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Abstract

Credal networks are probabilistic graphical models that extend Bayesian nets

to deal with imprecision in probability, and can actually be regarded as sets

of Bayesian nets. Credal nets appear to be powerful means to represent and

deal with many important and challenging problems in uncertain reasoning.

The counterpart of having more freedom in the modeling phase is an increased

inferential complexity of inferences, e.g., the so-called belief updating becomes a

hard task even on relatively simple topologies.

In this thesis, I start my investigation on credal networks by considering equi-

valent representations of those models. More specifically, I first deliver a new

graphical language, which is called decision-theoretic being inspired by the for-

malism of decision graphs, for a unified representation of credal networks of any

kind. I also present another representation, which is called binarization, being

in fact a reformulation of a credal network solely based on binary variables. Re-

markably, I prove that if a credal net is first reformulated by its decision-theoretic

representation and then by the corresponding binarization, the resulting repre-

sentation is completely equivalent. An equivalence relation between Bayesian

and credal nets, when the reason for the missingness of some of the variables in

the Bayesian nets is unknown, is also provided.

The developed equivalent representations are applied to inference problems.

First, I show that, by a decision-theoretic formulation, the algorithms that have

been already designed for credal networks, which are mostly referred to a spe-

cific class of models, called separately specified nets, can be generalized to credal

networks of any kind. Similar formalisms are also employed to solve inference

and classification problems with missing observations. I also present a state-of-

the-art updating algorithm which is based on the equivalent binary representa-

tion. This algorithm, called GL2U, offers an efficient procedure for approximate

updating of general credal nets. The quality of the overall approximation is

investigated by promising numerical experiments. As a further theoretical in-

vestigation, I consider a classification problem for Bayesian networks for which

a hardness proof together with a fast algorithm for a subclass of models is pro-

vided.
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Finally, two real-world applications of credal networks are presented. First, I

consider a military identification problem, consisting in the detection of the goal

of an intruder entering a no-fly area. The problem, together with the necessary

fusion of the information gathered by the sensors is mapped by our techniques

into a credal network updating task. The solution is then obtained by the GL2U

algorithm. The second application is an environmental model for hazard assess-

ment of debris flows by credal networks. A credal network evaluates the level

of risk, corresponding to the observed values of the triggering factors, for this

specific natural hazard. For some factors, whose observations are more difficult,

the corresponding soft evidential information is embedded by our formalism into

the structure of the network. This model is employed for extensive numerical

analysis on the Swiss territory.
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Chapter 1

Introduction

This thesis represents a general investigation into the field of credal networks,

that ranges from purely theoretical analysis, towards applications to inference

and classification problems, and hence to real-world applications. Credal net-

works are probabilistic graphical models that extend Bayesian nets to deal with

imprecision, and can actually be regarded as sets of Bayesian nets. Credal nets

appear to be powerful means to represent and deal with many important and

challenging problems in uncertain reasoning. The counterpart of having more

freedom in the modeling phase is an increased complexity of inferences.

1.1 Main Scientific Contributions

The main results presented in this thesis can be summarized as follows:

• A new graphical language, which is called decision-theoretic being in-

spired by the formalism of decision graphs, for a unified representation

of credal networks of any kind.

• Another representation, called binarization, which is in fact an equivalent

reformulation of general credal networks solely based on binary variables.

• A state-of-the-art updating algorithm which is based on our equivalent

binary representation. This algorithm, called GL2U, offers an efficient pro-

cedure for approximate updating of general credal nets.

• A fast algorithm for classification on both Bayesian and credal networks

when some of the observed variables are missing according to a mecha-

nism that is ignored.

1



2 1.2 Organization of the Thesis

• Two real-world applications of our formalisms and algorithms for credal

networks, that allow for addressing a military identification problem and

an environmental risk analysis task.

1.2 Organization of the Thesis

Let us quickly outline the structure of the thesis. After this first introductory

chapter, we have a background chapter where general definitions and standard

results about Bayesian and credal networks are reported. In Chapter 3 we ob-

tain an equivalence relation between Bayesian and credal networks with respect

to two different updating problems. This result together with other important

problems in uncertain reasoning, which are reported in the same chapter, sug-

gests the need for a unified formalism for general credal networks, which is

provided by the graphical language defined in Chapter 4. Chapter 5 describes a

new updating algorithm based on this language and the related numerical tests.

