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ABSTRACT. This paper is the third (Paper III) in a set of studies of the errors involved in the estimate of ice
thickness and ice volume. Here we present a methodology to estimate the error in the calculation of the
volume of an ice mass from an ice-thickness DEM.We consider the two main error sources: the ice-thick-
ness error at each DEM grid point and the uncertainty in the boundary delineation. To accurately esti-
mate the volume error due to the error in thickness of the DEM, it is crucial to determine the degree of
correlation among the ice-thickness errors at the grid points. We find that the two-dimensional integral
range, which represents the equivalent area of influence of each independent value, allows estimation of
the equivalent number of independent values of error within the DEM. Hence, it provides an easy way to
obtain the volume error resulting from the uncertainty in ice thickness of a DEM. We show that the
volume error arising from the uncertainty in boundary delineation, often neglected in the literature,
can be of the same order of magnitude as the volume error resulting from ice-thickness errors. We illus-
trate our methodology through the case study of Werenskioldbreen, Svalbard.
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1. INTRODUCTION
Estimating uncertainties associated with ice-volume esti-
mates is important for, among others, sea-level rise (SLR)
studies. For instance, as discussed by Farinotti and Huss
(2013), the errors in individual glacier volume data
compiled in calibration datasets for volume/area scaling
have an impact on the expected accuracy of the SLR esti-
mates from glacier ensembles based on such scaling
relationships.

In spite of their importance, errors in ice-volume estimates
are often not well described, or even quantified in the litera-
ture. For instance, none of the earliest reported glacier
volumes of Svalbard based on the Soviet and Norwegian/
British airborne echo-soundings (Macheret and Zhuravlev,
1982; Dowdeswell and others, 1984) were accompanied
by estimates of their errors. Two different studies of Bamber
and others (2001, 2013) derived the volume of the entire
Greenland ice sheet discussing the different error sources
involved; however, these studies lacked an estimate of the
total error in volume. Other studies, such as Saintenoy and
others (2013) and Fischer and Kuhn (2013), use ground-
penetrating radar (GPR)-retrieved DEMs of ice thickness to
calculate the volume of Austre Lovénbreen (Svalbard) and
64 Austrian glaciers, respectively. They report some of the
most significant error sources (e.g. interpolation error, error
in radio-wave velocity and error in area), but they do not
provide details of the statistics used to combine these errors
to derive an error in volume. Moreover, they assume a
linear relation between the ice-thickness errors at the grid
points when obtaining the final volume error estimate, an as-
sumption that leads to overestimating the error, as we will
discuss later. On the contrary, Pettersson and others (2011)
obtained an extremely small error for the volume estimate
of Vestfonna ice cap, because their method implicitly

assumed independence between the errors at grid cells of
the ice-thickness DEM, which leads to underestimating the
error, as it will be discussed in Section 2.1.

The aim of this work is to assess the error involved in
the computation of the volume of an ice mass, delimited
by a given boundary, from its ice-thickness DEM. We thus
focus on ice volumes, and do not address density issues.
Consequently, the volumes considered in the case study pre-
sented in this paper, as well as most of the individual glacier
volumes reported in the literature, are not ice (or water)
equivalent. However, we note that, for SLR applications,
the density assumption used for volume-to-mass conversion
becomes a major source of uncertainty, particularly in
alpine glaciers, where the firn layer can make up a large frac-
tion of thickness in the accumulation area.

Estimation of ice-volume errors requires determination of:
(1) the ice-thickness error of the DEM, generally calculated
from ice-thickness data retrieved from prospective methods
such as the GPR; (2) the degree of correlation existing
among the ice-thickness errors at the grid points; and (3)
the impact on the volume computation of the errors in
boundary delineation. In what follows, we will pay attention
to these and other related aspects.

