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TM9 proteins constitute a well defined family, characterized

by the presence of a large variable extracellular domain andnine

putative transmembrane domains. This family is highly con-

served throughout evolution and comprises three members in

Dictyostelium discoideum and Saccharomyces cerevisiae and

four in humans and mice. In Dictyostelium, previous analysis

demonstrated that TM9 proteins are implicated in cellular

adhesion. In this study, we generated TM9mutants in S. cerevi-
siae and analyzed their phenotype with particular attention to

cellular adhesion. S. cerevisiae strains lacking any one of the

three TM9 proteins were severely suppressed for adhesive

growth and filamentous growth under conditions of nitrogen

starvation. In these mutants, expression of the FLO11-lacZ
reporter gene was strongly reduced, whereas expression of

FRE(Ty1)-lacZwas not, suggesting that TM9proteins are impli-

cated at a late stage of nutrient-controlled signaling pathways.

We also reexamined the phenotype of Dictyostelium TM9

mutant cells, focusing onnutrient-controlled cellular functions.

Although the initiation of multicellular development and auto-

phagy was unaltered in Dictyostelium TM9 mutants, nutrient-

controlled secretion of lysosomal enzymes was dysregulated in

these cells. These results suggest that inboth yeast andamoebae,

TM9 proteins participate in the control of specific cellular func-

tions in response to changing nutrient conditions.

TM9 proteins constitute a well defined family of proteins

characterized by the presence of nine transmembrane domains

and a high degree of similarity (1). There are three members of

this family in Saccharomyces cerevisiae, Dictyostelium amoe-

bae, and Drosophila flies and four in humans and mice (2).

Although their high degree of evolutionary conservation sug-

gests that they play an important role in cellular physiology,

little is known about the role of TM9 proteins. The most

detailed studies to date concerning the role of TM9 proteins

stem from the study of Dictyostelium amoebae.

The cellular slime mold Dictyostelium discoideum has been

used previously as a model organism to study phagocytosis and

the endocytic pathway. During the course of a systematic

search for mutants affected in phagocytosis, a mutant cell line

with a defective TM9 protein (named Phg1 or Phg1a) was iden-

tified (3). Loss of Phg1a function led to a defect in cellular adhe-

sion, resulting in inefficient phagocytosis. Although it was ini-

tially proposed that Phg1amight be an adhesionmolecule (3), a

more detailed analysis suggested that it might rather indirectly

affect cell adhesion by controlling the cell surface level of an as

yet unidentified cell surface adhesion molecule (2). There are

two other members in the TM9 family inDictyostelium (Phg1b

and Phg1c) and Phg1a and Phg1b appear to play synergistic

roles in the control of cell adhesion (2). In yeast or in human, the

function of TM9 proteins has essentially not been studied.

To understand better the function of TM9 proteins, we ana-

lyzed the phenotypes of TM9mutants in S. cerevisiae as well as

in D. discoideum. Our results suggest that TM9 proteins play a

role in late stages of a nutrient-controlled signaling cascade that

ultimately controls cellular adhesion and filamentous growth in

S. cerevisiae. Similarly,D. discoideumTM9proteins, in addition

to their role in cellular adhesion, appear to be involved in nutri-

ent-controlled steps of intracellular transport.

EXPERIMENTAL PROCEDURES

Cells and Reagents—All of the yeast strains used in this study

were obtained in the �1278b genetic background and are

described in Table 1. Yeast transformation was performed

using the lithium acetate method (4). Each TM9 gene was

deleted by PCR-mediated gene disruption, using the G418

resistance gene cassette derived from template plasmid pFA6-

kanMX2 (5, 6) or theHIS3 or TRP1 gene cassette derived from

template plasmids pRS303 and pRS304, respectively. Double

and triple TM9 knock-out mutants were obtained by crossing

the single knock-out strains. The yeast plasmids used in this

study are described in Table 2.

D. discoideum strains were grown in HL5 medium at 21 °C

and subcultured twice a week to maintain a maximal density of

106 cells/ml. All of the mutant strains used in this study were

derived from the subclone DH1–10 (3) of the axenicDictyoste-

lium strain DH1, previously derived from nonaxenic wild-type
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cells (7). For simplicity, DH1–10 cells are referred to as wild-

type cells. The phg1a (3), phg1b (2), phg1a overexpressing

Phg1b (2), the double phg1a/phg1b (2), phg2 (8), and apm1 (9)

mutant strains were described previously. Rabbit polyclonal

antibodies to Dictyostelium cathepsin D (10) was a kind gift

from Dr. J. Garin (CEA, Grenoble, France). The contact site A

protein was detected with monoclonal antibodies 33-294-17

(11).

Phylogenetic Tree—The phylogenetic tree of TM9proteins in

D. discoideum (Phg1a, b, c), human (TM9SF1, 2, 3, and 4), and

S. cerevisiae (Tmn1, Tmn2, and Tmn3) was obtained using

clustalW software from the European Bioinformatics Institute.

