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Abstract Let S be a topologically finite surface, and g be a hyperbolic metric on S with a
finite number of conical singularities of positive singular curvature, cusps and complete ends
of infinite area. We prove that there exists a convex polyhedral surface P in hyperbolic space
H

3 and a group G of isometries of H
3 such that the induced metric on the quotient P/G

is isometric to g. Moreover, the pair (P, G) is unique among a particular class of convex
polyhedra.
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1 Introduction

1.1 Statements

In all the text, S is a compact oriented surface of genus g, and the surface S is obtained from
the surface S by removing (n + p) points and m closed discs. The surface S is said to be of
type (g, n + p, m), and we require that S can be endowed with a hyperbolic metric, that is:

2g − 2 + n + p + m > 0.

We consider on S hyperbolic metrics with n conical singularities of positive curvature, p
cusps and m complete hyperbolic ends of infinite area.
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A polyhedron of the hyperbolic space H
3 is generalized if some of its vertices lie “outside”

H
3 (see Sect. 2 for precise definitions). An invariant polyhedron of H

3 is a pair (P, G) where
P is a polyhedron and G a discrete group of isometries of H

3 such that G(P)= P . Let g be
a metric on S. If there exists an invariant polyhedron (P, G) such that the induced metric on
∂ P/G is isometric to (S, g), we say that (P, G) realizes the metric g. In this paper we prove:

Theorem A Each hyperbolic metric on S with conical singularities of positive singular
curvature, cusps and complete ends of infinite area can be realized by a unique convex
generalized hyperbolic polyhedron invariant under the action of a group of isometries acting
freely cocompactly on a totally umbilical surface.

Theorem A can be reformulated as the following three results.

Theorem 1.1 Suppose S has genus 0. Then each hyperbolic metric on S with conical singu-
larities of positive singular curvature, cusps and complete ends of infinite area can be realized
by a unique convex generalized hyperbolic polyhedron (with a finite number of vertices).

A parabolic group is a discrete group of isometries of H
3 acting freely cocompactly on a

horosphere. A parabolic polyhedron is an invariant polyhedron (P, G) where G is a parabolic
group.

Theorem B Suppose S has genus 1. Then each hyperbolic metric on S with conical sin-
gularities of positive singular curvature, cusps and complete ends of infinite area can be
realized by a unique convex generalized hyperbolic parabolic polyhedron.

A Fuchsian group is a discrete group of isometries of H
3 acting freely cocompactly on a

totally geodesic plane. A Fuchsian polyhedron is an invariant polyhedron (P, G) where G
is a Fuchsian group.

Theorem B′ Suppose S has genus > 1. Then each complete hyperbolic metric on S with
conical singularities of positive singular curvature, cusps and complete ends of infinite area
can be realized by a unique convex generalized hyperbolic Fuchsian polyhedron.

Theorem 1.1 is already known (references are given below). It follows that in this paper
we will prove Theorem B and Theorem B′.

Remark In the statements above, uniqueness must be understood as the uniqueness among
the class of convex polyhedra described in the statements. Otherwise the statements are false
as it is easy to construct other examples of invariant (convex) polyhedra realizing hyper-
bolic metrics on S. For example one can consider polyhedra invariant under the action of a
group of loxodromic isometries acting cocompactly on a surface at constant distance from
a geodesic for genus 1, or polyhedra invariant under the action of a quasi-Fuchsian group
giving a convex cocompact metric for genus >1. Other examples are provided by groups
acting non-cocompactly on the hyperbolic plane. Uniqueness is of course also meant up to
congruences.

1.2 Plan of the paper and sketch of the proof

In the remainder of this section, we will give references about particular cases of these
statements which are already known, and conclude on some related problems.

To prove Theorems B and B′ we will use the so-called Alexandrov method, or deformation
method, or continuity method. It is an adaptation of the method used by Alexandrov in the
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proof of its famous theorem about the induced metric on the boundary of convex Euclidean
polytopes [2]. The general idea is to endow with a suitable topology both the space of poly-
hedra and the space of metrics, and to use topological arguments to prove that the map given
by the induced metric on the polyhedra is a homeomorphism. Actually the topological result
lying behind the proof is the Domain Invariance Theorem, see [3].

In Sect. 2 we introduce the “hyperbolic-de Sitter space” in order to describe convex para-
bolic and Fuchsian generalized polyhedra, that will lead to a parameterization of the spaces
of polyhedra. In Sect. 3 we prove a result about infinitesimal rigidity of the polyhedra. It
will correspond to the local injectivity of the map “induced metric”, that will be introduced
in Sect. 5. In this section we also need to prove the properness of this map. In Sect. 4 we
parameterize the spaces of metrics with the help of the Teichmüller space. Finally in Sect. 6
we collect all the results above to get first the proofs of Theorems B and B′ and then the proof
of Theorem A.

Remark Until now, polyhedral realization statements were usually proved using the Alex-
androv method, which relies on a local injectivity statement (sometimes given by a global
injectivity statement). There exists a recent method to prove polyhedral realization theorems,
called variational method. We refer to [7,13,14,19] for more details. This method does not
require a local injectivity statement, and furthermore this one is obtained as a corollary of
the proof. In [13], together with Ivan Izmestiev we proved the particular case of Theorem B
considering only conical singularities. We used the variational method and then got a local
injectivity result for this case. The main idea in the present paper is to note that the local
injectivity result needed to prove Theorem B can be obtained in a simple way as a consequence
of the one of [13] (Sect. 3).

1.3 Known cases and related results

In the case of genus 0, if the metric has only conical singularities of positive curvature,
Theorem 1.1 is the hyperbolic version of the famous Alexandrov Theorem cited above. The
case with only cusps was proved in [26]—this reference also contains the uniqueness part
of Theorem 1.1. The proof of Theorem 1.1 is contained in [33]. Actually the results in this
reference are much more general, see below. For genus > 1, the case with only cusps is done
in [36] and the case with cusps and ends of infinite area is done in [35]. The case with only
conical singularities of positive curvature is the subject of [12]. These three results are proved
using the Alexandrov method, but the way to prove the local injectivity lies on volume of
simplices and the Schäfli formula in the two firsts and on the so-called infinitesimal Pogor-
elov map in the other. The present paper provides another proof of these results. Note that
the statement of Theorem B′ contains the case of hyperbolic (smooth) metrics on compact
surfaces. In this case the Fuchsian polyhedron (P, G) must be seen as degenerated: P is the
totally geodesic plane fixed by G. The theorem then just says that any compact hyperbolic
surface has the hyperbolic plane as universal cover. We don’t prove this result again here, so
we will always assume that n + m + p > 0. Concerning the torus, I only know the case with
conical singularities done in [13].