Chapter 6 moves from updating to classification problems and provides some

complexity results and fast algorithms for Bayesian and credal networks with

incomplete observation of the variables. Finally, Chapters 7 and 8 describe two

real-world applications of credal networks, referred respectively to a military

identification problem and to an environmental hazard assessment problem.

1.3 List of Papers

This thesis is based on theoretical, numerical and applied research which has

been written up in thirteen scientific papers, which have passed the peer-review

process and been accepted for publication in international journals, books chap-

ters, and proceedings of various international conferences, symposia, and work-

shops with high academic standards. This section lists the papers on which the

thesis is based, along with in what section or chapter the results in each paper is

discussed. Note that most of the papers share at least some theory, related work,

and methods, and these are discussed in Chapter 2. The papers are:

• International Journals

– Antonucci, A., Brühlmann, R., Piatti, A., Zaffalon., M. (submitted).

Credal networks for military identification problems. International

Journal of Approximate Reasoning. Briefly discussed in Chapter 7.

– Antonucci, A., Zaffalon., M. (accepted for publication). Decision-

theoretic specification of credal networks: a unified language for un-

certain modeling with sets of Bayesian networks. International Jour-
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nal of Approximate Reasoning. Briefly discussed in Chapters 3 and

4.

– Antonucci, A., Zaffalon., M. (2007). Fast algorithms for robust clas-

sification with Bayesian nets. International Journal of Approximate

Reasoning. 44(3), 200–223. Briefly discussed in Chapter 6.

• International Conferences and Workshops

– Antonucci, A., Zaffalon, M., Sun, Y., de Campos, C. P. (2008). Gener-

alized loopy 2U: a new algorithm for approximate inference in credal

networks. In Jaeger, M., Nielsen, T. D. (Eds), PGM’08: Proceedings

of the Fourth European Workshop on Probabilistic Graphical Models.

Hirtshals (Denmark), pp. 17–24. Briefly discussed in Chapter 5.

– Salvetti, A., Antonucci, A., Zaffalon., M. (2008). Spatially distributed

identification of debris flow source areas by credal networks. In

Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A. E., Guariso, G.

(Eds), iEMSs 2008: International Congress on Environmental Mod-

elling and Software Integrating Sciences and Information Technology

for Environmental Assessment and Decision Making (Transactions of the

Fourth Biennial Meeting of the International Environmental Modelling

and Software Society), iEMSs (Manno, Switzerland). Briefly discussed

in Section 8.2.4.

– Antonucci, A., Brühlmann, R., Piatti, A., Zaffalon, M. (2007). Cre-

dal networks for military identification problems. In de Cooman,

G., Vejnarová, J., Zaffalon, M. (Eds), Proceedings of the Fifth Interna-

tional Symposium on Imprecise Probability: Theories and Applications

(ISIPTA ’07), pp. 1–10. Prague (Czech Republic). Action M Agency.

Briefly discussed in Chapter 7.

– Antonucci, A., Zaffalon., M. (2006). Locally specified credal net-

works. In Studený, M., Vomlel, J. (Eds), Proceedings of the third Eu-

ropean Workshop on Probabilistic Graphical Models (PGM-2006), pp.

25–34. Prague, (Czech Republic). Action M Agency. Briefly discussed

in Chapters 3 and 4.

– Antonucci, A., Zaffalon, M. (2006). Equivalence between Bayesian

and credal nets on an updating problem. In Lawry, J., Miranda,

E., Bugarin, A., Li, S., Gil, M.A., Grzegorzewski, P., Hryniewicz, O.

(Eds), Soft Methods for Integrated Uncertainty Modeling (Proceedings

of the third international conference on Soft Methods in Probability

and Statistics: SMPS 2006), pp. 223–230. Springer. Briefly discussed

in Section 3.1.