2. METHODOLOGY
The volume, in an ice-thickness DEM, of a glacier can be
computed as the sum of the individual volumes at the grid-
cell level, i.e. the sum of cell area times the average ice thick-
ness for the cell,

V ¼
XN
k¼1

AkHk; ð1Þ
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where Ak is the area of each grid cell and Hk is the ice thick-
ness associated with the cell. This will be the basis for our es-
timate of the total error in volume. The basic terminology on
errors used in this study is the same as that of the previous
companion papers (Lapazaran and others, 2016a, b; this
issue (Papers I and II)).

Our starting point assumes that the error of the DEM is
known or can be estimated following, e.g. the techniques
described in Papers I and II, either as an ice-thickness stand-
ard deviation error map (εHk at each grid point) or as an ice-
thickness average error of the whole DEM, ɛH DEM. We can
characterize the latter as the RMS average value of the ice-
thickness error throughout the grid (Eqn (4) in Paper II).

To estimate the accuracy of the volume calculation, we
separate its errors conceptually into two main components:
the error in volume arising from the ice-thickness errors of
a DEM with a given fixed boundary assumed to be free
from positioning errors, ɛVH, and the error in volume stem-
ming from the uncertainty in boundary delineation, ɛVB.
We analyse both error components separately and their com-
bination below.

2.1. Error in volume due to the error in ice thickness
To estimate ɛVHwe need to consider the degree of spatial cor-
relation among the ice-thickness errors at the grid cells.
These are often correlated, because:

(1) There is an inherent spatial correlation among the ice
thickness due to the continuity of both glacier surface
and bed, and thus the ice-thickness-dependent data
errors are likely correlated.

(2) Some of the errors of the raw data are correlated along
the profiles. Examples for the directly retrieved ice‐thick-
ness measurements are systematic errors in the velocity
used for two-way-travel-time to ice-thickness conver-
sion, in the identification and picking of the ice bed,
and in the locations of the measurement points along
profiles. For synthetic data, examples are errors in the
ice-thickness-estimation equation or in its parameters,
or data positioning errors. For boundary data, a typical
example is the systematic misplacement of the boundary
due to, e.g. presence of debris or snow cover.

(3) The interpolator propagates the data errors to the grid
points, increasing their correlation. Although the ice-
thickness interpolation is performed using values at
neighbouring data points, and these change as the inter-
polator moves through the grid, the estimations at neigh-
bouring locations are computed from nearly the same set
of data points.

If theerrorsat theNgridpoints,εHk ,wereall independent, and
we characterized them by means of ɛHDEM, the error in volume
due to ice-thickness errors would be εVH ¼ AεHDEM=

ffiffiffiffi
N

p
. This

means that the error would decrease with the size of the DEM
cells. This is an excessively optimistic assumption (i.e. it underes-
timates the error), given that not all the errors are expected to be
independent. If, alternatively, they were all linearly dependent,
the expression would simply be ɛVH=AɛHDEM. However, this
is an overly pessimistic assumption (i.e. it overestimates the
error), which considers the error as a mean value rather than a
standarddeviation, thuspreventing any statistical compensation.

Taking into account that some spatial correlation between
grid values exists, but that there is no linear dependence
among them, we aim to determine the equivalent number

of independent values within the grid, NR, which should
not depend on the grid size. Assuming there are NR inde-
pendent values, we can estimate ɛVH as

εVH ¼ AεHDEMffiffiffiffiffiffi
NR

p : ð2Þ

To estimate NR we use the integral range as defined by
Lantuéjoul (1991), which allows a comparison between the
scale of the phenomenon under study and the scale of obser-
vation. If the domain of observations is large with respect to
the integral range, the ratio between the former and the latter
represents the equivalent number of independent values in
the domain (e.g. Garrigues and others, 2006). The definition
of the integral range varies with the dimension of the space of
the domain of observations. For instance, Blanchin and
Chilès (1993) used a similar approach in a one-dimensional
(1-D) continuous sampling along a profile with a length L
greater than the 1-D integral range, IR1, leading asymptotic-
ally toNR= L/IR1. In our case, the 2-D integral range, IR2, can
be considered as the equivalent area of influence of each in-
dependent value, and thus, in a typical scenario with many
intersecting profiles covering the whole glacier area A, we
can approximate