Hyperideal convex polyhedra with finite number of vertices (that is with all vertices lying
“outside” H

3) were studied in [6], in order to characterize them by their dihedral angles.
This kind of characterization is studied for Fuchsian hyperideal convex polyhedra in [35]
and [30]. Partial results on uniqueness were found in [6,25,27]. Such problems are in a cer-
tain sense “dual” to the results proved here, and strongly related to the Andreev Theorem
[4,5,16,29,39]. We refer to these references for more details.
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1.4 Some open questions

The study of convex polyhedra in hyperbolic space is related to the study of hyperbolic
3-manifolds with convex boundary. Particular case of Theorem 1.1 when the metrics have
only cone singularities (i.e. Alexandrov Theorem) is a part of the following question:

Question 1 Let M be a compact connected 3-manifold with boundary, and let M admit a
complete hyperbolic convex cocompact metric. Can each hyperbolic cone metric on ∂ M with
singularities of positive curvature be uniquely extended to a hyperbolic metric on M with
convex polyhedral boundary?

A similar question can be asked for metrics with “ideal” or “hyperideal” boundary. We
refer to [35,36] for precise definitions and statements. Theorem B′ provides an example of a
weaker statement for all these configurations in the case of “Fuchsian manifolds”. Theorem B
can be seen as the most simple extension of those questions to non-compact manifolds. The
analogous of Question 1 in the case of manifolds with smooth strictly convex boundary was
done in [37].

Another way to extend Theorem A would be to study analogous polyhedra in Lorentzian
space-forms. The closer to this paper would be to study them in the “hyperbolic-de Sitter
space” (see Sect. 2 for a definition). Our proof of the local injectivity (Sect. 3) remains true
in this wider case. Then it would remain to parameterize spaces of polyhedra and spaces of
metrics, that is a bit more delicate than in our hyperbolic case, as the induced metric on such
polyhedra can be Riemannian, Lorentzian or degenerated on different faces and edges. For
closed polyhedral surfaces with a finite number of vertices, this is done in [33,34]. Closed
polyhedral surfaces with a finite number of vertices in Minkowski space are studied in [34].
It seems that it does not exist yet similar results in the anti-de Sitter space. Space-like convex
Fuchsian polyhedra in Minkowski and anti-de Sitter spaces are studied in [11,36,38]. It is
possible that there exists convex Fuchsian polyhedra in these spaces for which the induced
metric is not everywhere space-like (for example it may contain light-like edges). Convex
parabolic polyhedra can be defined in the anti-de Sitter space, but they cannot be space-like.

2 Spaces of polyhedra

2.1 HS-polyhedra

We denote by R
4
1 the Minkowski space of dimension 4, that is the space R

4 endowed with
the bilinear form 〈·, ·〉1 represented by:

J :=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

⎞
⎟⎟⎠ ;

it is a flat complete Lorentzian manifold. The hyperbolic space can be seen as the upper-
branch of the unitary two-branched hyperboloid:

H
3 = {x ∈ R

4
1| ‖x‖2

1 = −1, x4 > 0};
and the de Sitter space is the unitary one-branched hyperboloid:

dS3 = {x ∈ R
4
1| ‖x‖2

1 = 1};
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both endowed with the induced metric. De Sitter space is a complete simply connected
Lorentzian manifold of constant curvature 1 diffeomorphic to S

2 × R. We refer to [23] for
more details about Lorentzian geometry. The geodesics of the hyperboloids are given by their
intersection with the vector planes of R

4
1.

Let us project homeomorphically the hyperboloids of R
4
1 along lines onto the Euclidean

unit sphere S
3. We denote by H+ the image of upper-part of the two-branched hyperboloid

(the usual hyperbolic space), and by H− the image of the other branch of the hyperboloid.
The spheres S+ and S− in S

3 delimiting respectively H+ and H− are the images of the light-
cone under the projection (S+ corresponds to the usual boundary at infinity of the hyperbolic
space). The image under the projection of the de Sitter space is exactly S

3 less the closures
of H+ and H− for the topology of the sphere.

We call hyperbolic-de Sitter space, and denote by H̃S
3
, the sphere S

3 less the spheres
S+ and S− endowed with the hyperbolic and de Sitter distances induced by the projection
described above. Actually it is possible to define this space as a “metric” space, i.e. to define
a “distance” between a point in de Sitter space and a point in hyperbolic space, but we do
not need it. See [33,34] for more details. The spheres S+ and S− are the two components of
the boundary at infinity ∂∞H̃S

3
. The intersection of a surface with the boundary at infinity

is called the boundary at infinity of the surface. In this model, the geodesics correspond to
the great circles, and for the de Sitter geodesics, the like-type of a geodesic depends if it
intersects or not H+ (or H−, that is the same): it is space-like if it does not intersect H+, it is
time-like if it intersects H+ and light-like if it is tangent to S+ (or S−, that is the same).

We denote by H̃S
3
+ the upper half part of H̃S

3
(its intersection with {x4 > 0} in Minkowski

space). There exists a more usual model of H̃S
3
+, called the Klein projective model, and given

by the projection x �→ x/x4 in R
4
1 of H

3 and dS3+ (the half upper part of dS3) onto the
hyperplane {x4 = 1}, which is identified with the Euclidean space R

3. This is equivalent to
project H̃S

3
+ onto {x4 = 1}.

Isometries of both hyperbolic and de Sitter spaces are restriction to the hyperboloids of
the linear isometries of R

4
1, which form the Lorentz group L. The Lorentz group is the group

of isometries of H̃S
3
. Note that the antipodal map is an isometry of H̃S

3
. We will consider

two kinds of such isometries:

• null-rotations, whose restriction to hyperbolic space correspond to parabolic isometries.
Each of them (pointwise) fixes a unique light-like vector of R

4
1.

• boosts, whose restriction to hyperbolic space correspond to hyperbolic isometries. Each
of them leaves invariant two light-like vectors as well as the time-like plane containing
them.

We also consider the associated invariant surfaces:

• horospheres are the connected surfaces of H̃S
3

leaved invariant by all the null-rotations
fixing a same light-like vector �.

• caps are the connected surfaces of H̃S
3

leaved invariant by all the boosts fixing a same
time-like hyperplane PH2 .

As well as the groups acting on them:

• a parabolic group is a discrete group of isometries of H̃S
3

acting freely cocompactly on
a horosphere. It contains only null-rotations.