4 1.3 List of Papers

– Antonucci, A., Zaffalon, M., Ide, J. S., Cozman, F. G. (2006). Bi-

narization algorithms for approximate updating in credal nets. In

Penserini, L., Peppas, P., Perini, A. (Eds), Proceedings of the third Euro-

pean Starting AI Researcher Symposium (STAIRS-2006), pp. 120–131.

Amsterdam, Netherlands. IOS Press. Briefly discussed in Section 5.1.

– Antonucci, A., Zaffalon, M. (2005). Fast algorithms for robust classi-

fication with Bayesian nets. In Cozman, F. G., Nau, R., Seidenfeld, T.

(Eds), Proceedings of the fourth International Symposium on Imprecise

Probabilities and Their Applications (ISIPTA ’05), pp. 11–20. SIPTA.

Briefly discussed in Chapter 6.

– Antonucci, A., Salvetti, A., Zaffalon, M. (2004). Assessing debris flow

hazard by credal nets. In Lopez-Diaz, M., Gil, M. A., Grzegorzewski,

P., Hryniewicz, O., Lawry, J. (Eds), Proceedings of the Second Interna-

tional Conference on Soft Methods in Probability and Statistics (SMPS-

2004) - Soft Methodology and Random Information Systems, pp. 125–

132. Springer. Briefly discussed in Chapter 8.

– Antonucci, A., Salvetti, A., Zaffalon., M. (2004). Hazard assessment

of debris flows by credal networks. In Pahl-Wostl, C., Schmidt, S.,

Rizzoli, A. E., Jakeman, A. J. (Eds), iEMSs 2004: Complexity and Inte-

grated Resources Management, Transactions of the 2nd Biennial Meet-

ing of the International Environmental Modeling and Software Society,

pp. 98–103. iEMSs. Briefly discussed in Chapter 8.

• Book Chapters

– Antonucci, A., Piatti, A., Zaffalon., M. (2007). Credal networks for

hazard assessment of debris flows. In Kropp, J., Scheffran, J. (Eds),

Advanced Methods for Decision Making and Risk Management in

Sustainability Science. Nova Science Publishers, New York. Briefly

discussed in Chapter 8.

In addition, the following paper has been published during my Ph.D. studies,

but is not included in this thesis in order to keep its length manageable:

• Antonucci, A., Piatti, A., Zaffalon., M. (2007). Credal networks for op-

erational risk measurement and management. In Proceedings of the 11th

International Conference on Knowledge-Based and Intelligent Information &

Engineering Systems: KES2007, pp. 604–611. Lectures Notes in Computer

Science, Springer.
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1.4 Software Issues

A number of public software tools has been employed for the numerical tests

and simulations presented in this thesis. These are:

• The C++ library SMILE (genie.sis.pitt.edu), developed at the Deci-

sion Systems Laboratory of the University of Pittsburgh, has been used for

Bayesian networks updating.

• The ANSI C implementation of the reverse search algorithm for vertex

enumeration LRS (cgm.cs.mcgill.ca/∼avis/C/lrs.htm), developed by

David Avis, has been used to compute the extreme mass functions of the

conditional credal sets from the probability intervals.

• A Java implementation of the L2U algorithm included in the tool 2UBayes

(www.pmr.poli.usp.br/ltd/Software/2UBayes/2UBayes.html), devel-

oped by Jaime Shinsuke Ide, has been used for binary credal networks

updating.

• Some credal networks considered in our experiments has been generated

by the generator for random Bayesian and credal networks BNGenerator

(www.pmr.poli.usp.br/ltd/Software/BNGenerator/index.html), de-

veloped by Jaime Shinsuke Ide.

• GL2U-based updating has been computed by the Python/Java implemen-

tation of this algorithm (www.idsia.ch/∼sun/gl2u.html) developed by

Sun Yi.

The authors of these free software packages are gratefully acknowledged.

1.5 Notes on Style

At the very least, all of the research presented in this thesis has been done under

the constant supervision of Marco Zaffalon. So I think it is justified to use the

first person plural throughout the thesis. Furthermore, in the cases where the

results has been done together with other persons, namely the other co-authors

of the papers published during my Ph.D. studies, an explicit mention of their

names is provided.
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1.6 Approaching Probabilistic Graphical Models

In the next chapter, which includes essentially background material, we review

the basics of two important classes of probabilistic graphical models, namely

Bayesian and credal networks. In this section we want to smooth the path of

the reader in approaching the field of probabilistic graphical models and their

formalism. To this end, we introduce here in a purely qualitative fashion the

“philosophy” characterizing approaches based on these models.