The corresponding accession numbers are: TM9SF1-O15321,

TM9SF2(p76)-Q99805, TM9SF3 (hSMBP)-Q9HD45, TM9SF4-

Q92544, Phg1a-Aj318760, Phg1b-Aj507828, Phg1c-Aj507829,

Tmn1-S000004073, Tmn2-S000002514, and Tmn3-S000000915.

Yeast Adhesive and Filamentous Growth—To observe adhe-

sive growth, haploid yeast strains were plated on YPD for 4 days

at 30 °C. The plates were photographed before and after wash-

ing with distilled water to visualize the remaining adherent

cells. To induce filamentous growth, diploid yeast cells were

grownon synthetic low ammonia dextrose agar plates for 3 days

at 30 °C (12). Pictures of the agar plates were taken with a Zeiss

Axiophot 1 equippedwith anAxiocam color camera (Carl Zeiss

MicroImaging Inc.). When indicated, the dominant active

RAS2Val19 allele was expressed using the YEp-Ras2val19 plasmid

(13).TOR1 (target of rapamycin 1) was overexpressed using the

pSEY18-TOR1 plasmid (14).

�-Galactosidase Assays—Expression of FLO11-lacZ and

FRE(Ty1)-lacZ reporter genes was determined as previously

described (15–17) by measuring �-galactosidase activity in

haploid or diploid yeast strains transformed with the corre-

sponding plasmids. FRE(Ty1)-lacZ plasmidwas a kind gift from

Dr. H. D. Madhani (UCSF, San Francisco, CA). The cells were

grown in liquid YNB medium to exponential growth phase (8

h), washed with breaking buffer (100 mM Tris-HCl, pH 8, 20%

glycerine), and pelleted. The cell pellets were resuspended with

250 �l of breaking buffer containing 1 mM dithiothreitol and 5

mM phenylmethylsulfonyl fluoride and lysed mechanically by

vortexing sampleswith glass beads at 4 °C. Cell extracts (10�l)
were added to 200 �l of Z buffer (60 mM Na2HPO4, 40 mM

NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM mercaptoetha-

nol, pH 7) and incubated for 5 min at 28 °C. Enzymatic activ-

ity was revealed with 5 mM 2-nitrophenyl �-D-galactopyran-
oside and was stopped with 220 mM Na2CO3. The activities

were normalized to the total protein in each extract using a

Bio-Rad protein assay kit. �-Galactosidase specific activity

equals (A420 � 0.304)/(0.0045 � protein � extract volume �
time) (15, 18).

Secretion of Lysosomal Enzymes by Dictyostelium Cells—Se-

cretion of lysosomal enzymes was assessed as described previ-

ously (19). Briefly, to measure secretion kinetics, the cells were

harvested, washed, and resuspended at 106 cells/ml in fresh

HL5 and then incubated at 21 °C with mild shaking. At each

indicated time, an aliquot of the cell suspension was recovered

and centrifuged. To assess enzymatic activity, 50 �l of sample

(supernatants or cell pellets resuspended in 0.1%Triton-X-100)

and 50 �l of substrate mix (10 mM substrate in 5 mM NaOAc,

pH 5.2) were mixed and incubated for �1 h at 37 °C. The reac-

tion was stopped with 500 mMNa2CO3, and the optical density

at 405 nm was determined in a microplate enzyme-linked

immunosorbent assay reader.

Enzyme substrates (Sigma) were dissolved in dimethylform-

amide at a concentration of 250mMand stored at�20 °C. p-Ni-

trophenyl phosphate, p-nitrophenylN-acetyl�-D-glucosamide,

and p-nitrophenyl-�-D-mannopyranoside were used as sub-

TABLE 1
Yeast strains used in this study

Strain Genotype Source

YHUM216 MATa ura3-52 leu2 his3 H. U. Mösch lab collection
YHUM217 MATa ura3-52 leu2 his3 H. U. Mösch lab collection
YHUM305 MATa ura3-52 leu2 trp1 H. U. Mösch lab collection
YHUM306 MATa ura3-52 leu2 trp1
YRF1 MATa ura3-52 leu2 his3 Tmn1�::kanMX This study
YRF10 MATa ura3-52 leu2 his3 Tmn1�::kanMX This study
YRF2 MATa ura3-52 leu2 trp1 tmn2�::TRP1 This study
YRF20 MATa ura3-52 leu2 trp1 tmn2�::TRP1 This study
YRF3 MATa ura3-52 leu2 his3 tmn3�::HIS3 This study
YRF30 MATa ura3-52 leu2 his3 tmn3�::HIS3 This study
YRF4 MATa ura3-52 leu2 trp1 Tmn1�::kanMX tmn2�::TRP1 This study
YRF5 MATa ura3-52 leu2 Tmn1�::kanMX tmn3�::HIS3 This study
YRF6 MATa ura3-52 leu2 trp1 tmn2�::TRP1 tmn3�::HIS3 This study
YRF7 MATa ura3-52 leu2 trp1 Tmn1�::kanMX tmn2�::TRP1 tmn3�::HIS3 This study
YRF100 MATa/MATa ura3-52/ura3-52 leu2/leu2 his3/HIS3 TRP1/trp1 This study
YRF11 MATa/MATa ura3-52/ura3-52 leu2/leu2 his3/HIS3 trp1/TRP1 Tmn1�::kanMX/Tmn1�::kanMX This study
YRF22 MATa/MATa ura3-52/ura3-52 leu2/leu2 trp1/trp1 tmn2�::TRP1/tmn2�::TRP1
YRF33 MATa/MATa ura3-52/ura3-52 leu2/leu2 his3/his3 tmn3�::HIS3/tmn3�::HIS3 This study
YRF44 MATa/MATa ura3-52/ura3-52 leu2/leu2 trp1/trp1 Tmn1�::kanMX/Tmn1�::kanMX tmn2�::TRP1/tmn2�::TRP1
YRF55 MATa/MATa ura3-52/ura3-52 leu2/leu2 Tmn1�::kanMX/Tmn1�::kanMX tmn3�::HIS3/tmn3�::HIS3 This study
YRF66 MATa/MATa ura3-52/ura3-52 leu2/leu2 trp1/trp1 tmn2�::TRP1/tmn2�::TRP1 tmn3�::HIS3/tmn3�::HIS3
YRF77 MATa/MATa ura3-52/ura3-52 leu2/leu2 trp1/trp1 Tmn1�::kanMX/Tmn1�::kanMX tmn2�::TRP1/tmn2�::TRP1