NR ≈
A
IR2

; ð3Þ

hence estimating ɛVH as

εVH ¼ εHDEM

ffiffiffiffiffiffiffiffiffiffi
IR2A

p
: ð4Þ

The estimate of IR2 requires the calculation of the variogram
of the ice-thickness errors at the grid points. The variogram
function, γ ðhÞ, measures the correlation between pairs of
points as a function of the distance between them, h, and
the range, R, of the variogram indicates the maximum dis-
tance where we can expect correlation between pairs of
points (e.g. Cressie, 1993; p. 131), i.e. the distance at
which the variogram fits its maximum value (referred to as
its sill, σ2). The theoretical variogram results from fitting a
certain function to the experimental variogram, which is a
cloud of squared dissimilarities between pairs of points
(e.g. Wackernagel, 2003). However, some of the possible
variogram function models (e.g. Stable, Gaussian and
Exponential models; Table 1) grow asymptotically to their
sill, and thus their range is necessarily infinite. For this type
of function model, a practical range is defined as the distance
at which the variogram reaches the 95% of its sill. Since for
each variogram model there is a proportionality between
the integral range and the range (or the practical range,
when applied), and the estimate of the latter is straightforward
from the variogram, we prefer working in terms of range rather
than of integral range. Table 1 shows the relation between IR2

andR, and the derived changes in Eqns (3) and (4), for themost
commonvariogrammodels. These relations canbederivedby
applying the definition of integral range (e.g. Lantuéjoul,
1991, 2002; Garrigues and others, 2006) to each particular
variogram model. Examples of variogram functions can be
obtained e.g. from Wackernagel (2003). Additional results
of integral ranges in 1, 2 and 3 dimensions, for a wider set of
models, can be found in Lantuéjoul (2002). The choice of a
specific variogram model is achieved due to its optimal
fitting to the experimental variogram of the ice-thickness
errors at the grid points, as compared with the other models.
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Sometimes the range does not only depend on the dis-
tance between points, but also on the direction between
them (anisotropy in the correlation). To detect it, half the
circle of directions must be divided into different angular
sectors and an experimental variogram must be generated
for each sector, taking into account only the pairs of points
within its corresponding directions. Then, the same vario-
gram model must be fitted to each of these experimental
variograms to find the corresponding range. Both the
maximum range and the range in its orthogonal direction
will be the ranges defining this anisotropy, Ra and Rb (e.g.
Wackernagel, 2003). In this case, R2 in Table 1 must be
replaced by the product RaRb.

The range of interest to estimate the error in the volume via
Eqn (4) and Table 1 is that derived from the DEM of errors at
the grid points, εHk . However, if a DEM of errors were not
available we suggest using the range of the variogram of
ice-thickness values at the grid points (Hk) as the best solution
to approximate its range. This approach is generally conser-
vative, since ice thicknesses at grid points are usually more
correlated than their errors, thus generating a larger range,
i.e. a larger error in volume. On the other hand, we do not
use the variogram of the errors of the dataset instead of
those in the DEM, for two reasons. First, the errors in the
dataset are biased, since both the GPR profiles and the
glacier boundary are oversampled (in particular, the vario-
gram is more realistic if the boundary values are excluded),
while the rest of the glacier surface is devoid of data.
Second, the dataset does not contain interpolation errors.
Consequently, it should not be expected that the variogram
of the errors of the dataset will generate a good estimate of
the range representative for the entire glacier.

2.2. Error in volume due to the error in boundary
delineation
Each DEM of ice thickness implicitly includes its own fixed
boundary, which is undoubtedly affected by an error. We

aim here to estimate the error in glacier volume resulting
from this uncertainty in glacier-boundary delineation.