By definition, a probabilistic graphical model defines a probability mass func-

tion over a set of variables, which are in one-to-one correspondence with the

nodes of a graph. The role of the graph is to outline the conditional indepen-

dencies among the variables according to specific graphical criteria. The insight

there is that if two nodes are somehow separated by some other nodes according

to the topology of the graph, then the conditional independence of the corres-

ponding variables holds. This fundamental concept, which will be formalized in

the next chapter by the so-called Markov condition, is the key feature that allows

for defining a global model, i.e., a model over all the variables associated to the

nodes of the graph, by means of local probabilistic assessments, concerning only

the single variables and their neighbors according to the structure of the graph.

This makes the modeling phase particularly easy: the assessment of a probability

mass function over many variables, whose number of joint states might be huge,

does not require the modeler to explicitly assess the probabilities for these joint

states. These probabilities are obtained instead as a product of the probabilities

assessed for the local sets of variables, according to the independence relations

outlined by the graph.

The advantages of this approach are considerable also for the inference, i.e.,

when the probabilistic model is queried in order to obtain new probabilistic in-

formation about its variables. It is in fact possible to design inference algorithms

that exploits the graphical structure for a more efficient computation of the infer-

ences. The key idea there is to implement a message propagation scheme through

the structure of the graph, and perform the computation in a distributed manner.

The findings presented in this thesis refer both to modeling issues and to

inference algorithms. In fact, the new language and the corresponding equiva-

lent representations we present in this work are based on this kind of graphical

concepts, and provide a basis for the development of a new inference algorithm

based on message propagation.



Chapter 2

Probabilistic Graphical Models

This is mostly a background chapter, in which the fundamentals of Bayesian

networks (Section 2.2) and their generalization to imprecise probabilities, i.e.,

credal networks (Section 2.4) are reviewed. The generalization is obtained by

means of closed convex sets of probabilities, i.e., credal sets (Section 2.3). We

also do a short overview of the state of the art of updating algorithms for credal

networks (Section 2.6). First of all, let us set up the necessary formalism.

2.1 Basic Notation

All the models we review in this chapter are based on a collection of random

variables, structured as a set1 X := {X1, . . . , Xn}, and a directed acyclic graph

(DAG) G . Assume a one-to-one correspondence between the elements of X and

the nodes of G . Accordingly, in the following we use node and variable inter-

changeably. For each X i ∈ X, Πi denotes the set of the parents of X i, i.e., the

random variables corresponding to the immediate predecessors of X i according

to G . A notation with uppercase subscripts (e.g., XE) is similarly employed to

denote vectors (and sets) of variables in X.

In our assumptions the variables in X take values in finite sets. For each

X i∈X, the possibility space of X i can be denoted as ΩX i
:= {x i0, x i1, . . . , x i(di−1)},

with di := |ΩX i
|.2 If X i is a binary variable, the elements of Ωi are also denoted

as {x i,¬x i} in some cases and occasionally by {0, 1}. We denote by P(X i) a

mass function for X i and P(x i) the probability that X i= x i, where x i is a generic

element of ΩX i
.

For both Bayesian and credal networks, we assume the Markov condition to

make G represent probabilistic independence relations between the variables in

1The symbol := is used to denote definitions.
2The notation |Ω| denotes the cardinality of a set Ω.

7



8 2.2 Bayesian Networks

X: every variable is independent of its non-descendant non-parents conditional

on its parents. As an example, consider the directed acyclic graph in Figure 2.1.

In this particular case, Markov condition states that X2 is independent of its non-

descendant X3 given its parent X1. What makes Bayesian and credal networks

different is a different notion of independence and a different characterization of

the conditional mass functions for each variable given the values of the parents,

which are detailed respectively in Section 2.2 and Section 2.4.

X2

X1

X3

Figure 2.1: A directed acyclic graph with three nodes.