• a Fuchsian group is a discrete group of isometries of H̃S
3

acting freely cocompactly on
a cap. It contains only boosts.

ht
tp

://
do

c.
re

ro
.c

h

5



Moreover we include in the definitions of horospheres and caps the parts of the boundary
at infinity of H̃S

3
leaved invariant by the corresponding isometries.

Definition 2.1
• A convex polyhedron in a space-form M is an intersection of half-spaces of M. The number

of half-spaces may be infinite, but the intersection is asked to be locally finite: each face
must be a polygon with a finite number of vertices, and the number of edges at each vertex
must be finite.

• A convex HS-polyhedron is a subset of H̃S
3 ∪ ∂∞H̃S

3
that corresponds to a convex poly-

hedron of S
3.

• A convex parabolic HS-polyhedron is a pair (P, G) where P is a convex HS-polyhedron,
G is a parabolic group and G(P)= P .

• A convex Fuchsian HS-polyhedron is a pair (P, G) where P is a convex HS-polyhedron,
G is a Fuchsian group and G(P)= P .

• A convex generalized hyperbolic polyhedron P is the intersection of H
3 with a convex

HS-polyhedron such that all the edges of P meet H
3.

The definitions of convex parabolic generalized hyperbolic polyhedron and of convex
Fuchsian generalized hyperbolic polyhedron are then obvious. A convex generalized hyper-
bolic polyhedron has three kinds of vertices: finite vertices which are in H

3, ideal vertices
(or sometimes infinite) which are on ∂∞H

3 and hyperideal vertices which are outside H
3.

The hyperideal case contains the ideal case, and a vertex which is hyperideal but not ideal
is called strictly hyperideal. We will speak about convex umbilical HS-polyhedron when we
speak in the same time about parabolic and Fuchsian polyhedra and about umbilical group
when we speak in the same time about parabolic and Fuchsian groups.

We want to prove that, up to a global isometry, the convex umbilical HS-polyhedra can be
bijectively projected onto the Klein projective model. It means that there exists a global isom-
etry (of the Lorentz group) which sends them into H̃S

3
+. It will allow us to parameterize the

polyhedra with the help of the Euclidean coordinates of their vertices. As the polyhedra we
consider are convex sets in S

3, they are contained in a half-space, but we must check that the
hyperplane delimiting this half-space is space-like. This property is clear for closed convex
generalized hyperbolic polyhedra with a finite number of vertices, it is why such polyhedra
are usually defined directly in the Klein projective model. But it is easy to construct closed
convex HS-polyhedron with a finite number of vertices which cannot be bijectively projected
into the Klein projective model. They are studied in [34].

2.2 Parabolic polyhedra

Let G be a parabolic group. A horosphere H leaved invariant by G is given by the intersec-
tion (supposed non-empty) in the Minkowski space of a unitary hyperboloid with an affine
light-like hyperplane of R

4
1. If G fixes the light-like vector �, the affine light-like hyperplane

is parallel to the light-like hyperplane L containing � (actually L is the orthogonal �⊥ of �

for the bilinear form of the Minkowski space). The vector � gives in S
3 a point �+ on S+

and a point �− on S− which are antipodal. The boundary at infinity of a horosphere is either
�+ either �−, depending if the hyperplane giving H lies above or below L . The boundary at
infinity of H is called the center of H . It follows that in the de Sitter space there exists two
families of antipodal horospheres constructed from a light-like vector �: the ones centered
at �+ and the ones centered at �−, see Fig. 1. Remember that we also consider S+\{�+} and
S−\{�−} as horospheres leaved invariant by G. The following lemma is straightforward as
G has no fixed points in H̃S

3
.
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Fig. 1 In the spherical projective
model, A is a horosphere of
center �+ and B is a horosphere
of center �− (drawn with one
dimension less than the text)

Lemma 2.2 Let G be a parabolic group which fixes � and let x be a point of S
3. Then the

accumulating set of Gx in S
3 is either �+ either �− if x /∈ �⊥. If x ∈ �⊥, the accumulating

set is constituted by both �+ and �−.

We denote by H̃S
3
� the intersection of the de Sitter space with the (closed) half-space

delimited by �⊥. The half-space is chosen such that it contains the hyperbolic space H+.

Lemma 2.3 Up to a global isometry a convex parabolic HS-polyhedron (P, G) is contained

in H̃S
3
� .

Proof The polyhedron (P, G) is the convex hull of the union of finitely many orbits of the
group G. If the polyhedron is constituted with the orbit of one single point, this one belongs
either to a horosphere centered at �+ either to a horosphere centered at �− either to �⊥, and
we are done. We can consider that the polyhedron has at least as vertices the orbit of two
points x and y and we suppose that they are living on horospheres in different sides of �⊥. As
P is convex, there exists a totally geodesic plane M of S

3 such that P is entirely contained in
one side of M . As �+ and �− are antipodal, they belong to different sides of M (M cannot be
�⊥ because x and y live in different sides of �⊥). But from Lemma 2.2 there exists points in
the orbits of x and y as near as �+ and �− as we want for the topology of S

3. This contradicts
the convexity of P . ��
Lemma 2.4 Up to a global isometry a convex parabolic generalized hyperbolic polyhedron
(P, G) can be bijectively projected onto the Klein projective model. Its image is a convex
Euclidean polyhedron with vertices lying on ellipsoids of center (1 − r2, 0, 0) and of radii
(r2, r, r), where r is a positive real number. The vertices accumulate on the point of tangency
of the ellipsoids with the unit sphere.

Proof From Lemma 2.3, up to a global isometry (P, G) is entirely contained in H̃S
3
� . As

(P, G) is now required to have all its edges meeting the hyperbolic space, then it cannot have
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Fig. 2 In the spherical projective model, Ai are (parts of) hyperbolic caps, Bi are time-like caps, Ci are
space-like caps and Li are light-like caps

any vertex on �⊥, as in this case the edge between the vertex and �+ must be an edge of P .
But this edge would be light-like and then P cannot be a generalized hyperbolic polyhedron.

If P is not entirely contained in the interior of H̃S
3
+, consider a vertex x of P belonging

to dS3\dS3+ and taken among the most far vertices from the equator of S
3. Consider a boost

B along the line passing through �+ and x , such that �+ is the attractive point, and such
that B sends x to a point in the interior of H̃S

3
+. Such a B exists as x lies in the interior of

H̃S
3
� . It is clear that the isometry B sends P to a convex parabolic generalized hyperbolic

polyhedron contained in the interior of H̃S
3
+ which can be bijectively projected in the Klein

projective model. All the vertices of its image are lying on the images of horospheres. A
direct computation shows that these images have the announced shape. ��

The following lemma is then obvious:

Lemma 2.5 Let (P, G) be a convex parabolic generalized hyperbolic polyhedron of center
�+. The orthogonal projection of ∂ P onto any horosphere H of center �+ along the lines
starting from �+ is a homeomorphism.

2.3 Fuchsian polyhedra

Let G be a Fuchsian group leaving invariant a totally geodesic surface PH2 of H
3. Up to

global isometries, we will always consider that PH2 is given in the Minkowski space of
dimension 4 by the intersection of the hyperbolic space with the hyperplane {x1 = 0}. In
the Klein projective model PH2 is sent to the horizontal plane, and its boundary at infinity
is the horizontal circle on the sphere. We will also denote by PH2 the hyperplane defining

the surface in H
3 as well as the intersection of the hyperplane with H̃S

3
. The group G also

fixes the vector t(1, 0, 0, 0) ∈ R
4
1 and then the corresponding point c1 of dS3 (as well as its

antipodal c2), and it also fixes all the time-like affine hyperplanes parallel to PH2 in R
4
1.

In H+ and H− the caps fixed by G, called hyperbolic caps, are the totally umbilical sur-
faces at constant distance from PH2 and their induced metric has constant negative sectional
curvature. In the Klein projective model they correspond to the part of ellipsoids of radii
(1, 1, r), r < 1, contained in one side of PH2 . Caps of dS3 are of three kinds (see Fig. 2):
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• light-like caps: they are the intersections between dS3 and the hyperplanes parallel to PH2

passing through the points c1 and c2. They give the light-cone of c1 and the one of c2.
Their boundary at infinity is the one of PH2 . In the Klein projective model, c1 is sent to
infinity and a component of its light-cone is sent to the upper-part of the vertical cylinder
tangent to the unit sphere;

• space-like caps: they are the intersection between dS3 and the hyperplanes parallel to PH2

passing through the points t(x, 0, 0, 0), x > 1. For each x it gives two congruent space-like
totally umbilical surfaces at constant distance from c1, contained inside the light-cone of
c1. Their induced metric has negative sectional curvature. Their boundary at infinity is one
component of the one of PH2 . In the Klein projective model the one contained in dS3+ is
sent to the upper half-part of an ellipsoid of radii (1, 1, r), r > 1. Two others families are
given by considering the planes passing through the points t(x, 0, 0, 0), x < −1;

• time-light caps: they are the intersection between dS3 and the hyperplanes parallel to PH2

passing through the points t(x, 0, 0, 0), 0 < x < 1. For each x it gives a time-like totally
umbilical surface at constant distance from c1, lying outside the light-cone of c1. The
induced metric has positive sectional curvature. The boundary at infinity is the one of
PH2 . In the Klein projective model, the upper half-part of such surface is sent to the upper
half-part of a one-sheeted hyperboloid of radii (1, 1, r), r > 0. One other family is given
by considering the planes passing through the points t(x, 0, 0, 0), −1 < x < 0.

Remember that we also consider parts of S+ and S− contained in one side of PH2 as caps.

Lemma 2.6 Let G be a Fuchsian group which fixes c1 and let x be a point of S
3 which is

not c1 or its antipodal c2. Then the accumulating set of Gx in S
3 is the boundary at infinity

of the cap containing x. If x belongs to a light-like cap, the accumulating set depends on the
choice of x as it can also contain c1 or c2.

Proof By definition all the elements of Gx lie on the same cap. It follows that, if x is not on
a light-like cap, Gx accumulates on a part of the boundary at infinity of the cap has G has
no fixed point on the cap. If x lies on a light-like cap, a sequence of Gx can also converges
to the point fixed by G. It occurs if x lies on a time-like geodesic plane invariant under the
action of an element of G. It is not always the case as G is discrete.

If x is not c1 or c2, the accumulating set of Gx can be seen as the closure of the set of the
points on S+ and S− fixed by the elements of G. Up to antipodals, this set does not depend
on the choice of the point x . If x belongs to H+ or H−, such set is known as the limit set of
G, and this one is the entire boundary at infinity of PH2 as G is cocompact, see e.g. [20]. ��
Lemma 2.7 Up to a global isometry a convex Fuchsian HS-polyhedron (P, G) is entirely
contained in the convex hull in S

3 of the future cone of c1.

Proof We first prove that (P, G) is entirely contained in one side of PH2 . Actually the proof
is the same as in the parabolic case. If the polyhedron is constituted with the orbit of one
single point which belongs to a cap we are done as each cap is entirely contained in one side
of PH2 . It the point belongs to the boundary at infinity it is easy to see that it also remains
in one side of PH2 . We can suppose that the polyhedron has at least as vertices the orbit of
two points x and y, living on caps in different sides of PH2 . As P is convex, there exists a
totally geodesic plane M of S

3 such that P is entirely contained in one side of M . The plane
M cannot be PH2 because x and y live in different sides of PH2 . But for the topology of S

3,
there exists points in the orbits of x and y as near as PH2 as we want, because the orbits
accumulate on the intersection of PH2 with one of the boundaries at infinity. This contradicts
the convexity of P .

ht
tp

://
do

c.
re

ro
.c

h

9



Now we can use another projective model for the hyperbolic-de Sitter space: it is the
projection of the part of H̃S

3
delimited by PH2 and containing c1 onto the hyperplane parallel

to PH2 and passing through c1. The target space is naturally isometric to R
3
1. The point c1

is sent to the origin, its light-cone to the light-cone of R
3
1. A half-part of H+ (resp. H−) is

sent onto the interior of the upper-branch (resp. lower-branch) of the unitary two-sheeted
hyperboloid. The de Sitter space is sent outside these hyperboloids. We now know that, up to
a global isometry, (P, G) can be bijectively sent onto this model. The map from one model
to the other sends convex sets to convex sets. This model is easily seen from Fig. 2.

The condition to be convex can be rephrased as: the convex hull of the orbit of a vertex
cannot contain any other vertex. Suppose P has a vertex on a time-like cap of dS3. In the
model described above such a cap is represented as a one-branched hyperboloid. As the orbit
of the vertex go to infinity (PH2 is sent to infinity in this model), the convex hull of the orbit
of the vertex is the entire space. It follows that P cannot have a vertex on a time-like cap.
Then—up to an isometry—the vertices are inside or on the light-cone of c1. For the same
argument than above they must be all inside or on the same component of the light-cone. ��
Lemma 2.8 Up to a global isometry a convex Fuchsian generalized hyperbolic polyhedron
(P, G) can be bijectively projected into the Klein projective model. Its image is a convex
Euclidean polyhedron with vertices lying on the intersection of the ellipsoids of center 0 and
radii (1, 1, r), where r is a positive real number, with the open upper half-space.

Proof From Lemma 2.7 we just need to check that P cannot have any vertex on a light-like
cap. Suppose that there exists such a vertex x . As in the Klein projective model the accumu-
lating set of Gx is the horizontal circle, P must contain the convex hull of this circle together
with x . In particular it contains the piece of line along which x is projected onto the horizontal
circle. This line belongs to the light-cone of c1 and P is contained inside this light-cone: the
line is an edge of P , but it is light-like, then it cannot meet the hyperbolic space, that con-
tradicts the fact that P is a generalized hyperbolic polyhedron. A direct computation shows
that the images of hyperbolic and space-like caps have the announced shape. ��

The following is then obvious.

Lemma 2.9 Let (P, G) be a convex Fuchsian generalized hyperbolic polyhedron. The
orthogonal projection of ∂ P onto PH2 along the lines orthogonal to PH2 is a homeomorphism.

2.4 Polyhedral embedding

An equivariant polyhedral embedding of S in H̃S
3

is a pair (φ, ρ) where

• φ is a polyhedral embedding of the universal cover S̃ of S into H̃S
3

• ρ is a representation of the fundamental group � of S into L
such that φ is equivariant under the action of �:

∀γ ∈ �,∀x ∈ S̃, φ(γ x) = ρ(γ )φ(x).

An equivariant polyhedral embedding of S in H
3 is the restriction to the hyperbolic space

of an equivariant polyhedral embedding of S in H̃S
3
, which is such that all the edges of the

image of S meet the hyperbolic space. The equivariant polyhedral embedding is convex if its
image is a convex set. It is parabolic if ρ(�) is parabolic and Fuchsian if ρ(�) is Fuchsian. It
is umbilical if it is parabolic or Fuchsian—this is determined by the genus of S. It is clear that
the image of a convex parabolic (resp. Fuchsian) polyhedral embedding bounds a convex
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parabolic (resp. Fuchsian) generalized hyperbolic polyhedron (P, G). Conversely, due to
Lemmas 2.5 and 2.9, the canonical embedding of ∂ P in H

3 together with the action of G
gives a convex umbilical polyhedral embedding of S.

We denote by P(n, m, p) the set of convex umbilical polyhedral embeddings of S in the
hyperbolic space constituted with the orbits of n finite vertices, p ideal vertices and m strictly
hyperideal vertices, modulo isotopies of S and isometries of H

3. More precisely, the equiva-
lence relation is the following: let (φ1, ρ1) and (φ2, ρ2) be two elements of P(n, m, p). We
say that (φ1, ρ1) and (φ2, ρ2) are equivalent if there exists

• a homeomorphism h of S isotopic to the identity, such that if ht is the isotopy (i.e. t ∈ [0, 1],
h0 = h and h1 = id), then ht fixes pointwise the ideal boundary of S for all t ,

• a hyperbolic isometry I ,

such that, for a lift h̃ of h to S̃ we have

φ2 ◦ h̃ = I ◦ φ1.

As two lifts of h only differ by conjugation by elements of �, using the equivariance
property of the embedding, it is easy to check that the definition of the equivalence relation
does not depend on the choice of the lift.

As Lemmas 2.4 and 2.8 say that the image of a convex umbilical polyhedral embedding
of S can be drawn in the Euclidean space we have:

Lemma 2.10 Endowed with the topology given by the Euclidean coordinates in the Klein
projective model of the vertices in a fundamental domain, the space P(n, m, p) is a non-empty
open subset of the manifold R

6g−6+3(n+m) × (S2)p.

Proof It is easy to construct an element of P . One could start with the convex hull of the orbit
of points on the unit sphere in the Klein projective model, and slightly push some points as
well as their iterates outside or inside the ball, in such a manner that a point and its iterates all
belong to the same cap or horosphere. Then we take the convex hull of all the points obtained
in this way. If the move is sufficiently small, all the points are extremal points for the convex
hull, and the resulting polyhedron is invariant by construction.

Let (P, G) be a convex umbilical polyhedron. It is determined by the coordinates in
Euclidean space of vertices of P contained in a fundamental domain for the action of G and
the data of this fundamental domain. The positions of the vertices give parameters living in
R

n+m × (S2)p . The fundamental domain corresponds to an element of the Teichmüller space
of S, that gives (6g − 6) parameters (in the case of the torus, an element of the Teichmüller
space is determined by the position of one vertex). It is clear that for any little change of the
parameters we stay in P:

• finite and strictly hyperideal vertices belong to open sets of R
3, ideal vertices belong to

open sets of S
2 (as described in Lemmas 2.4 and 2.8);

• convexity is an open condition;
• Teichmüller space is an open set (one can consider for example the topology given by the

fundamental domains. If S has genus > 1 these ones can be described using the so-called
“canonical polygons”, see [8,40] or [12]);

• the condition that the edges meet the hyperbolic space is an open condition. ��

3 Infinitesimal rigidity

The results of this section will be used to prove Lemma 5.1.
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A Killing field of a (Riemannian or Lorentzian) space-form M is a vector field of M such
that the elements of its local 1-parameter group are isometries. An infinitesimal isometric
deformation of a polyhedral surface in a space-form of dimension 3 is the data of

• a triangulation of the polyhedral surface given by a triangulation of each face, such that
no new vertex arises,

• a Killing field on each face of the triangulation such that two Killing fields on two adjacent
triangles are equal on the common edge.

An infinitesimal isometric deformation is called trivial if it is the restriction to the poly-
hedral surface of a global Killing field. Let (φ, ρ) ∈ P(n, m, p) and (φt , ρt ) be a path in
P(n, m, p) with (φ, ρ) = (φ0, ρ0) such that the induced metric is preserved at the first order
at t = 0. Up to global isometries we consider that the representations always fix the same
objects.

We denote

Z(φ(x)) := d

dt
φt (x)|t=0 ∈ Tφ(x)H

3

and

ρ̇(γ )(φ(x)) = d

dt
ρt (γ )(φ(x))|t=0 ∈ Tρ(γ )φ(x)H

3.

The vector field Z has a property of equivariance under ρ(�):

Z(ρ(γ )φ(x)) = ρ̇(γ )(φ(x)) + dρ(γ ) · Z(φ(x)).

This can be written

Z(ρ(γ )φ(x)) = dρ(γ ) · (dρ(γ )−1ρ̇(γ )(φ(x)) + Z(φ(x))) (1)

and dρ(γ )−1ρ̇(γ ) is a Killing field of H̃S
3
, because it is the derivative of a path in SO(2, 1)

(we must multiply by dρ(γ )−1, because ρ̇(γ ) is not a vector field). We denote this Killing
field by �ρ(γ ). Equation 1 can be written, if y = φ(x),

Z(ρ(γ )y) = dρ(γ ) · ( �ρ(γ ) + Z)(y). (2)

A parabolic deformation is an infinitesimal isometric deformation Z on a parabolic poly-
hedron which verifies Eq. 2, where �ρ(γ ) is a parabolic Killing field, that is a Killing field of
H̃S

3
which restriction to each horosphere fixed by ρ(�) gives a Killing field of R

2.
A Fuchsian deformation is an infinitesimal isometric deformation Z on a Fuchsian poly-

hedron which verifies Eq. 2, where �ρ(γ ) is a Fuchsian Killing field, that is a Killing field of
H̃S

3
which restriction to each space-like and hyperbolic caps fixed by ρ(�) gives a Killing

field of H
2.

A parabolic polyhedron is parabolic infinitesimally rigid if all its parabolic deformations
are trivial and a Fuchsian polyhedron is Fuchsian infinitesimally rigid if all its Fuchsian
deformations are trivial.

We want to prove.

Theorem C Convex parabolic generalized hyperbolic polyhedra are parabolic infinitesi-
mally rigid.

Theorem C′ Convex Fuchsian generalized hyperbolic polyhedra are Fuchsian infinitesi-
mally rigid.
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Actually Theorem C′ is already known, because it is directly deduced from other known
cases (convex Fuchsian polyhedra in Minkowski space [38], convex Fuchsian polyhedra
with finite vertices in hyperbolic space [12] or in de Sitter space [11]) using the so-called
“infinitesimal Pogorelov maps”. We refer to [11] for a complete discussion about Fuchsian
infinitesimal rigidity.

We need to prove Theorem C. It will be deduced from

Theorem 3.1 [13] Convex parabolic polyhedra with finite vertices in H
3 are parabolic

infinitesimally rigid.

Proof of Theorem C We consider horospheres with center the light-like vector of R
4
1

� :=

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ .

We denote by H0 the light-like hyperplane containing �. It is the hyperplane tangent to the
light-cone along the vector �. We denote by Ht the affine light-like hyperplane parallel to
H0 and passing though the point (0, 0, 0, t), t > 0. We denote by H h

t the horosphere of H
3

obtained as the intersection of H
3 and Ht , and by Hs

t the horosphere of dS3 obtained as the
intersection of dS3 and Ht .

As the totally geodesic subspaces of both H
3 and dS3 are defined by the intersections of

the spaces with hyperplanes of R
4
1, a convex generalized hyperbolic polyhedron is uniquely

defined by a convex (polyhedral) cone in R
4
1. Moreover if the polyhedron is invariant under

isometries the Lorentz group, the corresponding cone is also invariant under the action of
the extension of these isometries to the Minkowski space. It follows that we can speak about
parabolic convex (polyhedral) cones of the Minkowski space of dimension 4. A cone is called
hyperbolic if it lies entirely inside the future cone of the origin of R

4
1 (i.e. the intersection of

the cone with H
3 is a convex hyperbolic polyhedron with finite vertices). Each horosphere

H h
t (resp. Hs

t ) gives a convex (smooth) cone which is (a half-part of) the set of zeros of the
quadratic form qh

t (resp. qs
t ), where:

qh
t :=

⎛
⎜⎜⎝

t2 0 0 0
0 t2 0 0
0 0 t2 + 1 − 1
0 0 − 1 1 − t2

⎞
⎟⎟⎠ ; qs

t :=

⎛
⎜⎜⎝

t2 0 0 0
0 t2 0 0
0 0 t2 − 1 1
0 0 1 − t2 − 1

⎞
⎟⎟⎠.

We will denote in the same way the quadratic forms qs
t and qh

t and the cones given by the
set of their zeros. As a convex parabolic HS-polyhedron (P, G) is constituted as the union
of finitely many orbits, there exists a cone qs

l , 0 < l < 1, such that the cone of P lies in the
interior of qs

l . We introduce the following linear transformation of R
4:

A :=

⎛
⎜⎜⎜⎜⎜⎜⎝

l 0 0 0
0 l 0 0

0 0
l2

√
l2 + 1

0

0 0 − 1√
l2 + 1

√
l2 + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

which sends the cone qs
l to the light-cone of R

4
1. Note that A preserves the direction of � as

well as H0. Hence A sends horospheres of center � to horospheres of center �, and it sends
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obviously convex cones to convex cones. The following properties are directly checked by
matrix multiplications:

• A sends a cone qs
t , t > l, to a cone qh

r ;
• A sends a cone qh

t to a cone qh
r ;

• A sends the light-cone of R
4
1 to a cone qh

r .
• let B be a null-rotation fixing �. Recall that it has the form, with x and y real numbers (see

e.g. [21]):

B :=

⎛
⎜⎜⎜⎜⎜⎝

1 0 − x x
0 1 − y y

x y 1 − x2 + y2

2

x2 + y2

2

x y − x2 + y2

2
1 + x2 + y2

2

⎞
⎟⎟⎟⎟⎟⎠

.

Then

C := AB A−1

is a null-rotation fixing �.

It follows that A sends (P, G) to a convex parabolic hyperbolic cone.
A Killing field of H

3 or dS3 is the restriction to these spaces of a unique Killing field of
R

4
1. Let Z be a vector field of R

4
1. We denote by d Z the differential of Z at the point x . The

vector field Z is a Killing field if and only if, for all vector X based at x :

〈d Z(X), X〉1 = 0.

We define the vector field Z̃ as being at the point x̃ := Ax the vector N Z(x), where

N := J tA−1 J.

If X̃ = AX is a vector based at x̃ , we have:

〈d Z̃(X̃), X̃〉1 = t
d Z̃(X̃)J X̃ = t(Nd Z(X))J AX

= td Z(X)J A−1 J J AX = 〈d Z(X), X〉1. (3)

It follows that the map Z �→ Z̃ sends an infinitesimal isometric deformation of a convex
polyhedral cone to an infinitesimal isometric deformation of a convex polyhedral hyperbolic
cone (its image by A), and one is trivial when the other is. Hence to prove Theorem C it
remains to check that Z �→ Z̃ sends parabolic deformations to parabolic deformations, as
we know by Theorem 3.1 that parabolic deformations of convex parabolic hyperbolic cones
are trivial. Let Z be a parabolic deformation of a convex parabolic cone. It verifies, for some
null-rotation B:

Z(Bx) = B(Z(x) + K (x))

where K (x) is a parabolic Killing field, and we want to prove that there exists a parabolic
Killing field K̃ such that:

Z̃(Cx̃) = C(Z̃(x̃) + K̃ (x̃)).

A direct computation shows that

C N = N B

and then we get, with x = A−1 x̃ :
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Z̃(Cx̃) = N Z(Bx) = N B(Z(x) + K (x))

= C N (Z(x) + K (x)) = C(Z̃(x̃) + N K (x)).

We define the vector field K̃ at the point x̃ as N K (x). By (3) we know that K̃ is a Killing
field as K is. It remains to check that, for all x̃ , K̃ (x̃) is tangent to the horosphere of center �

passing through x̃ . Horospheres have the property that all geodesics starting from their center
intersect them orthogonally. It follows that it suffices to check that K̃ (x̃) is orthogonal to the
plane spanned by x̃ and �. The vector K (x) satisfies this property, then it is orthogonal to
both x and �. A computation analogous to Eq. 3 shows that K̃ is also orthogonal to both x̃
and � (� is an eigenvector of A). ��
Remark A similar proof might work for spherical and Fuchsian polyhedra.

The property of the map Z �→ Z̃ to send Killing field on Killing field is just a partic-
ular expression of the Darboux–Sauer Theorem, which says that “infinitesimal rigidity is a
projective property” [10,31,32]. See also e.g. [9].

In this proof we never used the condition that the edges of the polyhedral surface intersect
the hyperbolic space. Actually we proved the parabolic infinitesimal rigidity for a convex par-
abolic HS-polyhedra. In particular we proved the parabolic infinitesimal rigidity for convex
parabolic polyhedra in de Sitter space.

4 Spaces of metrics

We denote by M̃(n, p, m) the space of hyperbolic metrics on S with n conical singularities
with positive singular curvature, p cusps and m complete hyperbolic ends of infinite area.
Cusps and conical points are marked in the following sense: if, for a metric of M̃(n, p, m),
the neighborhood of x ∈ S is isometric to the neighborhood of the apex of a convex cone then
any hyperbolic metric on S for which the neighborhood of x is isometric to a cusp does not
belong to M̃(n, p, m), and vice-versa. We define M(n, p, m) as the quotient of M̃(n, p, m)

by the isotopies of S which fix pointwise the ideal boundary of S. We want to prove:

Lemma 4.1 The space M(n, p, m) is a connected and simply connected manifold of dimen-
sion 6g − 6 + 3(n + m) + 2p.

Note that M(0, p, m) is the Teichmüller space Tg(p, m) of a surface of finite topological
type (g, p, m). In this case the lemma above is well-known (see e.g. [1,22]). If the metric
has conical singularities, we can use the following theorem, which is a particular simple case
of the results of [17,18]:

Theorem 4.2 Hyperbolic metrics on a topologically finite surface with a finite number of
conical singularities, cusps and complete ends of infinite area are uniquely determined by
the conformal structure of the surface and the values of the cone-angles.

It follows that M(n, p, m) is in bijection with the product of Tg(n + p, m) and ]0, 2π [n

(the values of the cone-angles—there is no Gauss–Bonnet condition on them as we are
restricted to positive singular curvature). We endow M(n, p, m) with the topology induced
by the bijection, what obviously gives Lemma 4.1.

There exists another way to prove Lemma 4.1, which is used in [33] for the case of the
sphere (without cusps), but the arguments does not depend on the genus. See also [26] for
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a related construction in the case of the sphere with cusps. Analogous arguments in a close
context where used for example in [24,28,36]. The idea lies on the fact that M(n, p, m) is
locally parameterized by the edge lengths of triangulations of the metrics. Then it is not hard to
continuously “smooth” the cone-angles, and the conclusion follows from the connectedness
and simply connectedness of M(0, p, m).

5 The map “induced metric”

5.1 Local injectivity

Let (φ, ρ) ∈ P(n, m, p). The induced metric on φ(S) is isometric to a hyperbolic metric
smooth everywhere except at the vertices, which provide cone angles of positive curvature
(two faces sharing an edge can be unfolded in the plane and then the induced metric is not
singular at the edges). By Lemmas 2.5 and 2.9 the induced metric on φ(S)/ρ(�) belongs to
M(n, p, m). We denote by I the map from P to M obtained in this way. The determining
fact, which uses the results of Sect. 3, is:

Lemma 5.1 The map I is a local homeomorphism.

Proof The map I is obviously continuous. Moreover Theorems C and C′ gives the local
injectivity of I. This last fact is very classical, see e.g. [15]. It is used for example in [12]. ��
5.2 Properness

We will prove that I is proper in the following way: if (φk, ρk)k is a sequence in P(n, m, p)

such that (I(φk, ρk))k converges in M(n, m, p), then there exists a subsequence of (φk, ρk)k

converging in P(n, m, p). We must prove the convergence of the sequence of representations
and the convergence of the sequence of coordinates of the vertices in R

3. In all the proof
below, we always assume that convergence is up to the extraction of a subsequence and we
denote φk(S) by Pk .

5.2.1 Fuchsian case

We begin with the Fuchsian case as it is the most familiar. The properness is proved in [12] if
the metric has only conical singularities, in [36] if it has only ideal vertices, and in [35] if it
has only strictly hyperideal vertices. Actually the arguments we need here are all contained
in these references. For convenience we repeat them. The proof can be decomposed in three
steps.

(i) The sequence of representations converges. To the sequence (φk, ρk)k is associated
a sequence (tk)k in the Teichmüller space Tg of S, with (S, tk) isometric to (PH2/ρk(�)).
Suppose that the sequence of representations diverges. This implies that the sequence (tk)k

diverges and it is a well-known fact of Teichmüller theory that in this case there exists a closed
geodesic on S whose lengths go to infinity for the metrics tk . But the orthogonal projection of
the polyhedra onto PH2 is contracting, that means that on Pk/ρk(�) the lengths of the same
curve on the Pk go to infinity, that is impossible as the sequence of induced metric converges.

(ii) The distance to PH2 is uniformly bounded. As (ρk)k converges the lengths of any
closed curve in S for the metrics tk remain bounded from below by a positive constant c.
Then the lengths of the same curves on the Pk are bounded from below by c times the inverse
of the factor of contraction of the orthogonal projection. Suppose that the polyhedra go far
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from PH2 . This factor will becomes arbitrary large, and then the lengths of the curves will
go to infinity that is impossible. This proves that the distance to PH2 is uniformly bounded
from above. It is also bounded from below as the Pk are convex polyhedral caps above the
plane PH2 , and as the values of the cone-angles on the Pk are uniformly bounded.

(iii) The sequence of the coordinates of the vertices converges. First we need to “nor-
malize” the sequence of polyhedra in order to avoid trivial divergences of the sequence of
polyhedral embeddings (typically we want to avoid one vertex to be sent onto its iterates).
It suffices to compose the φk with hyperbolic isometries such that a point xk on Pk always
stay on the same line orthogonal to PH2 . It follows by (ii) that for a k sufficiently large we
can assume that xk remain fixed for all k, and we now denote this point by x . Moreover
all the vertices in a same fundamental domain than x are lying inside a Euclidean cylinder
orthogonal to PH2 . Otherwise the projection onto PH2 of the fundamental domain will give
a diverging sequence of representation, that contradicts (i).

Hyperideal vertices do not collapse. Suppose that v1 and v2 collapse. Then choose a closed
curve γ on the surface going through the point corresponding to x such that v1 and v2 belong
to different components of the complement of γ . In H

3 γ gives curves γk on the polyhedra
joining x to one of its iterate. When v1 goes near v2 (for the Euclidean topology), the geo-
desic joining them becomes closer to the ideal boundary, and then the γk must approach the
boundary at infinity, that obliges their lengths to go to infinity, that’s impossible.

The Euclidean coordinates of finite vertices have a converging subsequence as they must
be at bounded hyperbolic distance from x . Moreover they cannot collapse. Otherwise sup-
pose that two vertices are arbitrarily close in R

3. As they remain in a compact of H
3, they

also must be arbitrarily close in H
3. But that is impossible because their distances on the

polyhedra are uniformly bounded and because the polyhedra are convex.
The last thing to prove is that the Euclidean distance between strictly hyperideal vertices

vk and PH2 are uniformly bounded from above. Otherwise the de Sitter distances between
vk and c1 go to 0, but this is impossible. To see this we use the model described in the proof
of Lemma 2.7, where c1 corresponds to the origin in the Minkowski space of dimension 3.
We see a sequence of (closure of) fundamental domains on Pk for the action of ρk(�) as a
sequence (Dk)k of convex isometric space-like embeddings of the disc, with (n +m + p) sin-
gular points. Each Dk must stay out of the light-cone of its vertices, and inside the light-cone
of c1. It follows that if the vk go to c1, then the Dk will be in an arbitrarily neighborhood of a
light-cone for k sufficiently large. But this is impossible: a light-cone (without its vertex) is
a smooth surface, and it cannot be approximate by polyhedral surfaces with a fixed number
of vertices.

5.2.2 Parabolic case

The proof of the properness in the parabolic case is very close to the one of the Fuchsian case.
Let H be an arbitrarily horosphere of the hyperbolic space, with same center � as the convex
parabolic polyhedra (φk, ρk). We normalize (φk)k as follows. We choose a point s on S and
we compose φk with a parabolic isometry (fixing �) such that the orthogonal projection of
φk(s) onto H always give the same point x . With this normalization we avoid some trivial
divergences has explained in (iii) above.

(i) The sequence of representations converges. Denote by yk and zk the orthogonal projec-
tions onto H of two iterates of φk(s) under the action of two generators of the fundamental
group of the torus. Together with x they give an Euclidean parallelogram Qk on H . We pro-
ject those parallelograms onto a horosphere Hk concentric to H which is such that the image
of Qk has area 1. We keep the notations Qk, x, yk, zk for the objects projected onto Hk . If
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the sequence of representations diverges, we can suppose that the lengths of the Euclidean
segments xyk of Hk go to infinity. As the area is fixed this implies that the lengths of xzk go to
0. For k sufficiently large, if Pk lies “above” Hk (i.e. some vertices are outside the convex hull
of the orbit of x), then as the orthogonal projection onto Hk is contracting, the lengths on the
Pk of the curves corresponding to xyk will go to infinity, that is impossible as the sequence
of induced metrics converge. If Pk lies “below” Hk then it is not hard to see that, using the
convexity of Pk , the lengths on Pk of the curves corresponding to xzk are arbitrarily near 0,
that is also impossible. It could also occur that the angle between xyk and xzk degenerates
to a flat angle, that is also forbidden by the convergence of the induced metrics.

(ii) The distance to H is uniformly bounded. The argument to prove that the distance is
bounded from above is the same as in the Fuchsian case, as it uses only the facts that the
sequence of representations converges and that the orthogonal projection is contracting. The
argument to prove that the distance in bounded from below is similar: if the Pk go far from
H “below” H , then the projection onto H is dilating and as the sequence of representations
converges, this will imply that there exists curves on the Pk corresponding to some closed
curve on S whose lengths go to 0.

(iii) The sequence of the coordinates of the vertices converges. Recall that we look at
convex parabolic polyhedra up to hyperbolic isometries fixing � which are such that the
polyhedra can be bijectively projected into the Klein projective model. It follows that strictly
hyperideals vertices cannot “go to infinity”. The other arguments are similar to the ones used
in the Fuchsian case.

6 Proofs of theorems

6.1 Proof of Theorems B and B′

We have proved:

� P is a non-empty metric space (Lemma 2.10);
� M is a connected metric space (Lemma 4.1);
� I is a local homeomorphism (Lemma 5.1);
� I is proper (Subsection 5.2).

It follows that I is a finite-sheeted covering map. But M is also simply connected (Lemma
4.1). It follows that I is a homeomorphism between P and M, that gives Theorems B and B′.

6.2 Proof of Theorem A

There exists only three kinds of totally umbilical surfaces in the hyperbolic space: they are
contained in a sphere, a horosphere or a totally geodesic plane. If we consider that a cocom-
pact group acts on them, they must be complete: they are a sphere, a horosphere or a totally
geodesic plane. If the totally umbilical surface is the sphere, the only group acting freely on
it is the trivial one, and we are in the case of Theorem 1.1. If the surface is a horosphere, the
group must be parabolic in the sense we defined it and we are in the case of Theorem B. If
the surface is a totally geodesic plane, the group must be Fuchsian in the sense we defined it
and we are in the case of Theorem B′.
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