Delineating a glacier boundary accurately is not an easy
task. Snow patches or debris cover over valley walls and
glacier fronts hinder the proper definition of the glacier bound-
ary (Paper II, Section 3.2). Even when glacier boundaries are
delineated from ground-based GPS measurements, the main
error source will be the subjective glacier-boundary determin-
ation carried out by the operator. These errors are not easy to
estimate and strongly depend on the conditions involved.
Several examples can be found in the literature. For instance,
Bernard and others (2014) analysed this type of error for
Austre Lovénbreen – a small (∼4.6 km2) valley glacier in
Northwestern Spitsbergen. They observed that the ice extent
was typically from 25 to 30 m, occasionally up to 100 m,
under the marginal slopes, producing an uncertainty in area
of∼10%, although they always found an area underestimation
in all zones of this glacier (i.e. a bias). This uncertainty is much
larger than those cited by Paul and others (2013), in which the
different glacier delineations by multiple authors had average
standard deviation of area between 2.6% (Ötztal Alps) and
5.7% (Alaska), depending on the geographical settings.
Another example is the relative error in area for the glaciers of
the most recent Svalbard glacier inventory (König and others,
2014). Its accuracy is estimated to be typically better than 5%,
but it shows a discrepancy of ∼8% when compared with the
delineations done by Hagen and others (1993) using the same
set of aerial images from 1990 (Nuth and others, 2013).

This error in boundary delineation not only has an impact
on the glacier area, but also on the calculation of glacier
volume. We will refer to it as error in volume related to the
boundary-delineation error (ɛVB). Although the uncertainty in
boundary delineation affects the areas where the glacier is
thinnest (this statement does not apply to divides, calving
fronts or artificial boundaries), ɛVB is not necessarily small.
Often, GPR coverage near steep-slope walls at the glacier
margins is relatively scarce. As a consequence, a mischarac-
terization of the glacier boundary will affect the ice-thickness

Table 1. Relation between the range, R, and the 2-D integral range, IR2, for the most common variogram models, γðhÞ. The last two columns
relate Eqns (3) and (4) with the range of the variogram. The integral range of the Stable model depends on its power, λ, and on the value of the
gamma function (Γ, Euler integral of the second kind), becoming the Exponential model when λ= 1, and the Gaussian model when λ= 2. For
values 0.5≤ λ≤ 2, ɛVH for the Stable model becomes very close to that obtained from Eqn (4) using R2 instead of IR2, i.e. εVH ≈ εHDEMR

ffiffiffiffi
A

p

γ ðhÞ IR2 NR ɛVH

Spherical

σ2 3
2
h
R
� 1
2
h3

R3

� �
∀h � R

σ2 ∀h> R

8<
:

π

5
R2

≈ 0:63R2

5
π

A
R2

≈ 1:59
A
R2

εHDEMR
ffiffiffiffiffiffiffi
π

5
A

r

≈ 0:79 εHDEMR
ffiffiffiffi
A

p

Exponential

σ2 1� exp �3
h
R

� �� � 2π
9
R2

≈ 0:70R2

9
2π

A
R2

≈ 1:43
A
R2

εHDEMR

ffiffiffiffiffiffiffiffiffiffi
2π
9
A

r

≈ 0:84 εHDEMR
ffiffiffiffi
A

p

Gaussian

σ2 1� exp �3
h2

R2

� �� � π

3
R2

≈ 1:05R2

3
π

A
R2

≈ 0:95
A
R2

εHDEMR
ffiffiffiffiffiffiffi
π

3
A

r

≈ 1:02 εHDEMR
ffiffiffiffi
A

p

Stable

0< λ � 2

σ2 1� exp �3
hλ

Rλ

� �� � π R2

91=λ
Γ λþ2

λ

� � 91=λ

π Γðλþ2
λ Þ

A
R2 εHDEMR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π Γðλþ2

λ ÞA
q

31=λ
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DEM extending well into the glacier. This inwards propagation
of the boundary error becomes an important source of error.

In spite of the boundary uncertainty, ice-thicknessDEMs are
defined based on a fixed glacier mask. The DEM boundary is a
pixelation of the glacier boundary, generated to accommodate
it to a regular grid. However, we will not consider pixelation
errors, since this pixelation is overlapped with (and often
much smaller than) the uncertainty in boundary delineation.

In what follows, two scenarios are considered that differ in
whether: (1) the error in ice thickness arising from the uncer-
tainty in glacier boundary has not been considered in the ice-
thickness DEM (Scenario 1); or (2) it has already been taken
into account as assumed in Paper II (Scenario 2).

2.2.1. Scenario 1 – Boundary uncertainty is not con-
sidered in the available DEM
To estimate the error in volume associated with the boundary
uncertainty, we characterize the latter by the fraction (p) of
the total glacier area (A) affected by the error. In other
words, we evaluate ɛVB as the change in volume of the ice-
thickness DEM when the glacier boundary is shifted
inwards/outwards by an amount equal to pA.

We start by analysing ɛVB for a land-based glacier with a
zero ice-thickness boundary. Figure 1a shows, in a cross-
section of a glacier, how a shift in the boundary has an
impact on the ice-thickness estimate of the inner parts
extending up to the nearest GPR measurement. To model
this error in volume, we simplify its section to a triangle
(yellow in Fig. 1b), whose height is characterized by Hm,
which we conservatively approximate by the mean ice thick-
ness of the glacier. Making a 3-D extension of this error
section, we get an error band along the glacier boundary
with a triangular section. The base of this band is the error
in area, pA, and the height of the triangle is the mean ice
thickness of the glacier (Hm= V/A). It then results in

εVB ≈
pV
2

: ð5Þ

This strip-based conservative error estimate for ɛVB is valid
for both inwards and outwards shifts of the boundary (e.g. in
cases in which we respectively underestimate or overesti-
mate the glacier area due to debris/snow cover).

If the glacier boundary is not completely land based, e.g. it
includes calving fronts, or if it includes divides or artificial

sections (so not the entire boundary has zero ice thickness),
the different boundary zones must be studied separately.
For the zone with zero ice-thickness boundary, the error in
volume can be estimated using Eqn (5), weighted by the frac-
tion of the boundary with zero ice thickness, α:

εVBα ≈
αpV
2

: ð6Þ

For the remaining zones of the boundary, errors in volume
(εVBα ) are obtained multiplying the error in area, pA, by the
corresponding fraction of the boundary with nonzero ice
thickness, 1−α, and by the mean ice thickness in this bound-
ary zone, Hb.

εVB1�α ≈ ð1� αÞpAHb: ð7Þ

ɛVB will then be obtained by adding εVBα and εVB1�α .
Assuming the independence of the error in volume due to

the uncertainty in boundary delineation of Scenario 1, ɛVB,
and the error in volume associated with the error in ice thick-
ness, ɛVH, we can estimate the total error in glacier volume as

εV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2VH þ ε2VB

q
: ð8Þ

2.2.2. Scenario 2 – Boundary uncertainty is already
considered in the available DEM
If the boundary uncertainty was taken into account when es-
timating the error in ice thickness of the DEM (as in Paper II),
then its contribution to the error in volume has already been
partly considered in ɛVH. Just partly, because the DEM of ice
thickness was generated on the basis of a particular glacier
mask, with a fixed area, and this will produce an additional
error in volume associated to the boundary uncertainty, not
yet taken into account. To estimate it, we cannot proceed
as in Scenario 1, because then we would be double counting
part of the error in volume related to boundary uncertainty.
However, as shown in Figure 2, the error in volume can be
separated into two parts. The first part, denoted ɛ1, is the
error in ice volume that has already been considered
within the contribution of the error in ice thickness of the
DEM. It encompasses the ice-thickness errors at the boundary
points and their propagation to the interior through the inter-
polation at the grid points (Paper II). The other component,
denoted ɛ2, is the error in volume not yet considered and
that we aim to estimate now.

Fig. 1. Volume error arising from the uncertainty in the glacier
boundary, for zero ice-thickness segments of the boundary. (a) An
example of a boundary error produced by a debris cover at the
glacier contour; in yellow the section of this volume error; the
dashed orange line marks the location of the GPR ice-thickness
measurement (HGPR) closest to the glacier’s lateral margin. (b) The
volume error is conservatively modelled as a band with triangular
section, based on the error area, pA; its height is characterized as
Hm, the mean value, over the glacier surface, of the ice thickness
at the closest GPR measurement to each boundary point, which
we approximate by the mean ice thickness of the glacier.

Fig. 2. (a) Two components of the error in volume arising from the
uncertainty in boundary, for zero ice-thickness segments of the
boundary: ɛ1, already considered as part of the error in ice
thickness of the DEM; ɛ2, the part of the error in volume not
accounted for in the error in ice thickness of the DEM. (b) ɛ2 can
be idealized as a band with triangular section, based on the error
area, pA, with height assumed to be equal to εHb .
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From Figure 2 we can derive, for segments of the bound-
ary with zero ice thickness (fraction α of the boundary),

ε2 ≈
α

2
pAεHb ; ð9Þ

where εHb is the RMS value of the ice-thickness error along
the glacier boundary with zero ice thickness.

Note that, in this scenario, Eqn (7) is still applicable to the
segments with non-zero ice thickness (e.g. calving fronts or
ice divides), and ɛVBwill be obtained by adding ɛ2 and εVB1�α .

If there is not enough information to obtain εHb , it can be
conservatively approximated by the global error in ice thick-
ness of the DEM, ɛH DEM.

In neither Scenario, 1 nor 2, is ɛ1 calculated. However, the
implicit estimate of ɛ1 obtained via the triangular-section strip
of Scenario 1 is much more conservative (likely produces an
overestimate of the error) than its estimate via the propaga-
tion of the boundary uncertainty to the ice-thickness error
(Paper II) followed in Scenario 2. In the latter scenario,
there is a statistical propagation of the boundary uncertainty
to the ice-thickness error of the DEM. It will also be statistic-
ally combined within the error in volume through the
parameter NR in Eqn (2). On the other hand, the triangular-
section-strip approach of Scenario 1 linearly propagates the
ice-thickness error to the whole area of error, which gener-
ates an extremely conservative error estimate. Therefore,
we strongly recommend following, whenever possible, the
procedure described in Scenario 2.

The assumption of independence between ɛVH and ɛVB
underlying Eqn (8) is realistic in Scenario 1, but questionable
in Scenario 2, since in the latter ɛVH includes part of the error
in volume resulting from the error in area, but ɛVB also stems
from the error in area. Thus, we conservatively estimate the
total error in volume by simple addition of both ɛVB of
Scenario 2, and ɛVH,

εV ¼ εVH þ εVB: ð10Þ

3. CASE STUDY: WERENSKIOLDBREEN
We now apply the error-estimate techniques discussed
above to the volume calculated from a DEM of ice thickness
of Werenskioldbreen, a land-terminating polythermal glacier
in Svalbard (Fig. 3). This glacier was also used as case study
in Papers I and II. This case study aims to explore the similar-
ities and differences between the approaches to estimate ɛVB
used in Scenarios 1 and 2 discussed above.

Figures 3b, c show respectively, the ice-thickness DEM of
Werenksioldbreen and its corresponding uncertainty map,

obtained from Papers I and II. We assume Figure 3c as the
starting point of the error analysis performed under
Scenario 2. The area and volume of the glacier are, respect-
ively, A= 26.62 km2 and V= 2.86 km3, obtained as the
product of the number of grid cells within the glacier-bound-
ary times the cell area, and using Eqn (1). To estimate ɛVB we
need to know the complementary fractions of zero and
nonzero ice-thickness boundary, α and 1−α, respectively.
For Werenskioldbreen, we set the ice thickness at the bound-
ary as zero everywhere except at the ice divide with
Tuvbreen (a tributary of Hansbreen), to the southeast
(Fig. 3b), resulting α= 0.9914. As explained in Paper II, we
adopted an error in area of 8%, i.e. p= 0.08.

In Table 2 we show, for both Scenarios 1 and 2, the results
for the different errors and parameters involved in the final es-
timate of the error in volume. The range of the variogram, R,
is computed, in both scenarios, using Stable variograms of
the error at the grid cells, εHk (λ= 1.3 in Scenario 1 and
λ= 1.4 in Scenario 2) since we have found that these vario-
gram models optimally fit each case, compared with the
other models. The value of ɛH DEM is estimated from Eqn (4)
in Paper II. The estimate of εHb is only needed in Scenario
2 when applying Eqn (9). ɛVH is obtained from Table 1,
using the Stable variogram in both scenarios. The ɛVB value
to be used in Eqn (8) is calculated as the sum of the results
from Eqns (6) and (7) in Scenario 1 or from Eqns (9) and (7)
in Scenario 2. The final error in the volume estimate, ɛV, cal-
culated by means of Eqn (8) in Scenario 1 and of Eqn (10) in
Scenario 2, is shown both in km3 and in percentage of the
total volume of Werenskioldbreen.

The ranges obtained for Scenarios 1 and 2 are quite similar.
We find this reasonable, as their respective variograms are
based on two ice-thickness error DEMs, differing only in the
contribution of the boundary error (absent in Scenario 1).

3.1. Differences between Scenarios 1 and 2
Comparing theerrorestimates forScenarios1and2,weobserve
that ɛVH is smaller in Scenario 1 than in Scenario 2 despite the
smaller range obtained in Scenario 2. This is because
Scenario 1 includes neither the error in the boundary cells nor
its inwards propagation to the grid nodes. On the other hand,
ɛVB in Scenario 1 is much larger than in Scenario 2. This is
also expected, because the whole volume of the triangular-
section strip is considered in Scenario 1 (Fig. 1), while in
Scenario 2 only a small part of that volume is involved
(Fig. 2). As earlier noted (Section 2.2), we consider that the
results obtained in Scenario 2 are more realistic than those
from Scenario 1, which are extremely pessimistic.

Fig. 3. (a) Location of Werenskioldbreen in Southern Spitsbergen, Svalbard. (b) DEM of ice thickness of Werenskioldbreen. The arrows to the
southeast indicate the limits of the ice divide with Tuvbreen. (c) DEM of error in thickness, corresponding to the DEM of ice thickness in (b).
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3.2. Range of the DEM of ice-thickness versus range
of the DEM of errors
For comparison, we also calculate the range associated with
the variogram based on the ice-thickness DEM, Hk, using a
similar variogram function (Stable with power λ= 1.5,
which fits optimally). We find a value of 1529 m, which is
larger than those in Table 2 since the ice thicknesses are
more correlated than their corresponding errors.
Consequently, if this value is used as an estimate of R, it
will generate, using the expressions in Table 1, a more pes-
simistic estimate of ɛVH, 0.1026 km3 in Scenario 1 and
0.1078 km3 in Scenario 2, giving 0.1531 km3 (5.4%) and
0.1170 km3 (4.1%), respectively, as final estimates of ɛV.

3.3. Error of the DEM versus error in the boundary
In Scenario 2, ɛH DEM is ∼2 times larger than εHb . Therefore, if
we use ɛH DEM as a proxy for εHb , we will obtain a ɛVB∼ 2
times larger than the value given in Table 2 (following Eqn
(9)). Although this produces a more pessimistic error esti-
mate, both are of the same order of magnitude, hence this ap-
proximation would be acceptable if enough information to
obtain εHb were not available.

3.4. Separate contributions of the boundary
uncertainty and the error in ice thickness to the error
in volume
ɛVB in Scenario 2 represents only ɛ2, a small portion of the
total error in volume due to boundary uncertainty (Fig. 2).
The remaining part is embedded within ɛVH. To evaluate sep-
arately the total contributions to the error in volume of the
boundary uncertainty ɛVB and the error in ice thickness
ɛVH, we can take the value for ɛVH from Scenario 1 (εVH1 ,
which does not include error in boundary uncertainty at
all) and that for ɛV from Scenario 2 (εV2 , our best estimate
of the total error in volume). Splitting errors in this way
εVH1 and ɛVB are independent. Thus, solving for ɛVB in
ε2V2

¼ ε2VH1
þ ε2VB, we could obtain an estimate of the total

error in volume derived from the boundary uncertainty.
Applying this rationale to the values given in Table 2 (εVH1 =

0.0368 km3and εV2 = 0.0474 km3),we find ɛVB= 0.0299 km3.
Proceeding similarly, but recalculating εVH1 with the variogram
parameters fromScenario2 (εVH1 = 0.0364 km3),we find ɛVB=
0.0304 km3. Summarizing, assuming Scenario 2, the two
components of the total error in volume of Werenskioldbreen,
ɛVH and ɛVB, have the same order of magnitude.

3.5. Comparison with previous studies of the error in
volume
We conclude this case study by comparing the volume error
estimates obtained following our methodology with those

obtained following some simplifications often found in the
literature (e.g. Pettersson and others, 2011, in bullet 1;
Saintenoy and others, 2013 in bullet 2). These rarely take
into account the error in volume due to boundary uncer-
tainty, so they represent estimates of ɛVH rather than of ɛV:

(1) Assuming uncorrelated errors, forN= 10 648 grid values
of ice thickness of the DEM, we get εV ¼ AεHDEM=

ffiffiffiffi
N

p
=

0.0038 km3 (0.1% of the total volume, an overly optimis-
tic estimate).

(2) The error estimate that treats the error as a mean value,
rather than as a standard deviation, thus implicitly assum-
ing linear dependence of the gridded values, gives ɛV=
AɛH DEM= 0.3912 km3 (13.7% of the total volume, an
extremely pessimistic estimate).

The difference between the estimates above spans two
orders of magnitude (note that N∼ 10 000). Our estimate
from Scenario 2 is one order of magnitude larger than the
former, and one order of magnitude smaller than the latter,
although far from their mean value.

4. CONCLUSIONS
We have presented a methodology to estimate the error in
volume of a glacier DEM of ice thickness, accounting for
the two main error sources: the ice-thickness error at the
DEM grid cells and the uncertainty in the glacier-boundary
delineation. The method is robust and provides error esti-
mates more realistic than those often found in the literature.

To accurately capture the volume error stemming from the
ice-thickness DEM error, it is crucial to estimate the correl-
ation existing among the errors at the grid cells, as they are
far from being independent of each other. Estimates of the
error in volume are underestimated when the ice-thickness
errors computed at the grid points are assumed to be uncor-
related, and overestimated if they are considered to be linear-
ly dependent. These estimates differ in orders of magnitude,
both between themselves and when compared to our more
realistic estimate of the error in volume, revealing the import-
ance of providing the statistics used along with the individual
error sources to obtain uncertainty estimates. We have
shown that the integral range of the variogram function of
an ice-thickness error DEM is a good parameter to estimate
the number of independent values at the grid cells. It is
obtained via the range of the variogram, and is used to
obtain an estimate of the error in volume resulting from the
errors in ice thickness.

In the case study of Werenskioldbreen, adopting an error
in area of 8%, both components of the error in volume,
related to errors in thickness and to errors in area, have the
same order of magnitude, although the value of the latter is
strongly dependent on the accuracy of the glacier delinea-
tion. We expect that, in glaciers with larger errors in area,

Table 2. Results for the main parameters and error components involved in the computation of the error in volume for Werenskioldbreen,
together with the corresponding final error in volume, for Scenarios 1 and 2. In the last column Eqns (8) and (10) have been used for Scenarios
1 and 2, respectively

R ɛH DEM (Eqn (4) Paper II) εHb
ɛVH (Table 1) ɛVB ɛV (Eqns (8) and (10))

m m m km3 km3 km3

Scenario 1 574 13.99 – 0.0368 0.1136 0.1195 (4.2%)
Scenario 2 554 14.70 8.41 0.0382 0.0092 0.0474 (1.7%)
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the error in boundary delineation could become the largest
error component of the total error in volume.
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