All this formalism is sufficient to introduce the definition of Bayesian net-

work, which is reviewed in the following section.

2.2 Bayesian Networks

Here we quickly review some fundamentals about Bayesian networks. For a com-

prehensive analysis of this topic, we point the reader to Pearl’s classical textbook

[Pea88].

2.2.1 Definition

Definition 1. A Bayesian network over X is a pair 〈G ,P〉 such that P is a set of

conditional mass functions P(X i |πi), one for each X i∈X and πi∈ΩΠi
.

As noted in the previous section, we assume the Markov condition to make

G represent probabilistic independence relations between the variables in X.

Thus, a Bayesian network determines a joint mass function P(X) according to

the following factorization formula:

P(x) =

n
∏

i=1

P(x i|πi), (2.1)
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for each x ∈ ΩX, where for each i = 1, . . . , n the values (x i,πi) are those con-

sistent with x. As an example, we can define a Bayesian network over the

three binary variables (X1, X2, X3) associated to the directed acyclic graph in Fi-

gure 2.1. In order to do that, we assign P(x1) = .2, P(x2|x1) = .3, P(x2|¬x1) =

.4, P(x3|x1) = .5 and P(x3|¬x1) = .6. Accordingly, Equation (2.1) says that

P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1) = .03, and we can similarly compute the

probabilities of the other seven joint states.

2.2.2 Updating

Bayesian networks can be naturally regarded as expert systems. We can query

a Bayesian network to gather probabilistic information about a variable given

evidence about some other variables. This task is called updating and consists

in the computation of posterior beliefs about a queried variable Xq, given the

available evidence XE= xE .

P(xq|xE) =

∑

xM

∏n

i=1
P(x i|πi)

∑

xM ,xq

∏n

i=1
P(x i|πi)

, (2.2)

where XM := X \ ({Xq} ∪ XE), the domains of the arguments of the sums are left

implicit and the values of x i and πi are consistent with x= (xq, xM , xE).

As an example, let us consider the updating problem consisting in the com-
putation of P(x2|x3) according to the Bayesian network defined in the previous
section. According to Equation (2.2), P(x2|x3) can be rewritten and computed
as follows:

P(x1)P(x2|x1)P(x3|x1) + P(¬x1)P(x2|¬x1)P(x3|¬x1)

P(x1)P(x2|x1)P(x3|x1)+ P(¬x1)P(x2|¬x1)P(x3|¬x1) + P(x1)P(¬x2|x1)P(x3|x1) + P(¬x1)P(¬x2|¬x1)P(x3|¬x1)
=

11

29
. (2.3)

The evaluation of Equation (2.2) is an NP-hard task [Coo90], but in the special

case of polytrees, Pearl’s local propagation scheme allows for efficient updating

[Pea88]. A polytree is a Bayesian network based on a singly connected directed

acyclic graph, which means a graph that does not contain any undirected cycle.

Bayesian networks are powerful means to model uncertain knowledge in

many situations. Nevertheless, they require precise probabilistic assessment, i.e.,

single numerical values should be provided for each conditional probability, for

each node and each possible value of the parents. Some authors consider this

requirement too strong, at least in some situations. Thus, we consider a possible

generalization of Bayesian networks, in which closed convex sets of probability

mass functions instead of single mass functions are provided. A formal descrip-

tion of these sets is reported in the following section.
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2.3 Credal Sets

The requirement of providing precise probabilistic values, which is implicitly

assumed for Bayesian networks, has been criticized in a number of theories.

Among them, Walley’s behavioral theory of imprecise probabilities [Wal91] pro-

vides a complete probabilistic theory based on coherent lower previsions, that

generalizes de Finetti’s classical theory based on linear previsions [dF74]. Re-

markably, a coherent lower prevision can be equivalently expressed by (the

lower envelope of) a closed convex set of linear previsions, which are in fact

equivalent to (precise) probability mass functions in the case of finite supports.

Accordingly, we formalize our imprecise probabilistic approaches in terms of

closed convex sets of probability mass functions as stated in the following sec-

tion.

2.3.1 Definition

Following Levi [Lev80], we call credal set a closed convex set of probability mass

functions. A credal set for a random variable X is denoted by K(X ). We follow

Cozman [Coz00] in considering only finitely generated credal sets, i.e., obtained

as the convex hull of a finite number of mass functions for a certain variable.

Geometrically, a credal set of this kind is a polytope. Such credal set contains an

infinite number of mass functions, but only a finite number of extreme mass func-

tions: those corresponding to the vertices of the polytope, which are in general a

subset of the generating mass functions. In the following, the set of the vertices

of K(X ) is denoted as ext[K(X )]. Note that there are no bounds to the possible

number of vertices of a credal set, with the only exception of those over binary

variables that clearly cannot have more than two extreme mass functions.

Given a non-empty subset Ω∗
X
⊆ ΩX , an important credal set for our purposes

is the vacuous credal set relative to Ω∗
X
, i.e., the set of all the mass functions for X

assigning probability one to Ω∗
X
. We denote this set by KΩ∗X (X ). In the following

we use the well-known fact that the vertices of KΩ∗
X
(X ) are the |Ω∗

X
| degenerate

mass functions assigning probability one to the single elements of Ω∗
X
.

2.3.2 Inference Based on Credal Sets

For any x ∈ ΩX , the lower probability for x according to the credal set K(X ) is

PK(x) := min
P(X )∈K(X )

P(x). (2.4)

If there are no ambiguities about the credal set considered in Equation (2.4),

the superscript K is removed and the corresponding lower probability is simply
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denoted as P(X ). Similar definitions can be provided for upper probabilities, and

lower and upper expectations. Walley shows that inferences based on a credal

set are equivalent to those based only on its vertices [Wal91].

Given a joint credal set K(X , Y ), we say that X and Y are strongly indepen-

dent, when every vertex in K(X , Y ) satisfies stochastic independence of X and

Y . We generalize the notion of marginalization for probability mass functions

to credal sets as follows: given a joint credal set K∗(X , Y ), its marginal over

X is denoted by K∗(X ) and is obtained by the convex hull of the collection of

mass functions P∗(X ), where, for each P∗(X , Y ) ∈ K∗(X , Y ), P∗(X ) is obtained

marginalizing over X from P∗(X , Y ).

Finally, regarding conditioning with credal sets, we perform elements-wise

application of Bayes’ rule. The posterior credal set is the union of all posterior

mass functions. Denote by K(X |Y = y) the set of conditional mass functions

P(X |Y = y) for generic variables X and Y , in this thesis we always assume

non-zero lower probability for the conditioning event (Y = y).

2.3.3 Credal Sets from Probability Intervals

According to the discussion in the previous section, a credal set can be specified

by an explicit enumeration of probability mass functions. Alternatively we can

consider a set of probability intervals over ΩX , say IX = {Ix : Ix = [lx , ux], , 0 ≤
lx ≤ ux ≤ 1, x ∈ ΩX}, that specifies a credal set K(X ) = {P(X ) : P(x) ∈ Ix , x ∈
ΩX ,
∑

x∈ΩX
P(x) = 1}. IX is said to avoid sure loss if the corresponding credal

set is not empty and to be coherent (or reachable) if ux ′ +
∑

x∈ΩX ,x 6=x ′ lx ≤ 1 ≤
lx ′ +
∑

x∈ΩX ,x 6=x ′ ux , for all x ∈ ΩX . IX is coherent if and only if the intervals are

tight, i.e., for each lower or upper bound in IX there is a mass function in the

credal set at which the bound is attained [Wal91; CHM94]. Standard algorithms

can compute the vertices of a credal set for which a probability interval has been

provided [AF96]. Yet, the resulting number of vertices can be exponential in the

input size [Tes92].

2.3.4 The Imprecise Dirichlet Model

Probability intervals can be inferred from data by the imprecise Dirichlet model,

a generalization of Bayesian learning from i.i.d. multinomial data based on

imprecise-probability modeling of prior ignorance. The bounds for the predictive

probability that X = x are given by

[# (x)/(N + s), (# (x) + s)/(N + s)] , (2.5)

where # (x) counts the number of units in the sample in which X = x , N is

the total number of units, and s is a hyperparameter that expresses the degree
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of caution of inferences, usually chosen in the interval [1, 2] (see [Wal96] for

details). Note that sets of probability intervals obtained using the imprecise

Dirichlet model are reachable. Some of the conditional credal sets considered

by the environmental application of Chapter 8 have obtained using the imprecise

Dirichlet model with s = 2.

2.4 Credal Networks

Credal networks generalize Bayesian networks by means of credal sets. Here we

report some results and definitions related to these models. We point the reader

to [Coz00] for an overview of these models, and to [Coz05] for a recent review

of the state of the art in this field.

2.4.1 General Definition

Credal networks extend Bayesian nets to deal with imprecision in probability,

and can be actually regarded as sets of Bayesian networks. This extension is

obtained by means of the fundamental notion of credal set introduced in Sec-

tion 2.3. The following definition of credal network is called enumerative as in

fact consists in the explicit enumeration of all the Bayesian networks associated

to a credal network.

Definition 2. A credal network over X is a pair 〈G , {P1, . . . ,Pm}〉 such that 〈G ,P j〉
is a Bayesian network over X for each j = 1, . . . , m.

The Bayesian networks {〈G ,P j〉}mj=1
are called to be the compatible Bayesian

networks of the credal network specified in Definition 2.

Inferences over a credal network are intended as inferences based on a credal

set for X determined as follows. Given the credal network 〈G , {P1, . . . ,Pm}〉, we

consider the convex hull of the points {Pj(X)}mj=1
, which are the joint mass func-

tions determined by the compatible Bayesian networks of the credal network,

i.e., 3

K(X) := CH{P1(X), . . . , Pm(X)}, (2.6)

where CH is the convex hull operator. The convexification in Equation (2.6) is

necessary to ensure consistency with Walley’s theory of coherent lower previ-

sions [Wal91]. With a small abuse of terminology, we call the credal set defined

in Equation (2.6) the strong extension of the credal network, by analogy with the

notion provided in the special case of separately specified credal networks (see

3Generally speaking the fact that all the joint mass functions {Pj(X)}mj=1
in Equation (2.6)

factorize as in Equation (2.1) does not imply that the every P(X) ∈ K(X) should do the same.
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Section 2.4.2). Inference on a credal network is intended as inference based on

its strong extension, i.e., the computation of upper and lower bounds for the

posterior expectation of a given function of X, with respect to P(X) ∈ K(X).

2.4.2 Separately Specified Credal Networks

The main feature of probabilistic graphical models, which is the specification of a

global model through a collection of sub-models local to the nodes of the graph,

contrasts with Definition 2, which represents a credal network as an explicit

enumeration of Bayesian networks.

Nevertheless, there are specific subclasses of credal networks that define a

set of Bayesian networks as in Definition 2 through local specifications. This is

for example the case of credal networks with separately specified credal sets,4

which are simply called separately specified credal networks in the following. This

specification requires each conditional mass function to belong to a (conditional)

credal set, according to the following definition:

Definition 3. A separately specified credal network over X is a pair 〈G ,K〉, where

K is a set of conditional credal sets K(X i |πi), one for each X i ∈ X and πi ∈ ΩΠi
.

According to [Coz00], the strong extension K(X) of a separately specified

credal network is defined as the convex hull of the joint mass functions P(X),

with, for each x ∈ ΩX:

P(x) =

n
∏

i=1

P(x i|πi),
P(X i|πi) ∈ K(X i |πi),

for each X i ∈ X,πi ∈ Πi.
(2.7)

Here K(X i |πi) can also be replaced by ext[K(X i |πi)] according to the following

well-known and intuitive proposition, which is proved here only because of the

seemingly lack of its formal proof in the literature.

Proposition 1. The vertices {P̃j(X)}mj=1
of the strong extension K̃(X) of a separately

specified credal network 〈G ,K〉 are joint mass functions obtained by the product of

vertices of the separately specified conditional credal sets, i.e., for each x ∈ ΩX:

P̃j(x) =

n
∏

i=1

P̃j(x i|πi), (2.8)

for each j=1, . . . , m, where, for each i=1, . . . , n and πi ∈ ΩΠi
, P̃j(X i|πi) is a vertex

of K(X i |πi) ∈ K.

4Some authors use also the expression locally defined credal networks [Coz00].
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Proof. We prove the proposition by a reductio ad absurdum, assuming that at

least a vertex P̃(X) of K̃(X) is not obtained by a product of vertices of the con-

ditional credal sets in K. This means that, for each x ∈ ΩX, P̃(x) factorizes as in

Equation (2.8), but at least a conditional probability in this product comes from

a conditional mass function which is not a vertex of the relative conditional

credal set. This conditional mass function, say P(X t |πt), can be expressed as

a convex combination of vertices of K(X t |πt), i.e., P(X t |πt) =
∑

α cαPα(X t |πt),

with
∑

α cα = 1 and, for each α, cα ≥ 0, and Pα(X t |πt) is a vertex of K(X t |πt).

Thus, for each x ∈ ΩX,

P̃(x) =

�

∑

α

cαPα(x t|πt)

�

·
∏

i 6=t

P(x i|πi), (2.9)

which can be easily reformulated as a convex combination. Thus, P̃(X) is a

convex combination of elements of the strong extension K̃(X). This violates the

assumption that P̃(X) is a vertex of K̃(X).

As an example, let us define a separately specified credal network over the

three binary variables (X1, X2, X3) and the directed acyclic graph in Figure 2.1.

In order to do that, we set P(x1) ∈ [.2, .3], P(x2|x1) ∈ [.3, .4], P(x2|¬x1) ∈
[.4, .5], P(x3|x1) ∈ [.5, .6], P(x3|¬x1) ∈ [.6, .7]. Note that, as each variable

is binary, the specification of the lower and upper bound for the probability

of the first state is a proper specification of the corresponding credal set. For

instance, the two extreme mass functions of the unconditional credal set K(X1)

are clearly P1(X1) = [.2, .8]T and P2(X1) = [.3, .7]T . Similarly, also the four

conditional credal sets associated to this specification have two extreme mass

functions each, and the credal network has therefore 32 compatible Bayesian

networks corresponding to all their possible combinations.

2.4.3 Non-Separately Specified Credal Networks

Separately specified credal networks are the most popular type of credal net-

work, but it is possible to consider credal networks that cannot be formulated as

in Definition 3. This corresponds to having relationships between the different

specifications of the conditional credal sets, which means that the possible val-

ues for a given conditional mass function can be affected by the values of some

other conditional mass functions. A credal network of this kind is simply called

non-separately specified.

As an example, some authors considered so-called extensive specifications of

credal networks [FdRC02], where instead of a separate specification for each

conditional mass function as in Definition 3, the probability table P(X i |Πi), i.e.,
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a function of both X i and Πi, is defined to belong to a finite set of tables. Fi-

gure 2.2 reports an example of an extensively specified credal network. The

strong extension of an extensive credal network is obtained as in Equation (2.7),

by simply replacing the separate requirements for each single conditional mass

function with extensive requirements about the tables which take values in the

corresponding finite set. Chapter 3 reports examples and motivations for non-

separately specified credal networks, including also the extensive case.

X2 P(X2|X1) ∈
¨�

.3 .4

.7 .6

�

,

�

.4 .5

.6 .5

�«

P(X1) ∈
¨�

.2

.8

�

,

�

.3

.7

�«

X1

X3 P(X3|X1) ∈
¨�

.5 .6

.5 .4

�

,

�

.6 .7

.4 .3

�«

Figure 2.2: An extensive specification of a credal network over three binary

variables. The compatible Bayesian networks of the credal network are those

obtained by the eight possible combinations of the probability tables P(X2|X1)

and P(X3|X1) with the two extreme mass function of K(X1). The network is non-

separately specified, as the conditional mass functions over X2, corresponding

to the two columns of the conditional probability table P(X2|X1), cannot vary

independently of one other (and similarly for X3).

2.5 Computing with Credal Networks

By an analogy with what we have done for Bayesian networks in Section 2.2.2,

we can query a credal network in order to gather probabilistic information about

a variable given evidence about some other variables. This task is still called

updating and consists in the computation, with respect to the network strong

extension K(X), of P(xq|xE) and P(xq|xE). Thus, