal Propositions

Temporal propositions are propositions that become true or false over a prede-
fined time interval, according to rules that will be specified below. The fluents
used to represent temporal propositions exploit the following sorts (the axioms
reported in brackets specify that the variables belonging to the corresponding
sorts may assume a limited set of values):

sort mode [∀x : mode(x = Forall ∨ x = Exist)]
sort ptime : integer [∀x : ptime(x ≥ 1)]

We then introduce the sort tp:fluent of temporal propositions as a subsort
of the sort fluent, and define the following function symbol used to represent
temporal propositions:

tp TP (fluent, ptime, ptime,mode)

In the axioms we shall use variable prop:fluent (abbreviation of proposition)
having sort fluent as the first argument of temporal propositions, and variables
tstart:ptime and tend:ptime of sort ptime to define a specific time interval. The
fourth argument, of sort mode, is used to distinguish the case where it is required
that the TP fluent holds at every instant between tstart and tend (Forall) from
the case where it is required that the TP fluent holds at least at one instant
between tstart and tend (Exist). For example, a temporal proposition with mode
Forall can be used to state that the price of a certain product is x euro for the



Undef

T rue

False

Evaluated Temporal Proposition

Figure 1: The life-cycle of evaluated temporal proposition.

current month, and a temporal proposition with mode Exist can be used to
state that an agent will pay a certain amount of money to another agent in the
current week.

Every time an agent uses a temporal proposition (for example in the ex-
change of a message) it has to initiate its fluent by means of the AttCre-
ateTP(fluent,ptime,ptime,mode) (attempt to create a temporal proposition) ac-
tion in order to be able to trace the evolution of the state of temporal propo-
sitions and therefore monitoring commitments fulfillment or violation. The
AttCreateTP() action, if certain conditions are satisfied, initiates a new tempo-
ral proposition:

TP1 (tstart ≤ tend) ∧ ¬HoldsAt(TP (prop, tstart, tend,mode), t) →
Initiates(AttCreateTP (prop, tstart, tend,mode),

TP (prop, tstart, tend,mode), t)

3.5 Evaluated Temporal Proposition

Intuitively, at any given instant a temporal proposition may be True, False or
undefined (Undef) as depicted in Figure 1. For example, the temporal proposi-
tion it will rain today may be undefined at 4 pm; it may become true, say, at 6
pm, if it starts raining; or it may become false at midnight, if it has not rained
for the whole day.

We introduce a new fluent, ETP, to represent an evaluated temporal propo-
sition, that is, a temporal proposition with an attached truth value:

sort value [∀x : value(x = Undef ∨ x = True ∨ x = False)]
fluent ETP (tp, value)

As depicted in Figure 1 a temporal proposition with mode Exist usually
(different cases are treated in the following) is initialized to Undef , it becomes
True if an event that initializes its prop happens between tstart-1 and tend-1
(extremes included) (it means that prop starts to hold between tstart and tend),
otherwise at tend it becomes False. Differently a temporal proposition with
mode Forall usually is initialized to Undef , it becomes False if at tstart its
prop does not hold or if an event that terminates its prop happens between tstart

and tend-1 (extremes included) otherwise at tend it becomes True.
The action AttCreateTP () that initiates a temporal proposition also initi-

ates an evaluated temporal proposition ETP with the correct truth-value. In



Happens(AttCreateTP(prop,tstart,tend ,mode),t)

ttstart tend tsta rt tend tstart tend

case1case3 case2

Figure 2: Temporal relation between t, the time when TP is created, and the
time interval [tstart, tend]

particular we have to distinguish the case where the temporal proposition is
referred to the future (it is created at a time t that precedes tstart-1), from the
case where it is referred to the past (it is created at a time t that follows tend),
from the case where it is created at a time t that is inside the interval of time
defined by tstart−1 and tend as depicted in Figure 2. To make the axioms below
more concise we will use the following definitions:

eTP =def AttCreateTP (prop, tstart, tend,mode)
condTP =def (tstart ≤ tend) ∧ ¬HoldsAt(TP (prop, tstart, tend,mode), t)

Case 1. If a new temporal proposition is created at a time t that precedes
tstart-1, indifferently from its mode, an Undef ETP has to be created:

ETP0 t < (tstart-1) ∧ condTP →
Initiates(eTP , ETP (TP (prop, tstart, tend,mode), Undef), t)

As regard as the axioms for case 2 and case 3 and the axioms necessary to
transform an Undef evaluated temporal proposition in a True or False one,
we have to clearly distinguish the temporal propositions with mode Exist from
the ones with mode Forall.

TP with mode Exist

Case 2. If a new temporal proposition is created at an instant t inside the in-
terval determined by tstart-1 (included) and tend an Undef or a True evaluated
temporal proposition has to be initiated on the basis of what happened between
tstart-1 and tend:

ETPE2.1. tstart − 1 ≤ t < tend ∧ condTP ∧
∃ th, eh(Happens(eh, th) ∧ Initiates(eh, prop, th) ∧ tstart-1 ≤ th ≤ t) →
Initiates(eTP , ETP (TP (prop, tstart, tend, Exist), T rue), t)

ETPE2.2. tstart − 1 ≤ t < tend ∧ condTP ∧
¬ ∃ th, eh(Happens(eh, th) ∧ Initiates(eh, prop, th) ∧ tstart-1 ≤ th ≤ t) →
Initiates(eTP , ETP (TP (prop, tstart, tend, Exist), Undef), t)

Case 3. If a new temporal proposition is created at a time t that is equal or
follows tend, a True or a False evaluated temporal proposition has to be created
on the basis of what happened between tstart-1 and tend-1 (included):



ETPE3.1. condTP ∧ t ≥ tend∧
∃th, eh(Happens(eh, th) ∧ Initiates(eh, prop, th) ∧ tstart-1 ≤ th < tend) →
Initiates(eTP , ETP (TP (prop, tstart, tend, Exist), T rue), t)

ETPE3.2. condTP ∧ t ≥ tend∧
¬∃th, eh(Happens(eh, th) ∧ Initiates(eh, prop, th) ∧ tstart-1 ≤ th < tend) →
Initiates(eTP , ETP (TP (prop, tstart, tend, Exist), False), t)

The following axioms are used to change the truth-value of an existing Undef
evaluated temporal proposition with mode Exist on the basis of the temporal
evolution of its prop. If an event e that initiates the prop happens within the
interval of time defined by tstart-1 and tend-1 (inclusive), the same event e also
initiates an evaluated temporal proposition whose value is True:

ETPE1 HoldsAt(ETP (TP (prop, tstart, tend, Exist), Undef), t)∧
Initiates(e, prop, t) ∧ (tstart − 1 ≤ t < tend) →
Initiates(e, ETP (TP (prop, tstart, tend, Exist), T rue), t)

If tend is reached without the temporal proposition becoming True, passing
time tend initiates the evaluated temporal proposition with value equal to False.
To represent the event that a certain instant of time is elapsed, we introduce a
new event Elapse(time) that we assume to happen every time a certain instant
of time is reached as described by the following axiom:

A1 Happens(Elapse(t), t)

ETPE2 HoldsAt(ETP (TP (prop, tstart, tend, Exist), Undef), t) →
Initiates(Elapse(tend), ETP (TP (prop, tstart, tend, Exist), False), t)

Axioms of the form of ETPE1, where the Initiates() predicate is in the
antecedent of an axiom, are useful to resolve the ramification problem, that is
the situations where one event has some indirect effects, for example in this
case event e has the effect to initiate prop and also the effect to transform the
related ETP from Undef to True. As discussed in [30, pag 110] unfortunately
it is impossible to compute circumscription of this type of axioms. Therefore in
the actual specification of a system, if we have a finite set of axioms that state
that E1,...,En initiate Prop1, we will have to transform ETPE1 in n different
axioms obtained by removing Initiates() from the antecedent and using E1, or
E2, or En in the Initiates() of the consequent. This operation has to be done
for every axioms that has Initiates(e, p, t) in the antecedent.

In a similar way it is possible to write the axioms for the temporal evolution
of evaluated temporal propositions with mode Forall.

Every time that a True or False evaluated temporal proposition is initiated
by the event e, the corresponding Undef proposition is terminated by the same
event, indifferently from its mode:

ETP1
Initiates(e,ETP (tp, T rue), t) → Terminates(e,ETP (tp, Undef), t)



ETP2
Initiates(e,ETP (tp, False), t) → Terminates(e,ETP (tp, Undef), t)

Similarly to axiom ETPE1, to make it possible to compute circumscription,
ETP1 and ETP2, having Initiates in the antecedent, should be transformed
in axioms where event e in the Terminates predicate is replaced by all pos-
sible concrete events that in the actual specification of the system make the
antecedent true.

Finally, we introduce with the following axiom the identically True evaluated
temporal proposition, that initially holds and is never terminated. Its proposi-
tion is represented by introducing the constant PTrue that has sort fluent.

HoldsAt(ETP (TP (PTrue, 1, 1, Exist), T rue), 0)

3.6 Commitment and Precommitment

Commitment, precommitment, and conditional commitment will be used in
Section 3.7 to express the semantics of a library of communicative acts and will
be used in Section 3.11 to express active norms and to monitor the fulfillment
or violation of obligations and prohibitions of the various agents at run-time.

3.6.1 Commitment

The fluent used to represent commitments, whose life-cycle is depicted in Figure
3, is as follows:

fluent Comm(state, agent, agent, tp, tp, source, id).

In the axioms we shall use the more perspicuous variables name debtor:agent
and creditor:agent as the second and third argument, and content:tp and condition:tp
as the fourth and fifth argument. The sort used to represent the state of a com-
mitment is:

sort state [∀x : state (x = Active ∨ x = Cond ∨ x = Pending ∨
x = Cancelled ∨ x = Fulfilled ∨ x = V iolated)].

The sort used to represent the source of a commitment used to distinguish
a commitment created by a communicative act from a commitment created by
the activation or violation of a norm is:

sort source [∀x : source (x = CA ∨ x = Norm ∨ x = Sanction)].

Finally the sort used to represent the id of the norm that created the com-
mitment or the time instant when the communicative act that generated the
commitment has been performed:

sort id : integer [∀x : id(x ≥ 1)]



precommitment

Cond

commitment

Active Pending

Fulfilled

Violated

CancelledCancelled

AttCreateComm()

ETP(condtion,True)

ETP(condtion,False)

ETP(content,True)

ETP(content,False)
AttCancelPrecomm()

AttCreatePrecomm()

AttCancelComm()

Figure 3: The life-cycle of precommitment and commitment.

Differently from other approaches [41], we introduce one fluent to represent
both conditional and unconditional commitment, so that we do not need to
define different axioms and different communicative acts to create two types of
commitment and to update their states. Another advantage is that information
about the condition can be kept during the life-cycle of the commitment: in
fact, all information about the condition is lost if the conditional commitment is
transformed into an unconditional commitment (like in [41]) when the condition
starts to hold.

Before creating a commitment a certain set of conditions have to be verified
(for example the time interval of the condition must precede the time interval
of the content) and on the basis of the truth-value of the temporal propositions
used as content and as condition a different commitment has to be created.
Therefore, to improve the modularity of the system we introduce the institu-
tional action AttCreateComm(agent,agent,tp,tp,source,id) (attempt to create a
commitment), whose effect, when successful, is to create a commitment as stated
in the axioms reported below.

As regard as the content and the condition of a commitment, it is possible to
have different situations when a new commitment is created: the truth-value of
the condition and of the content are Undef , or the truth-value of the condition
is True (or initiated to True contemporary to the commitment creation) and the
truth-value of the content is Undef or True (or initiated to True contemporary
to the commitment creation). Abbreviations: d=debtor, c=creditor, s=source,
content ≡def TP (prop1, t1start, t1end,mode1),
condition ≡def TP (prop2, t2start, t2end,mode2).

C01
t2end < t1start ∧ ¬HoldsAt(Comm(state, d, c, content, tp2, s, id), t)∧
HoldsAt(ETP (content, Undef), t) ∧HoldsAt(ETP (condition, Undef), t)∧
¬∃e(Happens(e, t) ∧ Initiates(e,ETP (condition, True), t)) →
Initiates(AttCreateComm(d, c, content, condition, s, id),

Comm(Cond, d, c, content, condition, s, id), t)

.



C02
t2end < t1start ∧ ¬HoldsAt(Comm(state, d, c, content, condition, s, id), t)∧
HoldsAt(ETP (content, Undef), t) ∧HoldsAt(ETP (condition, Undef), t)∧
∃e(Happens(e, t) ∧ Initiates(e,ETP (condition, True), t)) →
Initiates(AttCreateComm(d, c, content, condition, s, id),

Comm(Pending, d, c, content, condition, s, id), t)

If the condition is already True it is necessary to distinguish different cases
on the basis of the truth-value of the content :

C03
t2end < t1start ∧ ¬HoldsAt(Comm(state, d, c, content, condition, s, id), t)∧
HoldsAt(ETP (content, Undef), t) ∧HoldsAt(ETP (condition, True), t)∧
¬∃e(Happens(e, t) ∧ Initiates(e,ETP (content, T rue), t)) →
Initiates(AttCreateComm(d, c, content, condition, s, id),

Comm(Pending, d, c, content, condition, s, id), t)

C04
t2end < t1start ∧ ¬HoldsAt(Comm(state, d, c, content, condition, s, id), t)∧
HoldsAt(ETP (content, Undef), t) ∧HoldsAt(ETP (condition, True), t)∧
∃e(Happens(e, t) ∧ Initiates(e,ETP (content, T rue), t)) →
Initiates(AttCreateComm(d, c, content, condition, s, id),

Comm(Fulfilled, d, c, content, conditions, id), t)

A Fulfilled commitment has to be created if the content and the condition
are already True, for example in the case of commitments that derive from
assertions, like “yesterday it rained”.
C05
t2end < t1start ∧ ¬HoldsAt(Comm(state, d, c, content, condition, s, id), t)∧
HoldsAt(ETP (content, T rue), t) ∧HoldsAt(ETP (condition, True), t) →
Initiates(AttCreateComm(d, c, content, condition, s, id),

Comm(Fulfilled, d, c, content, condition, s, id), t)

In the life-cycle of a commitment (Figure 3), dotted lines represent state
changes due to events happening in the system that modify the truth-value of
the content or of the condition of the commitment, as described in the following
axioms. A Cond commitment becomes Pending when the evaluated temporal
proposition of its condition with value True starts to hold; if the evaluated
temporal proposition of the condition with value False starts to hold, the Cond
commitment becomes Cancelled :

C1 HoldsAt(Comm(Cond, d, c, content, condition, s, id), t)∧
Initiates(e,ETP (condition, True), t) →
Initiates(e, Comm(Pending, d, c, content, condition, s, id), t)

C2 HoldsAt(Comm(Cond, d, c, content, condition, s, id), t)∧
Initiates(e,ETP (condition, False), t) →
Initiates(e, Comm(Cancelled, d, c, content, condition, s, id), t)



A Pending commitment becomes Fulfilled when the evaluated temporal
proposition of its content with truth-value True starts to hold:

C3 HoldsAt(Comm(Pending, d, c, content, condition, s, id), t)∧
Initiates(e,ETP (content, True), t) →
Initiates(e, Comm(Fulfilled, d, c, content, condition, s, id), t)

A Pending commitment becomes V iolated when the evaluated temporal
proposition of its content with truth-value False starts to hold:

C4 HoldsAt(Comm(Pending, d, c, content, condition, s, id), t)∧
Initiates(e,ETP (content, False), t) →
Initiates(e, Comm(V iolated, d, c, content, condition, s, id), t)

To terminate a commitment whose state has been replaced by another one,
we introduce a predicate Replace(state1,state2), that is true if state1 can be
reached from state2. In particular the following predicates are true:

Replace(Pending, Cond) Replace(Cancelled, Cond)
Replace(Cancelled, Pending) Replace(Fulfilled, Pending)
Replace(V iolated, Pending)

We then define:
C5 Initiates(e, Comm(state1, d, c, content, condition, s, id), t)∧

HoldsAt(Comm(state2, d, c, content, condition, s, id), t)∧
Replace(state1, state2) →
Terminates(e, Comm(state2, d, c, content, condition, s, id), t)

Another institutional action that manipulates commitments is AttCancelComm(agent,agent,tp,tp)
(attempt to cancel a commitment), that transforms a Cond or Pending com-
mitment into a Cancelled one and its effect is defined by the following axiom:

C6 ∃ state(state = Cond ∨ state = Pending) ∧HoldsAt(Comm(state,
d, c, content, condition, s, id), t) → Initiates(AttCancelComm(d, c

content, condition), Comm(Cancelled, d, c, content, condition, s, id), t).

3.6.2 Precommitment

The commitment defined so far can be used to express the meaning of various
speech acts like assertions and promises. However, it is not possible to express
the meaning of directive speech acts, like requests. When an agent requests
another agent to do something, it is trying to induce the other agent to make
a commitment, and the other agent can commit itself by just accepting the
request. We represent this situation by means of precommitment, a type of
commitment that may also play a crucial role in the phase of negotiation of a
new commitment when more than two agents are involved. A precommitment is
similar to a commitment, but has one more attribute: the time that may elapse



between the creation of the precommitment and action of accepting or refusing
it, which is represented in the axioms by means of the variable tout:ptime. The
following fluent, whose life-cycle is depicted in Figure 3, is used to represent
precommitments:

fluent Precomm(state, agent, agent, tp, tp, ptime, source, id)

To create a precommitment the AttCreatePrecomm(agent,agent,tp,tp,ptime,source,id)
institutional action has to be performed. Its effects are described by the follow-
ing axiom (where content and condition are defined in the previous section):

P1 ¬HoldsAt(Precomm(state, d, c, content, condition, tout, s, id), t) ∧ t < tout∧
t2end < t1start → Initiates(AttCreatePrecomm(d, c, content, condition, tout, s, id),

P recomm(Active, d, c, content, condition, tout, s, id), t)

The action AttAcceptPrecomm(agent,agent,tp,tp) of accepting an existing
Active precommitment implies the creation of a new commitment:

P2 Happens(AttAcceptPrecomm(d, c, content, condition), t)∧
∃ tout (HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) ∧ t < tout) →
Happens(AttCreateComm(d, c, content, condition, s, id), t)

If a precommitment is accepted it is terminated:

P3 HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) ∧ t < tout →
Terminates(AttAcceptPrecomm(d, c, content, condition),

P recomm(Active, d, c, content, condition, tout, s, id), t)

We need moreover to define the AttCancelPrecomm(agent,agent,tp,tp) action
that the debtor of a precommitment can perform to refuse a precommitment,
transforming it into a Cancelled one and terminating the Active one:

P4 HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) ∧ t < tout →
Initiates(AttCancelPrecomm(d, c, content, condition),

P recomm(Cancelled, d, c, content, condition, tout, s, id), t)

P5 HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) ∧ t < tout →
Terminates(AttCancelPrecomm(d, c, content, condition),

P recomm(Active, d, c, content, condition, tout, s, id), t)

Similarly if tout is elapsed without the precommitment being accepted (i.e.,
it is still Active) it has to be transformed into a Cancelled one and the Active
one has to be terminated:

P6 HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) →
Initiates(Elapse(tout), P recomm(Cancelled, d, c, content, condition, tout, s, id), t)

P7 HoldsAt(Precomm(Active, d, c, content, condition, tout, s, id), t) →
Terminates(Elapse(tout), P recomm(Active, d, c, content, condition, tout, s, id), t)



3.7 Agent Communication Language

In this section we define a library of agent speech acts. Following Bach and
Harnish [4], we distinguish between two types of speech acts: communicative
acts, similar to those defined by FIPA ACL communicative acts library [15],
and declarative acts or declarations. Speech acts of the first type (like promis-
ing, informing, and requesting), are important because reflect the everyday use
of language. Declarative communicative acts, usually neglected by other ap-
proaches [15, 14, 37], are also important because by means of them it is possible
to perform institutional actions, like opening an auction or giving the power to
perform certain actions to an agent. We define the following sort that is used
to specify the type of the message exchanged between two agents:

sort type [∀x : type (x = Promise ∨ x = Inform ∨ x = Request ∨
x = Agree ∨ x = Refuse ∨ x = Cancel ∨ x = Declare)]

3.7.1 Communicative acts

In our model we define the following base-level actions to represent the exchange
of a certain message, where the second type of message exchange is necessary for
the performance of requests with a specified deadline for acceptance or refusal:
ExchMsg(type, agent, agent, tp, tp)
ExchMsg1(type, agent, agent, tp, tp, ptime)

In the axioms we will use the more perspicuous variables name sender:agent and
receiver:agent as second and third argument of a message. The performance
of a Promise communicative act implies the attempt to create a commitment,
provided that the content is referred to the future (i.e., t1start is greater than
the time t of the performance of the act), and represents the performance of
an action by the sender of the message (content and condition are the two
temporal propositions defined in Section 3.6):

Axiom Promise
Happens(ExchMsg(Promise, sender, receiver, content, condition), t) ∧
(t1start > t) ∧ prop1 = Done(sender, action) →
Happens(AttCreateComm(sender, receiver, content, condition, CA, t), t)

The performance of an Inform communicative act implies the attempt to
create a commitment:

Axiom Inform
Happens(ExchMsg(Inform, sender, receiver, content, condition), t) →
Happens(AttCreateComm(sender, receiver, content, condition, CA, t), t)

It is worth to observe that an act of informing can be about something
happened in the past or something that will happen in the future. An Inform
act about the performance of a future action will have the same consequences as
a promise. To distinguish between promising to perform an action and informing



that an action will be performed, it would be necessary to take into consideration
aspects, like the agents interests, that concern the internal architecture of the
interacting agents; this is beyond the scope of this chapter and would reduce
the possibility of applying our model to arbitrary open systems.

The performance of a Request communicative act implies the attempt to
create a precommitment (with the receiver of the message as debtor of the
upcoming commitment), provided that the content is referred to the future and
is about the performance of an action by the receiver of the message:

Axiom Request
Happens(ExchMsg1(Request, sender, receiver, content, condition, tout), t)∧
(t1start > t) ∧ prop1 = Done(receiver, action) →
Happens(AttCreatePrecomm(receiver, sender, content, condition, tout, CA, t), t)

The meaning of an Agree communicative act is expressed by means of the
AttAcceptPrecomm() action that, if the accepted precommitment exists, trans-
forms it into a commitment:

Axiom Agree
Happens(ExchMsg(Agree, sender, receiver, content, condition), t) →
Happens(AttAcceptPrecomm(sender, receiver, content, condition), t)

The meaning of a Refuse communicative act is expressed by means of the
AttCancelPrecomm() action that transforms the precommitment, if it exists,
into a Cancelled one:

Axiom Refuse
Happens(ExchMsg(Refuse, sender, receiver, content, condition), t) →
Happens(AttCancelPrecomm(sender, receiver, content, condition), t)

The meaning of a Cancel communicative act is expressed by means of the
AttCancelComm() action that transforms a Cond or Pending commitment, hav-
ing as creditor the sender of the message, into a Cancelled one:

Axiom Cancel
Happens(ExchMsg(Cancel, sender, receiver, content, condition), t) →
Happens(AttCancelComm(receiver, sender, content, condition), t)

3.8 Declarations

Declarations are a very special type of speech act that, if certain contextual
conditions hold, change the institutional state of the system, that is, the part of
the system that exists only thanks to the common agreement of the interacting
agents (or of their designers). We view an artificial interaction system as a tech-
nological instrument that enriches and creates new types of interaction among
human beings. Such a system has to represent: (i) physical objects that exist
in human reality, like a book that has to be sold in an auction; (ii) institutional
entities of human reality, like the amount of money that has to be paid to buy



a book; (iii) institutional entities created and managed within the artificial sys-
tem to implement communicative interactions among agents, like for instance
the concept of commitment, the notion of auction, or the notion of price. These
institutional entities may be modified by declarations. For instance, the decla-
ration that an electronic auction is open, made by an agent that has the power
to do it, makes it actually open.

To deal with institutional entities we introduce institutional actions, which
are a special type of actions [10] and are crucial for the formalization of decla-
rations. Given that the performance of institutional actions have to be public
(that, is made known to the relevant agents), we assume that to perform an
institutional action an agent has to perform a declaration by sending a partic-
ular type of message. Following Searle’s approach to the construction of social
reality [33], we assume that the “counts-as” relation binds the performance of
a base-level action, like sending a message, to the performance of an institu-
tional action, if certain contextual conditions are satisfied. We deal with such
contextual conditions in the next subsection.

3.8.1 Contextual conditions and Power

The most important condition that has to be satisfied for a declaration to count
as the declared institutional action is that the sender of the message has the
power to perform the institutional action. We therefore provide a specific treat-
ment for this aspect of the context. Assuming that suitable institutional actions
have been defined (with sort iaction, a subsort of event), to express the fact that
an agent has the power to perform an institutional action we introduce the flu-
ent:

fluent Power(agent, iaction)

For example, we may want to specify that agent Bob has the power to
perform the institutional action AttCreateComm() with itself as the creditor,
agent Mark as the debtor (Bob may be Mark ’s boss), and as content a temporal
proposition representing that some photocopies are made from instant 2 to
instant 5 (without any further condition):

HoldsAt(Power(Bob, AttCreateComm(Mark,Bob,
TP (Done(Mark, Photocopy), 2, 5, Exist), TP (PTrue, 1, 1, Exist))), 0)

To specify all other relevant aspects of the context of a declaration we intro-
duce another fluent, Context(iaction), that holds if certain contextual conditions
are satisfied. Such a fluent may initially hold or may be initiated by a suitable
axiom. For example, we may want to represent that an auction (represented
with the fluent Auction(state,id, tinit)) may be opened by the institutional ac-
tion OpenAuction(id) only if a certain instant of time tinit has elapsed:

Initiates(Elapse(tinit), Context(OpenAuction(id)), t)

Before introducing an axiom to define the effects of a declaration we first
introduce a new base-level action for exchanging a message of type declare:



ExchMsgD(Declare, agent, agent, iaction)

The communicative act of declaring a certain institutional action counts
as the performance of the declared institutional action if certain conditions
hold, and if the sender of the message has the power to perform the declared
institutional action, as described by the following axiom:
Axiom Decl
Happens(ExchMsgD(Declare, sender, agent, iaction), t)∧
HoldsAt(Power(sender, iaction), t) ∧HoldsAt(Context(iaction), t) →
Happens(iaction, t)

3.8.2 Empower and Disempower

Given that the power is a fluent, it would be natural to introduce a new institu-
tional action that can be used during the run time of a system to empower and
another to disempower a given agent to perform a given institutional action.
They are institutional actions because they change an institutional fluent, the
power, that exists thanks to the common agreement of the interacting agents.
Moreover given that they are institutional actions, their effects will take place
only if the actor has the power to perform them. The Empower() and Disem-
power() institutional actions are defined as follows (where the first agent (for
which we will use the variable actor:agent, is the one that gives/removes the
power to/from the second agent):

iaction Empower(gent, agent, iaction)
iaction Disempower(agent, agent, iaction)

The effect of performing an Empower() institutional action is given by the
following axiom:

Axiom Power1
Initiates(Empower(actor, agent, iaction), Power(agent, iaction), t)

The effect of performing a Disempower() action is to terminate a given power:

Axiom Power2
HoldsAt(Power(agent, iaction), t) →
Terminates(Disempower(actor, agent, iaction), Power(agent, iaction), t)

To avoid infinite chains of empowerments, it is necessary to state what pow-
ers initially hold when the system start to run, that is, what powers hold at
time 0. For example, agent Bob may initially have the power to perform an
AttCreateComm() action with every possible agent as creditor and every pos-
sible content and condition as described by the following axiom:

HoldsAt(Power(Bob, AttCreateComm(Bob, creditor, content, condition)), 0)



This approach has the limitation that usually it is impossible to know at
design time the name of the actual agents. As we will see in next section, this
problem may be overcome by introducing the notion of role. The same power
can also be created at time t by an agent Ag1 (if it has the right power) by
declaring the following action:

Empower(Ag1, Bob, AttCreateComm(Bob, creditor, content, condition))

3.9 Role

The set of powers and norms (see Section 3.11) that hold in an interaction system
at a certain instant of time may be created (like the other fluents introduced
so far) by the interacting agents using the proper institutional action (actually
in this work we will not define the institutional action for creating norms at
run-time) or may be devised by the (human) designers of the system at design
time. Given that at design time it is impossible to know the concrete agents that
will be actually involved at run time in an interaction we need to introduce the
notion of role and to introduce some mechanisms to define powers and norms in
term of roles. Moreover we need to make it possible during the run time phase
to deduce powers and norms that apply to a given agents on the basis of the
roles that it plays.

As regard as the notion of role, in an artificial system we could have for
example the role of auctioneer or participant of a certain run of an auction,
boss or employee of a certain company for example an Auction House, debtor or
creditor of a certain commitment, student or professor of a certain university
etc. Coherently with those examples in our view a role may be viewed as a label
that can be used in place of the identifier of a specific agent in the design of a
certain institution, and it may be related to: a specific institution/organization
or institutional agent (like a university), to an institutional activity (like a run
of an auction), or to an institutional relation (like a commitment), that is, a
role relates an agent with an institutional “entity”. In literature it is possible
to find different other definitions of the notion of role, for an overview of those
approaches see [28].

It is important to notice that during run-time some roles must necessarily be
played by certain agents. For example it makes no sense having a commitment
without an agent playing the role of debtor and another one playing the role of
creditor ; similarly it makes no sense having a run of an auction without an agent
playing the role of auctioneer and at least other two other agents as participants.

We assume that every institutional entity is explicitly represented in our
model, and we introduce the sort ientity:fluent as a subsort of the sort fluent to
represents them. For example we have already introduced the fluent to repre-
sent commitments, we may define the following fluent to represent a run of an
auction (where the sort astate (auction state) may assume the values: Registra-
tion,Open,Closed, and we will use the variable tinit:ptime as third argument):

ientity Auction(id, astate, ptime)



or a fluent to represent an organization:

ientity Organization(id)

To express the fact that an agent plays a given role within a certain institu-
tional entity, we introduce the following fluent:

fluent HasRole(agent, role, ientity)

where the sort role is used to represent names of possible roles like Debtor,
Creditor, etc. For example if the following fluent holds at time t:

HoldsAt(HasRole(Bob, Employer,Organization(01)), t)

it means that agent Bob play the role of Employer in the organization with
identifier 01 a time t. Moreover, to express that a certain role is meaningful only
in relation to a certain institutional entity we introduce the following fluent:

fluent RoleOf(role, ientity)

For example, to state that the role Auctioneer is meaningful in the context of
the run of an auction the following fluent has to be initiated:

RoleOf(Auctioneer,Auction(id, astate, tinit))

It is important to remark that every time that a new institutional entity is
initiated it is also necessary to initiate the set of roles that it defines (that is
a set of RoleOf() fluents) and, if it is the case, the correct HasRole() fluents.
For example when a new commitment fluent is initiated, it is also necessary
to initiates the RoleOf() fluent that defines the role of Debtor and Creditor
and to initiate new HasRole() fluents to state that the first agent that appear
in the new commitment plays the role of Debtor and the second one plays the
role of Creditor. Therefore the following axioms have to be introduced (where
ec =def AttCreateComm(agent1, agent2, content, condition, s, id):

Initiates(ec, RoleOf(Creditor, Comm(agent1, agent2, content, condition, s, id)), t)

Initiates(ec, RoleOf(Debtor, Comm(agent1, agent2, content, condition, s, id)), t)

Initiates(ec, HasRole(agent1, Debtor, Comm(agent1, agent2, content, condition, s, id)), t)

Initiates(ec, HasRole(agent2, Creditor, Comm(agent1, agent2, content, condition, s, id)), t)

In other situations, like for example for the roles defined by a run of an
Auction, it is not be necessary to assign all the roles to specific agents when
the institutional entity is created, but it has to be possible to assign the role of
Auctioneer and Participant to various agents subsequently. In order to be able
to perform such an institutional action we introduce the AssignRole(agent,agent,role,ientity)
action that when performed assign the new role to the involved agent, as de-
scribed by the following axiom:



Axiom Role1. HoldsAt(RoleOf(role, ientity), t) →
Initiates(AssignRole(actor, agent, role, ientity),HasRole(agent, role, ientity), t)

and another action DismissRole(agent,agent,role,ientity) to remove an agent
from a given role:

Axiom Role2. HoldsAt(HasRole(agent, role, ientity), t) →
Terminates(DismissRole(actor, agent, role, ientity),HasRole(agent, role, ientity), t)

Given that AssignRole() and DismissRole() are two institutional actions,
their actor needs to have the right powers to successfully perform them. As
performing such actions through declarations is the only way to assign or dismiss
roles, we have the problem of initially assigning a role to each agent. To solve
this problem we introduce a special agent, the interaction-system (IntSystem),
and assume that it has the power to assign every role and every power to other
agents and that the Context() to perform those actions initially holds.

3.10 Conditional Power

In Section 3.8.1 we introduced the notion of power; here we introduce the general
notion of conditional power and a crucial type of conditional power, conditioned
by the roles that agents play in the system. In the design of an artificial institu-
tion it may be useful to specify conditional powers, that is, powers that starts
to hold if certain conditions start to hold or if certain events happen in the
system. For example agent Bob may acquire the power to create commitments
for himself when he becomes of age. To initiate a power when a given event Ei

happens in the system, we have to add an axiom like the following one to our
specification:

Happens(Ei, t) → Happens(Empower(IntSystem, Agent, Iaction), t)

Obviously such power may be terminated by another event Et as stated by
the following axiom:

Happens(Et, t) → Happens(Disempower(IntSystem, Agent, Iaction), t)

In general if n events, with n > 1, must happen for a power to be created,
and we do not know their temporal order, we need to write n axioms to initiate
the right power. For example the following two axioms are needed when two
events must happen:

Happens(E1, t1)∧ t1 <= t ∧Happens(E2, t) →
Happens(Empower(IntSystem,Agent, Iaction), t)

Happens(E2, t1)∧ t1 <= t ∧Happens(E1, t) →
Happens(Empower(IntSystem,Agent, Iaction), t)



3.10.1 Power expressed by means of roles

An important type of conditional power is the power conditioned by the fact
that the involved agents play certain roles. In the design phase of a system, to
express that a power is initiated when certain agents start to play some role it is
necessary to introduce axioms similar to the ones presented in the previous sec-
tion. For example the following axiom expresses the fact that the agent playing
the role of Boss of an organization has the power to create commitments for the
agents playing the role of Employee in the same organization (in this axiom, an
agent becomes the Boss first, and then another agent becomes the Employee;
an axiom treating the opposite order of events has also to be introduced):

Happens(AssignRole(IntSystem, agent1, Boss, Organization(1)), t1) ∧ t1 <= t∧
Happens(AssignRole(IntSystem, agent2, Employee, Organization(1)), t) →
Happens(Empower(IntSystem, agent1, AttCreateComm(agent2, agent1, content, condition)), t)

Similarly it is necessary to add the following axiom to dismiss the power
when an agent dismisses the relevant role:

HoldsAt(Power(agent1, AttCreateComm(agent2, agent1, content, condition)), t)∧
(Happens(DismissRole(IntSystem, agent1, Boss, Organization(1)), t)∨
Happens(DismissRole(IntSystem, agent2, Employee,Organization(1)), t) →
Happens(DisempowerRole(agent1, AttCreateComm(agent2, agent1, content, condition)), t)

Commitment and Precommitment Powers
Institutional actions like AttCreateComm(), AttCancelComm() can be per-

formed by exchanging a message of a particular type (for example a promise)
or can be declared. In the latter case, for the declaration to be successful the
sender of the message must have the power to declare those actions. Therefore
we have to introduce some axioms to initiate reasonable powers. First of all,
every agent has the power to perform an AttCreateComm() institutional action
with itself as the debtor (first argument) and any other agent as the creditor
(second argument) of the future commitment:

Axiom CommPower1 agent1 6= agent2 →
Happens(Empower(IntSystem, agent1, AttCreateComm(agent1, agent2, content, condition, s, id)), 0)

The agent that becomes the creditor of a commitment will have the power
to cancel it:

Axiom CommPower2
Happens(AttCreateComm(agent1, agent2, content, condition, s, id), t) →
Happens(Empower(InsSystem, agent2, AttCancelComm(agent1, agent2, content, condition)), t)

Moreover, the agent that becomes the debtor of a precommitment will have
the power to accept or refuse it:

Axiom PrecommPower1
Happens(AttCreatePrecomm(agent1, agent2, content, condition, tout), t) →
Happens(Empower(IntSystem, agent1, AttAcceptPrecomm(agent1, agent2, content, condition), t)



Axiom PrecommPower2
Happens(AttCreatePrecomm(agent1, agent2, content, condition, tout), t) →
Happens(Empower(IntSystem, agent1, AttCancelPrecomm(agent1, agent2, content, condition), t)

3.11 Norms

A norm is used to impose a certain behavior on certain agents in the system
identified by means of the norm’s debtor. The norm content is a temporal
proposition (see Section 3.4) that describes the actions that the debtor have to
perform (if the norm expresses an obligation) or not to perform (if the norm
expresses a prohibition) within a specified interval of time. In our model if for
a given agent an action is not obliged nor prohibited it is permitted, obviously
if it is an institutional action the agent need also to have the power to perform
it in order that its effects take place (in particular the value of the attribute
tstart of the content is always equal to the time of occurrence of the event that
activates the norm). The obligation or prohibition could be conditioned to the
truth of another temporal proposition indicated in the condition attribute of
the norm.

An agent can reason whether to fulfill or not to fulfill a norm on the basis of
the sanctions (as discussed later) and of whom is the creditor of the norm, as
proposed also in [25, 27]. For example, an agent with the role of auctioneer may
decide to violate a norm imposed by the auction house if it is in conflict with
another norm that regulates trade transactions in a certain country. Moreover
the creditor of a norm is crucial because, given that it becomes the creditor
of the commitments generated by the norm, it is the only agent authorized to
cancel such commitment.

To enforce norms it is necessary to specify sanctions. Regarding this as-
pect there are numerous reasons to develop systems where agents may violate
the rules, first of all as discussed in [17], the obligation to perform an action
in principle cannot be regimented2, secondly systems that are able to manage
violations (sometimes also due to software error) are more robust, finally it is
important to remark that given that it is impossible to predict at design phase
all the interesting and fruitful behaviors that may emerge in an interaction, to
reach an optimal solution for all participants [42], it may be profitable to allow
agents to violate their obligations and prohibitions. We speak about sanctions
to stress the need to punish violations, but the mechanisms for the management
of rewards can be easily introduced in a similar way. As discussed in [17] and
differently from other approaches [27], [39], [22] that do not investigate in detail
this aspect, we think that a complete model of sanctions has to distinguish be-
tween two different type of actions: the action that the violator of a norm has
to perform to extinguish its violation and the action that the agent in charge of
norm enforcement may perform to deter agents from violating the norm. There-
fore a norm has to specify: (i) what we call the active sanction (a-sanction) that

2With regimentation [23] we mean the introduction of control mechanisms that does not
allow agents to violate obligations or prohibitions.



is the action that the violator should perform within a certain interval of time
to extinguish its violation and that can be represented in our model through a
temporal proposition; (ii) what we call the passive sanction (p-sanction) that
is the new power that the agent entitled to enforce the norm acquire in case of
violation of the norm. Regarding this second type of action, it is important to
underline that in case of violation the agent entitled to enforce the norm gets a
new power whereas another norm (that in [27] is called enforcement norm) may
oblige the enforcer agent to punish the violation.

A norm becomes active every time that its activation event estart happens.
For example a norm may be used to represent a contract that obliges an organi-
zation to pay the salary to its employees every time that the end of the month is
reached, or a set of norms may be used to formalize a protocol, for example an
auction protocol, and oblige the auctioneer to declare the new ask price every
time that a new valid bid is received, or to declare the winner when a certain
amount of time is elapsed without new bids. The activation of a norm arises the
need to monitor its evolution in time and to react to its violation with suitable
sanctions. Given that in our meta-model we have already defined a construct,
the social commitment, which can be used to perform that task, we define a
set of axioms that transform a norm into a commitment when its activation
event happens. This makes it possible to resolve another interesting problem:
the problem to detect and manage the violation or fulfillment of more than one
activation of the same norm. We introduce the following fluent to represent
norms:

fluent Norm(id, agent, agent, tp, tp, event, tp, fluent)

In the axioms on norms we shall use variables debtor:agent and creditor:agent
as the second and third argument of a norm, variables content:tp and condi-
tion:tp as the fourth and fifth argument, variable estart:event to refer to the
activation event, the variable a-sanction:tp for the active sanction, and variable
p-sanction:fluent for the passibe sanction.

We need therefore to define an axiom to manage the creation of a com-
mitment every time that a norm becomes active (abbreviations: d=debtor,
c=creditor):

Axiom ActivateNorm
HoldsAt(Norm(id, d, c, content, condition, estart, a-sanction, p-sanction), t)∧
Happens(estart, t) →
Happens(AttCreateComm(d, c, content, condition, Norm, id), t)

If event e initiates the commitment related to a norm to Violated, that event
e initiates also the power, described in the passive-sanction, for certain agent to
perform the actions that have been devised to deter the agent from misbehaving,
as described by the following axiom:

.



Axiom PassiveSanction
HoldsAt(Norm(id, d, c, content, condition, estart, a-sanction, p-sanction), t)∧
Initiates(e, Comm(V iolated, d, c, content, condition,Norm, id), t) →
Initiates(e, p-sanction, t)

If event e initiates the commitment related to a norm to Violated that event
e initiates also the commitment to perform the action described by the temporal
proposition in the active-sanction attribute:

Axiom ActiveSanction
HoldsAt(Norm(id, d, c, content, condition, estart, a-sanction, p-sanction), t)∧
Initiates(e, Comm(V iolated, d, c, content, condition,Norm, id), t) ∧Happens(e, t) →
Happens(AttCreateComm(d, c, a-sanction, TP (PTrue(), 1, 1, Exist), Sanction, id), t)

Where the label “Sanction” as source attribute of the commitment means
that the commitment has been generated as sanction of the norm with identifier
id and the violation of this type of commitment will initiates neither another
commitment nor a new power.

3.11.1 Norms expressed in terms of roles

Norms with specific agent as debtor and creditor have to holds in the initial
state of the system, if fact for this work we will not introduce actions for creating
norms at run-time. Given that in the design phase of a system it is impossible
to know the name of the agents that will actually interact with the system,
it is crucial to express norms in terms of the roles played by the agent in the
interaction system. This can be obtained by means of suitable axioms (like the
ones that we introduced to express power in terms of roles in Section 3.10.1)
that initiate a certain norm when an agent enter a given role.

Given that the agents involved in a norm are the debtor and the creditor it
may be necessary to define two axioms for the conditional initiation of a norm
when those agents start to play a certain role. For example the norm that
obliges the agent that play the role of Boss of an organization to pay x euro to
the agents playing the role of Employee when the end of the month is reached
can be expressed using the following axiom:

E1 =def AssignRole(agentx, agent1, Boss,Organization(1))
E2 =def AssignRole(agentx, agent2, Employee,Organization(1))
TP1 =def TP (Done(agent1, Pay(agent1, agent2, x)), t, t + 2, Exist)
TP2 =def TP (PTrue(), 1, 1, Exist)
TP3 =def TP (Done(agent1, Pay(agent1, agent2, x ∗ 1.1)), t + 3, t + 5, Exist))

Happens(E1, t1) ∧ t1 <= t →
Initiates(E2, Norm(agent1, agent2, TP1, TP2, Elapse(31), TP3,

Power(InstAgent, ChangeReputation(agent1,−2))), t)

where we assume that ChangeReputation(agent,integer) is an institutional
action adding a given value to the reputation of an agent. The other axiom can



be obtained exchanging E1 with E2. It is also necessary to write two axioms to
terminate the norm when an agent dismisses the role of Boss or of Employee.

4 Example

The Discrete Event Calculus Reasoner 1.03 as previously discussed is a tool
that can be used to perform deduction, abduction and model finding starting
from a domain description. Using such a tool and its deduction capabilities
we verified that given a specification of an interaction system (consisting of
the Discrete Event Calculus axioms, the OCeAN axioms introduced so far, and
domain specific axioms), an initial situation, and a narrative of known event
occurrences (that is a set of axioms that specify what happen in the system
and when) there is only one model that satisfies them and represents how the
system state will evolve.

The Discrete Event Calculus Reasoner 1.0 relies on various satisfiability
(SAT) solver transforming formulas of first-order logic into formulas of the
propositional calculus and by restricting the problem to a finite universe. Entail-
ment in the propositional calculus is decidable but it is NP-complete. In practice
(even if sometimes it is necessary to write more specific axioms) the specifica-
tion of our examples (with over 10,000 variables) can be solved quite efficiently.
In particular the axioms of our model can be quite forwardly transformed in a
specification processable by the tool and introducing some adaptations due to
certain tool limitations.

In this section we will present two examples. The first one shows a commu-
nicative interaction between two agents using the ACL defined in Section 3.7
and the temporal proposition and commitment axioms. The second example
partially shows the dynamic evolution of a system designed for the execution of
electronic auctions4.

4.1 Example 1, usage of ACL

Here we describe an example of interaction where a Seller agent promises to
deliver a product (a CD) to a Buyer agent if the Buyer will accept the Sellers
request to commit itself to pay a certain amount of money (1 euro) for the
product. Different possible evolution of the state of the interaction are possible
on the basis of what the Buyer agent answers to the Seller request, and the
various commitments created by the communicative acts will become fulfilled or
violated on the basis of the actions performed by the Seller and Buyer agent.

For example given the following definitions,
3http://decreasoner.sourceforge.net/
4Files containing system specification for the Discrete Event Calculus Reasoner

1.0 that uses the axioms presented in this work and different simulations out-
put obtained running those systems with different history of events are available at
http://www.people.lu.unisi.ch/fornaran/code/Examples.html. Those simulations have been
executed using Gygwin running on Windows XP on a desktop CORE2 DUO 1.8 GHz RAM
2 Gbyte



TP1 =def TP (Done(Seller,Deliver(Seller,Buyer, CD)), 4, 5, Exist)
TP2 =def TP (Done(Buyer, Pay(Buyer, Seller, 1)), 6, 7, Exist))
TP3 =def TP (Done(Buyer,ExchMsg(Agree, Buyer, Seller, TP2, TP1)), 2, 3, Exist)

given the description of a system available in the file ACL.e and given the
following history of events:

Happens(AttCreateTP(TP1),0).
Happens(AttCreateTP(TP2),0).
Happens(AttCreateTP(TP3),0).
Happens(ExchMsg(Promise,Seller,Buyer,TP1,TP3),1).
Happens(ExchMsg1(Request,Seller,Buyer,TP2,TP1,3),1).
Happens(ExchMsg(Agree,Buyer,Seller,TP2,TP1),2).
Happens(Deliver(Seller,Buyer,CD),4).
Happens(Pay(Buyer,Seller,1),6).

The output produced, that is, a simulation of the evolution of the state of the
system is as follows. Fluents that become true are indicated with a plus sign
(“+”) and fluents that become false are indicated with a minus sign (“−”):
0
Happens(AttCreateTP(TP3), 0).
Happens(AttCreateTP(TP1), 0).
Happens(AttCreateTP(TP2), 0).
Happens(Elapse(0), 0).
1
+ETP(TP3, Undef).
+ETP(TP1, Undef).
+ETP(TP2, Undef).
+TP3().
+TP1().
+TP2().
Happens(ExchMsg(Promise, Seller, Buyer, TP1, TP3), 1).
Happens(AttCreateComm(Seller, Buyer, TP1, TP3), 1).
Happens(ExchMsg1(Request, Seller, Buyer, TP2, TP1, 3), 1).
Happens(AttCreatePrecomm(Buyer, Seller, TP2, TP1, 3), 1).
Happens(Elapse(1), 1).

Axioms TP1 and ETP0 creates the temporal propositions and the evaluated
temporal proposition with value Undef. Axiom A1 generate the event Elapse(t)
for every value of t. The event of performing a promise communicative act
generates, thanks to Axiom Promise, the event for creating a new commitment,
whereas the request communicative act generates, thanks to Axiom Request a
new precommitment that could be in the following accepted or refused by the
receiver agent.

2
+Comm(Cond, Seller, Buyer, TP1, TP3).



+Precomm(Active, Buyer, Seller, TP2, TP1, 3).
Happens(ExchMsg(Agree, Buyer, Seller, TP2, TP1), 2).
Happens(AttAccceptPrecomm(Buyer, Seller, TP2, TP1), 2).
Happens(AttCreateComm(Buyer, Seller, TP2, TP1), 2).
Happens(Elapse(2), 2).

Axioms C01 and P1 initiates the commitment and precommitment fluents.
The event of accepting the request, thanks to Axiom Agree, generates the event
of accepting the precommitment generated by the previous request, the accep-
tance of a precommitment has also effect to attempt to create a new commitment
(thanks to axiom P2).

3
-Precomm(Active, Buyer, Seller, TP2, TP1, 3).
+Comm(Cond, Buyer, Seller, TP2, TP1).
+Done(Buyer, ExchMsg(Agree, Buyer, Seller, TP2, TP1)).
-ETP(TP3, Undef).
+ETP(TP3, True).
-Comm(Cond, Seller, Buyer, TP1, TP3).
+Comm(Pending, Seller, Buyer, TP1, TP3).
Happens(Elapse(3), 3).

The AttAccceptPrecomm() terminates the precommitment (axiom P3) and
the AttCreateComm() creates a Cond commitment (axiom C01). The perfor-
mance of the agree communicative act initiates the Done() fluent (axiom Dn),
transforms the Undef ETP having as prop the performance of the agree act
into a True ETP (axioms ETPE5, ETP1), and transforms the Cond commitment
between the Seller and the Buyer in a Pending one (axioms C1, C5).

4
Happens(Deliver(Seller, Buyer, CD), 4).
Happens(Elapse(4), 4).
5
+Done(Seller,Deliver(Seller,Buyer,CD)).
-ETP(TP1, Undef).
+ETP(TP1, True).
-Comm(Cond, Buyer, Seller, TP2, TP1).
+Comm(Pending, Buyer, Seller, TP2, TP1).
-Comm(Pending, Seller, Buyer, TP1, TP3).
+Comm(Fulfilled, Seller, Buyer, TP1, TP3).
Happens(Elapse(5), 5).

The delivery of the CD initiates the Done() fluent (axiom Dn), transforms
the Undef ETP having as prop the deliver of the product into a True ETP
(axioms ETPE5, ETP1), transforms the Cond commitment between the Buyer
and the Seller in a Pending one (axioms C1, C5), and transforms the Pending
commitment between the Seller and the Buyer into a Fulfilled commitment
(axioms C3, C5).



6
Happens(Pay(Buyer, Seller, 1), 6).
Happens(Elapse(6), 6).
7
+Done(Buyer,Pay(Buyer,Seller,1)).
-ETP(TP2, Undef).
+ETP(TP2, True).
-Comm(Pending, Buyer, Seller, TP2, TP1).
+Comm(Fulfilled, Buyer, Seller, TP2, TP1).
Happens(Elapse(7), 7).

The payment for the CD initiates the Done() fluent (axiom Dn), transforms
the Undef ETP having as prop such a payment into a True ETP (axioms
ETPE5, ETP1), and transforms the Pending commitment between the Buyer and
the Seller into a Fulfilled commitment (axioms C3, C5).

4.2 Example 2, a system for e-auctions

In this example we partially describe and test a system for the execution of
electronic auctions, and simulate the evolution of its state for one possible event
narrative. To exhaustively test the correctness of a given specification we would
have to simulate the evolution of a system for every possible narrative and ver-
ify its correctness. As discussed in Section 3.1 the specification of this system
consists of: (i) the set of fluents, events/actions and axioms that compose the
OCeAN meta-model and presented in Section 3; (ii) the fluents, events/actions
and axioms necessary for the specification of the institution of auctions (we intro-
duce the fluent for representing auctions and the axioms Auc1, Auc2, AucPower1,
and AucNorm1 to create powers and norms); (iii) the fluents, events/actions and
axioms specific to a certain type of auction like for example the English Auction;
(iv) and finally the fluents, events/actions and axioms specific to a concrete sys-
tem, like the fluent used to represent a product and the actions of paying or
delivering it.

The ientity for representing auctions has been introduced in Section 3.9 as
Auction(id,astate,tinit). The effect of the OpenAuction(id) institutional action
is defined introducing the following axioms:
Axiom Auc1
HoldsAt(Auction(aid,Reg, tinit), t) → Initiates(OpenAuction(id), Auction(aid,Open, tinit), t)

Axiom Auc2
HoldsAt(Auction(aid,Reg, tinit), t) → Terminates(OpenAuction(id), Auction(aid,Reg, tinit), t)

The initial state of the system is given by the following fluents that hold at
time 0. The first represents the auction with id 01 and tinit 4, the other two
represent the fact that the auction entity defines the roles of Auctioneer and
Participant, and the last one represents the context for performing the specified
OpenAuction() institutional action:



Auction(01, Reg, 4)
RoleOf(Auctioneer,Auction(01, Reg, 4))
RoleOf(Participant, Auction(01, Reg, 4))
Context(OpenAuction(01, Reg, 4))

The following axiom initiates the power, for the agent playing the role of
Auctioneer, to declare open the auction for which it is playing that role, if at
least two agents are already playing the role of Participant :

Axiom AucPower1
∃ tinit Happens(AssignRole(agent1, agent3, Participant, Auction(aid,Reg, tinit)), t1) ∧ t1 ≤ t∧
Happens(AssignRole(agent1, agent4, Participant, Auction(aid,Reg, tinit)), t2) ∧ t2 ≤ t∧
Happens(AssignRole(agent1, agent2, Auctioneer,Auction(aid,Reg, tinit)), t) →
Happens(Empower(agent1, agent2, OpenAuction(aid)), t)

Given the following definitions of temporal propositions:
TP1 =def TP (Done(OpenAuction(01)), tinit, tinit + 1, Exist)
TP2 =def TP (PTrue(), 1, 1, Exist))
TP3 =def TP (Done(Pay(Bob,AuctionHouse, 1)), tinit + 2, tinit + 3, Exist)

the following axioms initiates the norm that creates the obligation for the
agent playing the role of Auctioneer to declare open the auction when tinit-1 is
elapsed:

Axiom AucNorm1
Initiates(AssignRole(agent, agent1, Auctioneer,Auction(aid,Reg, tinit)),
Norm(id, agent1, AuctionHouse, TP1, TP2, Elapse(tinit-1), TP3,

Power(AuctionHouse,DecTrust(agent1)), t)

The description of the system is available in the file Auction.e. Given the
following history of events:

Happens(AttCreateTP(TP1), 0).
Happens(ExchMsgD(Declare,IntSystem,Bob,

AssignRole(IntSystem,Bob,Auctioneer,Auction(01,Reg,4))),1).
Happens(ExchMsgD(Declare,IntSystem,Carl,

AssignRole(IntSystem,Carl,Participant,Auction(01,Reg,4))),1).
Happens(ExchMsgD(Declare,IntSystem,Luke,

AssignRole(IntSystem,Luke,Participant,Auction(01,Reg,4))),1).
Happens(ExchMsgD(Declare,Bob,Carl,OpenAuction(01)),4).

the output produced, that is, a simulation of the evolution of the state of the
system is as follows. Fluents that become true are indicated with a plus sign
(“+”) and fluents that become false are indicated with a minus sign (“−”):

0
Happens(Elapse(0), 0).
Happens(AttCreateTP(TP1), 0).



1
Happens(Elapse(1), 1).
Happens(ExchMsgD(Declare, IntSystem, Bob,

AssignRole(IntSystem, Bob, Auctioneer, Auction(01, Reg, 4))), 1).
Happens(ExchMsgD(Declare, IntSystem, Carl,

AssignRole(IntSystem, Carl, Participant, Auction(01, Reg, 4))), 1).
Happens(ExchMsgD(Declare, IntSystem, Luke,

AssignRole(IntSystem, Luke, Participant, Auction(01, Reg, 4))), 1).
Happens(AssignRole(IntSystem, Bob, Auctioneer, Auction(01, Reg, 4)), 1).
Happens(AssignRole(IntSystem, Carl, Participant, Auction(01, Reg, 4)), 1).
Happens(AssignRole(IntSystem, Luke, Participant, Auction(01, Reg, 4)), 1).
Happens(Empower(IntSystem, Bob, OpenAuction(01)), 1).
+ETP(TP1, Undef). +ETP(TP3, Undef).
+TP1(). +TP3).

Thanks to Axiom Decl the declared institutional actions happen (given that
their contexts and the right powers hold). Moreover thanks to Axiom AucPower1
a certain Empower() institutional action happens. Axioms TP1 and ETP0 initi-
ates the temporal propositions and the evaluated temporal propositions.

2
Happens(Elapse(2), 2).
+HasRole(Bob, Auctioneer, Auction(01, Reg, 4)).
+HasRole(Carl, Participant, Auction(01, Reg, 4)).
+HasRole(Luke, Participant, Auction(01, Reg, 4)).
+Power(Bob, OpenAuction(01)).
+Norm(N1, Bob, AuctionHouse, TP1, TP2, Elapse(3), TP3,

Power(AuctionHouse, DecTrust(Bob))).

Thanks to Axiom Role1 the effects of the AssignRole() action takes place and
the agents start to hold the role of Auctioneer or of Participant. Thanks to
Axiom Powerl the power for agent Bob to open the auction where it play the
role of Auctioneer starts to hold. Thanks to Axiom AucNorml the norm that
obliges the agent playing the role of Auctioneer for a certain auction to declare
open such an auction is created.

3
Happens(Elapse(3), 3).
Happens(AttCreateComm(Bob, IntSystem, TP1, TP2, SNorm, N1), 3).

Thanks to Axiom ActivateNorm when the estart event of a norm happens the
norm becomes active and the AttCreateComm() action to create the related
commitment happens.

4
Happens(Elapse(4), 4).



Happens(ExchMsgD(Declare, Bob, Carl, OpenAuction(01)), 4).
Happens(OpenAuction(01), 4).
+Comm(Pending, Bob, AuctionHouse, TP1, TP2, SNorm, N1).

Given that the right context and the power hold thanks to Axiom Decl the
declared OpenAuction() action happens and thanks to axiom C03 a Pending
commitment is initiated.

5
-Auction(01, Reg, 4).
+Auction(01, Open, 4).
-ETP(TP1, Undef).
+ETP(TP1, True).
-Comm(Pending, Bob, AuctionHouse, TP1, TP2, SNorm, N1).
+Comm(Fulfilled, Bob, AuctionHouse, TP1, TP2, SNorm, N1).

Thanks to axioms Auc1 and Auc2 an Open auction is initiated and the obli-
gation to open the auction between time 4 and time 5 generated by norm N1,
which is represented by means of the commitment, is Fulfilled (axiom ETPE1
and C3).

5 Conclusion and Future Research Directions

Using the Event Calculus, we have presented a formal specification of the
OCeAN meta-model for open artificial institutions. With respect to other
formalisms with well-understood formal semantics, the main advantage of the
Event Calculus is that it allows for the execution of the formal specification of
a system to test its correctness, while retaining the expressiveness of first order
logic.

Our formal definition of OCeAN allows one to define and test the specifica-
tion of an open interaction system, conceived as a set of artificial institutions.
Given that all components of OCeAN are explicitly defined in logic, in princi-
ple it is possible to design agents that can interact with different OCeAN-based
interaction systems without being reprogrammed. Other possible applications
of our meta-model are the specification and monitoring of contracts by means
of commitments, and the flexible specification of protocols using norms and the
library of communicative acts.

Indeed, OCeAN is still incomplete under a number of respects. For exam-
ple, it will be important to understand how a new institution may be defined
using, or inheriting concepts from, other institutions. It is also important to
understand whether and how the meta-model has to be enriched to be used for
different types of applications, like for example for Virtual Enterprises [6], for
the flexible specification of system for knowledge sharing [11], or for collabora-
tive environments. Moreover, it will be necessary to analyse and formally specify
different types of institutional powers: for example, it may be useful to distin-
guish between the power to perform an action as many time as needed from the



power to perform it only once, and to analyse the type of power required by
passive sanctions.

In particular we plan to continue our research with a focus on mixing human
and artificial agents in hybrid multiagent systems within a given organizational
structure, as an environment for complex collective activities. The practical
design and implementation of such systems involves the study of two intercon-
nected problems. The first is to develop a framework that allows one to design
software agents able to interact with different open systems (for example differ-
ent running auctions) without being reprogrammed; this requires that software
agents are able to access a formal description of the interaction system, includ-
ing the context of the interaction and the norms regulating the system, and to
reason at runtime on how to reach their goals. The second problem is how to use
and extend artificial institutions to represent the human organizational struc-
tures within which interactions take place, assuming that the software agents
participating in the interaction have sufficient reasoning capabilities.

References

[1] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Tor-
roni. A logic based approach to interaction design in open multi-agent
systems. In WETICE ’04, pages 387–392, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodŕıguez-Aguilar, and C. Sierra.
Engineering open evironments with electronic institutions. Engineering
applications of artificial intelligence, 18(2):191 – 204, 2005.

[3] A. Artikis, M. Sergot, and J. Pitt. Animated Specifications of Computa-
tional Societies. In C. Castelfranchi and W. L. Johnson, editor, AAMAS
2002, pages 535–542. ACM Press, 2002.

[4] K. Bach and R. M. Harnish. Linguistic Communication and Speech Acts.
MIT Press, Cambridge, MA, 1979.

[5] Guido Boella, Leendert W. N. van der Torre, and Harko Verhagen,
editors. Normative Multi-agent Systems, 18-23 March 2007, volume
07122 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2007.

[6] H. L. Cardoso and E. C. Oliveira. Virtual enterprise normative framework
within electronic institutions. In ESAW 2004, pages 14–32, 2004.

[7] H. Lopes Cardoso and E. Oliveira. Institutional reality and norms: Speci-
fying and monitoring agent organizations. International Journal of Coop-
erative Information Systems, 16(1):67–95, 2007.



[8] O. Cliffe, M. De Vos, and J. A. Padget. Answer set programming for repre-
senting and reasoning about virtual institututions. In K. Inoue, K. Satoh,
and F. Toni, editors, CLIMA VII, Hakodate, Japan, May 2006, volume
4371/2007 of LNCS, pages 60–79. Springer Berlin, 2006.

[9] O. Cliffe, M. De Vos, and J. Padget1. Specifying and reasoning about
multiple institutions. In P. Noriega, J. Vázquez-Salceda, G. Boella,
O. Boissier, V. Dignum, N. Fornara, and E. Matson, editors, COIN II,
volume 4386/2007 of LNCS, pages 67–85. Springer Berlin, 2007.

[10] M. Colombetti and M. Verdicchio. An analysis of agent speech acts as insti-
tutional actions. In C. Castelfranchi and W. L. Johnson, editors, AAMAS
2002, pages 1157–1166, 2002.

[11] Virginia Dignum, Frank Dignum, and John-Jules Meyer. An agent-
mediated approach to the support of knowledge sharing in organizations.
Knowl. Eng. Rev., 19(2):147–174, 2004.

[12] M. Esteva, J. A. Rodŕıguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos.
On the formal specification of electronic institutions. In F. Dignum and
C. Sierra, editors, Agent Mediated Electronic Commerce, The European
AgentLink Perspective, volume 1991 of LNAI, pages 126–147. Springer,
2001.

[13] A. D. H. Farrell, M. J. Sergot, M. Sallé, and C. Bartolini. Using the event
calculus for tracking the normative state of contracts. International Journal
of Cooperative Information Systems (IJCIS), 14(2-3):99–129, 2005.

[14] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication
language. In J. M. Bradshaw, editor, Software Agents, chapter 14, pages
291–316. AAAI Press / The MIT Press, 1997.

[15] FIPA. Foundation for Intelligent Physical Agents (FIPA) Communicative
Act Library Specification. http://www.fipa.org, 2002.

[16] N. Fornara and M. Colombetti. A commitment-based approach to agent
communication. Applied Artificial Intelligence an International Journal,
18(9-10):853–866, 2004.

[17] N. Fornara and M. Colombetti. Specifying and enforcing norms in artificial
institutions. In Guido Boella, Leon van der Torre, and Harko Verhagen,
editors, Normative Multi-agent Systems, number 07122 in Dagstuhl Semi-
nar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[18] N. Fornara and M. Colombetti. Formal specification of artificial institutions
using the event calculus. Technical Report 5, Università della Svizzera
italiana, April 2008.



[19] N. Fornara, F. Viganò, and M. Colombetti. Agent communication and
artificial institutions. Autonomous Agents and Multi-Agent Systems,
14(2):121–142, April 2007.

[20] N. Fornara, F. Viganò, M. Verdicchio, and M. Colombetti. Artificial in-
stitutions: A model of institutional reality for open multiagent systems.
Artificial Intelligence and Law, 16(1):89–105, March 2008.

[21] A. Garćıa-Camino, P. Noriega, and J. A. Rodŕıguez-Aguilar. Implementing
norms in electronic institutions. In AAMAS’05, pages 667–673, New York,
NY, USA, 2005. ACM Press.

[22] D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex, ibi poena: Designing
norm enforcement in e-institutions. In P. Noriega, J. Vázquez-Salceda,
G. Boella, O. Boissier, V. Dignum, N. Fornara, and E. Matson, editors,
COIN II, volume 4386 of LNCS, pages 101–114. Springer Berlin, 2007.

[23] H. L. A. Hart. The Concept of Law. Clarendon Press, Oxford, 1961.

[24] Carl Hewitt. Offices are open systems. ACM Trans. Inf. Syst., 4(3):271–
287, 1986.

[25] L. Kagal and T. Finin. Modeling Conversation Policies using Permissions
and Obligations. In R. van Eijk, M. Huget, and F. Dignum, editors, Devel-
opments in Agent Communication, volume 3396 of LNCS, pages 123–133.
Springer, 2005.

[26] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New
Generation Computing, 4(1):67–95, 1986.

[27] F. López y López, M. Luck, and M. d’Inverno. A Normative Framework for
Agent-Based Systems. In Proceedings of the First International Symposium
on Normative Multi-Agent Systems, Hatfield, 2005.

[28] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social roles and their descriptions. In D. Dubois, C. Welty, and
M.A. Williams, editors, Proceedings of the Ninth International Conference
on the Principles of Knowledge Representation and Reasoning (KR2004),
Whistler, Canada, June 2-5 2004, pages 267–277, 2004.

[29] R. Miller and M. Shanahan. Some alternative formulations of the event
calculus. In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic
Programming and Beyond: Essay in Honour of Robert A. Kowalski, Part
II, volume LNCS 2408, pages 452–490. Springer, Berlin, 2002.

[30] E. T. Mueller. Commonsense Reasoning. Morgan Kaufmann, San Fran-
cisco, 2006.

[31] E. T. Mueller. Event calculus. In F. van Hermelen, V. Lifschitz, and
B. Porter, editors, Handbook of Knowledge Representation. Elsevier, Ams-
terdam, 2007.



[32] P. Noriega. Agent mediated auctions: The Fishmarket Metaphor. PhD
thesis, Universitat Autnoma de Barcelona, 1997.

[33] J. R. Searle. The construction of social reality. Free Press, New York, 1995.

[34] M. Shanahan. Solving the Frame Problem. MIT Press, Cambridge, MA,
1997.

[35] M. Shanahan. The Event Calculus Explained. In M. J. Wooldridge and
M. M. Veloso, editors, Artificial Intelligence Today: Recent Trends and
Developments, volume LNCS 1600, pages 409–430. Springer, Berlin, 1999.

[36] M. Shanahan. An abductive event calculus planner. Journal of Logic Pro-
gramming, 44(1-3):207–240, 2000.

[37] M. P. Singh. A social semantics for agent communication languages. In
Proceedings of IJCAI-99 Workshop on Agent Communication Languages,
pages 75–88, 1999.

[38] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on Computers,
C-29(12):1104–1113, 1980.

[39] J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent
systems. Autonomous Agents and Multi-Agent Systems, 11(3):307–360, Nov
2005.

[40] F. Viganò, N. Fornara, and M. Colombetti. An Event Driven Approach
to Norms in Artificial Institutions. In O. Boissier, J. Padget, V. Dignum,
G. Lindemann, E. Matson, S. Ossowski, J. Simao Sichman, and J. Vázquez-
Salceda, editors, COIN I, volume LNAI 3913, pages 142–154. Springer
Berlin, 2006.

[41] P. Yolum and M.P. Singh. Reasoning about commitment in the event
calculus: An approach for specifying and executing protocols. Annals of
Mathematics and Artificial Intelligence, 42:227–253, 2004.

[42] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Devel-
oping multiagent systems: The Gaia methodology. ACM Transactions on
Software Engineering and Methodology (TOSEM), 12(3):317–370, 2003.