tmn3�::HIS3/tmn3�::HIS3
This study

TABLE 2
Plasmids used in this study

Plasmid Description Reference

pFA6-kanMX2 kanr fused to TEF promoter and
terminator in pFA6

Ref. 5

pRS303 pBluescript, HIS3 Ref. 41
pRS304 pBluescript, TRP1 Ref. 41
pYEp213-Ras2-Val19 pYEp213::RAS2Val19 (2�, LEU2, ampr) Ref. 13
pSEY18-TOR1 pSEY18::TOR1-1 (2�, URA3, ampr) Ref. 14
pFRE(Ty1)::LacZ pLG669-Z::FRE(Ty1) (2�, URA3, ampr) Ref. 17
B3782 3kb FLO11 promoter fragment in

YEp355
Ref. 16
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strates for acid phosphatase, N-acteyl �-glucosaminidase, and

�-mannosidase, respectively.

To examine the constitutive secretion of lysosomal enzymes

over longer periods of time, the cells were grown in HL5

medium for 3 days to a final density of 2 � 106 cells/ml, and

then enzymatic activities were determined in the cell pellets

and in the supernatants as described above.

Multicellular Development of Dictyostelium Amoebae—The

ability ofDictyostelium amoebae to initiate multicellular devel-

opment was assessed as previously described (20). Briefly, the

cells were harvested at a density of 106 cells/ml, washed in HL5,

and plated at 106 cells/ml in Petri dishes containingHL5diluted

with phosphate buffer (2 mM Na2HPO4, 14.7 KH2PO4, pH 6.5)

as indicated. The cells were incubated at 21 °C to allow devel-

opment. The presence of multicellular aggregates and the

expression of contact site A (csA)2 were assessed after 24 h.

Depending on the batch of tryptone used for the preparation of

the HL5 medium, the concentration of HL5 needed to inhibit

development of wild-type Dictyostelium varied significantly

(data not shown). This accounts for the fact that the results

presented in this study are quantitatively different from results

presented in a previous study (20).

Western Blot Analysis—To test whether secreted lysosomal

enzymes had undergone proteolytic maturation in endosomal

compartments, the cells were incubated in HL5 medium for 3

days. 106 cells were harvested and centrifuged. Proteins in

supernatants were precipitated with trichloroacetic acid. Cel-

lular pellets and precipitated supernatants were resuspended in

sample buffer (0.103 g/ml sucrose, 5� 10�2
M Tris, pH 6.8, 5�

10�3
M EDTA, 0.5 mg/ml bromphenol blue, 2% SDS), and pro-

teins were separated on a 10% polyacrylamide gel and trans-

ferred onto a nitrocellulose Protran BA 85 membrane

(Schleicher&Schuell). Themembraneswere incubatedwith an

anti-cathepsin D rabbit antiserum (1/1500) and then with a

horseradish peroxidase-coupled goat anti-rabbit IgG (Bio-

Rad), washed, and revealed by enhanced chemiluminescence

(Amersham Biosciences).

To assess csA expression, 1.5 � 106 cells were harvested and

lysed in 40 �l of sample buffer. Proteins (15 �l) were separated
on a 10% polyacrylamide gel in reducing conditions and trans-

ferred onto nitrocellulose. The membranes were incubated

with the anti-csA antibody and then with a horseradish perox-

idase-coupled donkey anti-mouse immunoglobulin (Amer-

sham Biosciences), washed, and revealed by enhanced

chemiluminescence.

Real Time PCR—The cells (wild-type cells, phg2 cells, and all

the phg1 mutants) were grown in HL5 medium for 3 days to a

final density of 106 cells/ml. As a positive control, 107 of each

mutant cells were incubated for 6 h in phosphate buffer to allow

induction of autophagy genes. The cells were harvested, and

RNAs were purified with a NucleoSpin RNA II kit (Macherey-

Nagel, Duren, Germany). The Agilent 2100 Bioanalyzer (Agi-

lent Technologies, Santa Clara, CA) was used to assess RNA

quality. cDNA was synthesized from 1 �g of total RNA using

random hexamers and Superscript II reverse transcriptase

(Invitrogen). Amplicons were designed over exon boundaries

using the program Primer Express v 2.0 (Applied Biosystems,

Foster City, CA) with default parameters. The sequences were

aligned against the Dictyostelium genome by BLAST to ensure

that they were specific for the gene being tested. Oligonucleo-

tides were obtained from Invitrogen, and the sequences are as

follows: ATG1, 5�-aaacaaatgaaccctttgccata-3� and 5�-ccgcta-
atctacaaacatcgacaac-3�; ATG8, 5�-aacgaccacccactcgacaa-3�
and 5�-tgatctaatacgttcagctacttctcttc-3�; andATG9, 5�-ttaaaact-
ggaagagtcgaccaaa-3� and 5�-ggagatcgttgacagcgtttaaa-3�. The

efficiency of each design was tested with serial dilutions of

cDNA. PCRs (10 �l volume) contained diluted cDNA (16 ng),

SYBR Green Master Mix (Applied Biosystems), and 300 nM of

forward and reverse primers. PCR was performed on a SDS

7900 HT instrument (Applied Biosystems) with the following

parameters: 50 °C for 2 min, 95 °C for 10 min, and 40 cycles of

95 °C 15 s to 60 °C 1 min. Each reaction was performed in trip-

licate on 384-well plates. RawCt values obtained with SDS 2.2.2

(Applied Biosystems) were imported in Excel (Microsoft Cor-

poration) and normalization factors, and fold changes were

calculated.

Fluid Phase Uptake and Recycling—To measure fluid

phase uptake, the cells were incubated for 1 h in HL5 con-

taining 10 �g/ml of Alexa 647-coupled dextran (Molecular

Probes, Oregon, WA) at 21 °C. The cells were then washed,

and internalized fluorescence was measured. To analyze

recycling, the cells were pulsed with HL5 containing 10

�g/ml of Alexa 647-coupled dextran for 2 h. The cells were

then chased for various times by incubation in HL5 medium

at 21 °C without dextran. The remaining internal fluores-

cence was measured by flow cytometry using a Becton Dick-

inson FACSCalibur (San Jose, CA).

RESULTS

TM9 Proteins in S. cerevisiae—Three genes encoding mem-

bers of the TM9 family can be identified in the budding yeast S.

cerevisiae genome: YLR083c (TMN1 (transmembranenine 1)),

YDR107c (TMN2), and YER113c (TMN3). Tmn1 (also called

Emp70) was previously described as an endosomal membrane

protein (21), and it is 86 and 41% similar to Tmn2 and Tmn3

proteins, respectively. As described earlier (2, 22), TM9 pro-

teins can be separated in two groups. Group I is characterized

by a conserved motif at position 50 (VGPYXNXQETY) and a

short N-terminal domain (220 amino acids), whereas group II

exhibits a characteristic sequence immediately after the signal

peptide (FY(V/L)PG(VL)AP), and a longer N-terminal domain

(280 amino acids). Tmn1 and Tmn2 exhibit the characteristic

group II motif (FYLPGVAP and FSLPGLSP, respectively) and a

long N-terminal domain (310 and 316 amino acids, respec-

tively). Tmn3, like Dictyostelium Phg1c, does not exhibit char-

acteristics of either group and cannot be classified unambigu-

ously based on these criteria only.

Reconstruction of phylogenetic trees based on sequence sim-

ilarities with human andDictyosteliumTM9 proteins led to the

same conclusions (Fig. 1A): Tmn1 andTmn2 are closely related

toDictyostelium Phg1a (group II); no S. cerevisiaeTM9 protein

could be unambiguously attributed to group I. In agreement

2 The abbreviations used are: csA, contact site A; MAPK, mitogen-activated
protein kinase.
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with this, Tmn1 and Tmn2 exhibited the highest degree of

identity with Dictyostelium Phg1a (Fig. 1B).

TM9 Proteins Are Essential for Yeast Cell Adhesion and Fila-

mentous Growth—TM9 proteins play an essential role in D.

discoideum cellular adhesion (2). Therefore, in budding yeast,

we decided to first examine their role in adhesion. For this, we

generated haploid and diploid yeast strains in the dimorphic

�1278b genetic background carrying deletions in the TMN1,

TMN2, and TMN3 genes in all possible combinations. The sin-

gle, double, or triple deletion strains exhibited no obvious

growth defect, suggesting that TM9 proteins are involved in a

nonessential cellular function (data not shown). We also failed

to detect differential growth in media containing various car-

bon sources including glucose, galactose, maltose, glycerol, and

sucrose (data not shown). Finally, no effect of TM9 mutations

on cell morphology or colony shape was apparent (data not

shown).

In contrast, haploid strains lacking at least one of the three

TM9 proteins were severely defective for adhesive growth (Fig.

2A). Single tmn2� and Tmn1� mutant strains retained a min-

imal capacity to adhere to the agar surface, whereas no adhe-

sion was observed in the single tmn3� mutant or in any of the

double and triple mutants. In diploid S. cerevisiae strains, cel-

lular adhesion is required for the development of pseudohyphal

filaments in response to nitrogen starvation (12, 23). Therefore,

the requirement of TM9 proteins for filament formation was

tested in homozygous diploid TM9 mutant strains grown on

solid nitrogen starvation medium. We found that homozygous

diploid single TM9 mutant strains had only a slightly reduced

capacity to develop pseudohyphal filaments, whereas the dou-

ble and triple mutants were completely unable to grow in the

filamentous form (Fig. 2B). Thus, although the mechanisms

governing cellular adhesion in S. cerevisiae and in D. discoi-

deum are very different, TM9proteins also play an essential role

in cellular adhesion and filamentous growth in the budding

yeast S. cerevisiae.

TM9 Proteins Are Required for Expression of FLO11 and Act

Downstream of Ras2 and TOR—The morphogenetic switch to

filamentous growth in S. cerevisiae involves the cooperation of

at least two different signaling pathways, a MAPK cascade and

a cAMP-dependent pathway (16, 24–27) (Fig. 3A). A central

FIGURE 1. The TM9 family in D. discoideum and S. cerevisiae. A, phyloge-
netic tree of TM9 proteins in D. discoideum (Dd; Phg1a, b, c), human (Hs;
TM9SF1, 2, 3, and 4), and S. cerevisiae (Sc; Tmn1, Tmn2, and Tmn3). The sub-
group (I, II, or undetermined (?)) of each TM9 protein is indicated. B, degrees of
identity and similarity (in parentheses) between TM9 proteins from S. cerevi-
siae and D. discoideum. Together these results suggest that yeast proteins
Tmn1 and Tmn2 belong to the same subgroup as D. discoideum Phg1a.

FIGURE 2. Role of TM9 proteins in cellular adhesion and filamentous
growth in S. cerevisiae. A, adhesive growth is defective in TM9 mutant yeast.
Haploid yeast strains of the indicated genotype were grown on solid YPD
medium for 5 days at 30 °C, and the plates were photographed before (total
growth) and after (adhesive growth) washing nonadhesive cells off the sur-
face. B, filamentous growth of TM9 mutant cells. Diploid yeast strains of the
indicated genotype were streaked on nitrogen starvation plates (synthetic
low ammonia dextrose) to induce filamentous growth. The pictures were
taken after 3 days of growth at 30 °C. Bar, 100 �m.
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element of these two pathways is the GTP-binding protein

Ras2, which is thought to stimulate the transcription factor

Ste12 via the MAPK pathway. In the cAMP-dependent path-

way, activated Ras2 can interact with adenylate cyclase, and this

results in an increase of cAMP, which in turn activates cAMP-

dependent protein kinases and leads to the activation of Flo8.

The TOR pathway also plays a role in sensing nitrogen sources

and regulating physiological responses independently of the

MAPK and cAMP pathways (28). These pathways converge to

regulate the expression of the FLO11 gene, which encodes a cell

surface flocculin (Fig. 3A), which mediates cell adhesion (29,

30). Numerous studies have shown specifically that in the

dimorphic �1278b genetic background, expression of the cell

surface flocculin Flo11 is essential for adhesive growth and fil-

ament formation (16, 31, 32). We therefore tested whether

expression of FLO11 might be affected by mutations in TM9

genes. We found that in all haploid TM9 mutant strains,

expression of a FLO11-lacZ reporter genewas strongly reduced

when comparedwith awild-type strain (Fig. 3B). Similar results

were obtained with diploid strains (data not shown). Thus,

TM9 proteins appear to be involved in the regulation of the

expression of adhesion molecules in yeast.

To further explore the role of TM9 proteins in regulation of

cellular adhesion, we performed a genetic epistasis analysis by

expressing the dominant active RAS2VAl19 allele. As expected,

this led to increased filament formation in the control strains,

but this effect was completely inhibited in all TM9 double and

the triple mutant strains (data not shown). Similarly, TOR1

overexpression did not restore filamentous growth in double or

triple TM9 mutants (data not shown). These results indicate

that TM9 proteins act downstream of the Ras/cAMP and TOR

pathways to control FLO11 expression.

The activity of the MAPK pathway can be monitored by the

FRE(Ty1)-lacZ reporter gene, the expression of which depends

on elements of the Kss1-MAPK cascade and the combined

action of the transcription factors Ste12 and Tec1 (15, 17).

Here, we found that expression of FRE(Ty1)-lacZ was not

reduced in TM9 mutant strains (Fig. 3C), indicating that TM9

proteins do not affect FLO11 gene expression and filamentous

growth by inhibiting the Kss1-MAPK pathway.

Taken together, these results suggest that in the budding

yeast, TM9 proteins play a critical role in the late stages of a

nutrient-controlled pathway notably regulating FLO11 gene

expression. These observations prompted us to investigate the

possibility of a link between TM9 proteins and nutrient-con-

trolled functions in Dictyostelium.

Dictyostelium Phg1 Proteins Are Not Implicated in Initiation

of Development or of Autophagy—InDictyostelium, multicellu-

lar development, autophagy, and secretion of lysosomal

enzymes are all critically controlled by nutrient availability. To

test the potential involvement of TM9 proteins in these func-

tions in D. discoideum, we made use of TM9 mutant cells

(named phg1 or phg1a and phg1b in D. discoideum) described

previously (3) and assessed nutrient-controlled functions in

wild-type and mutant cells. Specifically, we examined the phe-

notypes of phg1a, phg1b, and the double phg1a/bmutant cells.

In addition, we analyzed phg1a mutant cells overexpressing

Phg1b (phg1a�PHG1b). To monitor the initiation of develop-

FIGURE 3. Effect of TM9 mutations on gene expression. A, the morphogenetic
switch to filamentous growth in S. cerevisiae involves the cooperation of different
signaling pathways. A MAPK cascade and a cAMP-dependent pathway are con-
trolled by the GTP-binding protein Ras2. The TOR pathway also participates in the
physiological response to starvation independently of the MAPK or cAMP path-
ways. These pathways converge to regulate the expression of the FLO11 gene,
which encodes a cell surface flocculin. B, role of TM9 proteins in FLO11-lacZ
expression. Haploid yeast strains of the indicated genotype carrying plasmid
B3782 (FLO11-lacZ) were assessed for �-galactosidase activity during growth in
logarithmic phase in liquid YNB medium. The �-galactosidase activity is
expressed in nmol/min/mg of cellular proteins. The bars depict the mean val-
ues � standard deviations of three transformants, each determined in triplicate.
C, expression of FRE(Ty1)::LacZ reporter gene in TM9 mutant strains. �-Galacto-
sidase activity was measured in diploid strains carrying the plasmid
pFRE(Ty1)::LacZ during growth in logarithmic phase in liquid YNB medium.
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ment, we incubated wild-type or mutant cells in medium con-

taining a defined amount of nutrients and followed the forma-

tion of multicellular aggregates. This test has proven useful to

demonstrate abnormalities in the initiation of multicellular

development, as observed for example in cells defective in the

Phg2 kinase (20). In wild-type or in phg1 mutant cells, the

induction of multicellular aggregates was inhibited by a low

concentration of nutrients (4–6% HL5 medium) (Fig. 4A).

This was further confirmed by determining the expression of

csA, a well characterized marker of multicellular develop-

ment (Fig. 4B).

Nutrient starvation also induces the expression of a collec-

tion of genes involved in autophagy in Dictyostelium (33–36).

To detect an abnormal autophagy induction by nutrients, we

measured by real time PCR the expression of three autophagy

genes,ATG1,ATG8, andATG9, in wild-type, phg2, and various

phg1 mutant cells. The expression of these marker genes was

not induced in HL5medium in wild-type ormutant cells (Fig. 5

and supplemental Fig. S1). Thus, autophagy appears normally

inhibited by nutrients in all phg1mutant cells as well as in phg2

mutant cells. Starvation induced the expression of autophagy

genes in wild-type and in phg1mutant cells (Fig. 5 and supple-

mental Fig. S1), confirming that Phg1 proteins are not involved

in the induction of autophagy in Dictyostelium.

Secretion of Lysosomal Enzymes Is Dysregulated in Dictyoste-

liumTM9MutantCells—The third phenomenon controlled by

nutrients in Dictyostelium is the regulated secretion of lysoso-

mal enzymes. Lysosomal enzymes are normally synthesized in

the ER and transported to lysosomal compartments where they

are activated by limited proteolysis (37). Upon starvation, the

cells secrete defined amounts of each lysosomal enzyme, for

example a large percentage of N-acetyl �-glucosaminidase or

�-mannosidase, and amoremoderate fraction of the acid phos-

phatase pool (38). N-Acetyl �-glucosaminidase, �-mannosi-

dase, and acid phosphatase activitiesweremeasured in cells and

in the medium after 3 days of cellular growth in HL5 medium.

Interestingly, in yeast, synthetic lethality has been observed

between TM9 genes and YPT6 (39). Because YPT6 is involved

in the function of the endocytic pathway, this suggests a link

between TM9 proteins and the endocytic pathway. Wild-type

cells and phg2mutant cells secreted �10% of their total lysoso-

mal enzymes in HL5 medium. In contrast, phg1a mutant cells

secreted a huge amount of hydrolases: 85% of N-acetyl �-glu-
cosaminidase and�-mannosidase and 30%of the acid phospha-

tase pool were found in the extracellular medium (Fig. 6A and

supplemental Table S1). This secretion was continuous and

observed even immediately after cells were transferred to fresh

HL5 medium (Fig. 6B), demonstrating that secretion of lysoso-

mal enzymes in phg1amutant cells was not inhibited by nutri-

ents. A similar phenotype was also observed in phg1a/b double

knock-out cells (Fig. 6). Interestingly, phg1b mutant cells also

secreted abnormally lysosomal enzymes, albeit not as much as

phg1a (Fig. 6). Moreover, overexpression of Phg1b in phg1a

mutant cells caused a marked decrease of enzyme secretion

FIGURE 4. Initiation of multicellular development is normal in phg1a
mutant cells. A, wild-type and mutant cells were placed for 24 h in a medium
containing a defined amount of nutrients, obtained by diluting HL5 medium
with phosphate buffer. After 24 h, multicellular development was monitored
by assessing the presence (�) or absence (�) of tight cellular aggregates.
Unlike wild-type and phg1 cells, phg2 mutant cells initiated multicellular
development at high concentrations of nutrients. B, cells treated as in A were
harvested, and the expression of csA was determined by Western blot
analysis.

FIGURE 5. Phg1 mutant cells induce normal transcription of the ATG8
autophagy gene. Wild-type and mutant cells were grown in HL5 medium for
3 days to a final density of 106 cells/ml. The cells were then harvested, and
RNA samples were extracted. Expression of ATG8 was quantified by real time
PCR. Alternatively, the cells were starved in phosphate buffer (SB) for 6 h to
induce expression of ATG8. Similar results were obtained when the expres-
sion of ATG1 and ATG9 was assessed (supplemental Fig. S1).
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(Fig. 6). As expected, starved wild-type and mutant cells all

secreted efficiently lysosomal enzymes in the medium (supple-

mental Fig. S2).

Lysosomal enzymes could conceivably be secreted either

directly after their passage through the Golgi apparatus or after

their targeting to lysosomal compartments. To distinguish

between these two possibilities, procathepsin D and cathepsin

D were detected by Western blot in cell pellets and superna-

tants. Phg1a mutant cells secreted cathepsin D in its mature

form, whereas, as described previously (9), apm1 mutant cells

secreted the precursor form (Fig. 6C). This defectwas also com-

plemented by overexpression of Phg1b.As expected, the double

knock-out phg1a/phg1b cells secreted also a mature form of

cathepsin D (Fig. 6C). Together, these results demonstrate that

the dysregulated secretion of lysosomal enzymes by phg1a

mutant cells is not caused by a defect in targeting to the lyso-

somes but rather by a defect in the regulation of lysosomal

enzyme secretion. They also indicate a certain degree of redun-

dancy between Phg1a and Phg1b for the control of lysosomal

enzyme secretion in Dictyostelium, as evidenced by the partial

complementation of the phenotype of phg1a mutant cells by

the overexpression of Phg1b.

Besides defects in lysosome enzyme secretion, we detected

no general defect in the morphology of endocytic compart-

ments labeled with antibodies against the p80 endosomal

marker and the vacuolar H�-ATPase (40) (data not shown).

Endocytosis of a fluid phase marker, as well as its subsequent

recycling to the extracellular medium were also tested. Fluid

phase was endocytosed in wild-type and in mutant cells at the

same rate (Fig. 7A and supplemental Fig. S3). After loading cells

for 2 h in HL5 containing Alexa 647-coupled dextran, recycling

was measured. Internalized fluorescence was released in the

medium with similar kinetics in wild-type and phg1 mutant

cells (Fig. 7B and supplemental Fig. S3). These results indicate

that the overall organization and function of the endocytic

pathway are not grossly altered in phg1amutant cells.

DISCUSSION

The presence of nutrients is a major regulator of eucaryotic

cell physiology. Starvation induces autophagy inmany very dif-

ferent cellular systems ranging frommammalian cells to amoe-

bae or yeast. In addition, it can induce more specific responses

in different systems, for example invasive growth in yeast and in

Dictyostelium regulated secretion of lysosomal enzymes and

multicellular development. Our results indicate that in yeast

and inDictyostelium, a subset of these specific responses impli-

cates TM9 proteins. Indeed, in both organisms, some nutrient-

controlled responses are still normal in TM9 mutant cells (e.g.

induction of theMAPKpathway by starvation in yeast or induc-

tion of autophagy and multicellular development in starved

Dictyostelium). This indicates that these cells are still able to

sense the presence or absence of nutrients. However some spe-

cific responses to nutrients are affected in TM9 mutant cells,

notably filamentous growth in yeast and lysosomal enzyme

secretion in Dictyostelium. Our results in yeast further suggest

that TM9 proteins are critical at a late stage of signal transduc-

tion, because upstream elements of the nutrient-sensing path-

ways (MAPK pathway) are still functional in TM9 mutants,

FIGURE 6. Phg1 mutant cells secrete mature lysosomal enzymes in rich
medium. A, wild-type or mutant cells were grown in HL5 medium for 3 days to a
final density of 2 � 106 cells/ml. The cells were harvested and centrifuged, and
the activity of lysosomal enzymes was determined in cell pellets and in superna-
tants. The fraction of enzymatic activity found in the supernatant is indicated. The
total amount of enzymatic activity (secreted � intracellular) was similar in all
strains analyzed (supplemental Table S1). NAG, N-acetyl �-glucosaminidase;
MAN, �-mannosidase; AP, acid phosphatase. The results presented are the aver-
ages and S.E. of three independent experiments. *, p 	 0.01 (Student’s t test).
B, wild-type or mutant cells were collected and incubated in fresh HL5 medium.
After 0, 1, 2, and 3 h, the NAG activity was determined and expressed as described
above. C, cells were grown and processed as described in A. Procathepsin D (im.,
53 kDa) and cathepsin D (mat., 44 kDa) were detected by Western blot in the cell
pellet (P) and in the medium (SN). In wild-type and phg2 cells, mature cathepsin
was retained in the cells. In phg1a and in phg1a/phg1b mutant cells, mature
cathepsin D was secreted in the extracellular medium. For comparison, apm1
mutant cells in which targeting to the lysosomes is defective secreted immature
procathepsin D.
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whereas late stages (induction of FLO11) are defective. The

most simple interpretation of these observations is that a TM9-

controlled signaling pathway converges with nutrient-sensing

pathways at a late stage and controls specifically a few elements

of cellular physiology. According to this model, the detailed

organization of the nutrient-sensing and TM9 signaling path-

ways in various organisms would account for the fact that syn-

ergistic or antagonistic relationships can be observed in differ-

ent situations. Interestingly, in this study, we observed clear

functional redundancy between TM9 proteins in yeast, as well

as in Dictyostelium. This is compatible with the notion that all

TM9 proteins act in at least partially overlapping signaling

pathways. However, although functional redundancy can often

account for wild-type phenotypes in single knock-out mutants,

this was not the case for single TM9 mutants, which exhibited

clear phenotypes in yeast as well as in Dictyostelium. This sug-

gests that TM9 proteins participate in a very finely tuned sig-

naling network controlling a few critical elements of cellular

physiology. More detailed studies will be necessary to deter-

mine the exact role played by TM9 proteins in cellular signal

transduction pathways.

Because this study was performed in parallel in two very dif-

ferent organisms, it is interesting to compare the elements of

the cellular physiology that are placed specifically under the

control of TM9 proteins in these two situations. In yeast, fila-

mentous growth requires the expression of specific adhesion

molecules and polarized budding. It is believed to represent a

coordinated program allowing invasive growth. In conditions

of nutrient depletion, yeast cells can thus invade their substrate,

and this can allow them to uncover new sources of nutrients.

When switched to a medium containing no nutrients, Dictyos-

telium amoebae also undergo a series of successive changes.

Within minutes, they start secreting lysosomal enzymes (38).

Over a longer period of time (a fewhours), they express proteins

necessary for autophagy, probably to obtain amino acids by

digesting cytosolic proteins. Finally, upon prolonged starvation

(
6 h), expression of appropriate genes allows the initiation of

multicellular development. Remarkably, only the first part of

this response (secretion of lysosomal enzymes) is affected in

TM9 mutant cells; unlike wild-type cells, these mutant cells

secrete mature lysosomal enzymes even in the presence of

nutrients, suggesting that the dysregulated secretion of lysoso-

mal enzymes is not caused by a defect in targeting to lysosomes

but rather by an abnormal regulation of lysosome secretion. In

addition to this phenotype, previous studies have shown that

adhesion of TM9 mutant cells to their substrates is modified;

cells retain only the ability to adhere to certain substrates, pos-

sibly reflecting a change in their surface adhesion molecules (2,

3).We speculate here that the TM9-controlled response inDic-

tyostelium represents an invasive growth program similar to

that described in yeast. Indeed, changes in cell adhesion and

secretion of lysosomal enzymes should allow starvedDictyoste-

lium cells to digest and invade their substrate and possibly to

uncover new sources of nutrients. If this hypothesis is true, we

should expect future studies to reveal more common elements

between the control of invasive growth in budding yeast and in

Dictyostelium amoebae.
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Supplemental fig. S1. Transcription of ATG1 and ATG9 is unaffected in phg1 mutant cells. 
Wild-type and mutant cells were incubated in HL5 or SB, and the expression of ATG1 (A) and 
ATG9 (B) assessed as described in the Legend to Fig. 5. Phg1 mutant cells did not exhibit 
anomalies in the induction of autophagy genes.  
 
 



 
 
 
 

 
 
Supplemental fig S2. Starved phg1 mutant cells secrete lysosomal enzymes. 
Wild-type or mutant cells were incubated for 6 hours in phosphate buffer to induce lysosomal 
enzyme secretion. Results are expressed as the percentage of total enzymatic activity detected in 
the extracellular medium. 

 



 
 

 
 
 
Supplemental fig. S3. Fluid phase uptake and recycling are not altered in phg1 mutant cells. 
Fluid phase uptake (A) and recycling (B) were measured as described in the Legend to figure 7.  
 
 
 



 
 
 
 

 

 WT phg1a phg1b phg1a+B phg1a/b phg2 

NAG 845+/-129 601+/-173 848+/-198 941+/-313 432+/-54  1132+/-24 

MAN 173+/-22 198+/-28 175+/-25 230+/-58 147+/-31 271+/-41 

AP 54+/-7 79+/-16 58+/-14 88+/-24 76+/-3  56+/-6 

 
Table S1. Total lysosomal enzymatic activity in wild-type and mutant cells (cell-
associated+secreted). The mean and SEM of three independent experiments are indicated. In 
these three experiments, analyzed further in Fig. 6A, the total amount of lysosomal enzymes did 
not vary significantly.  
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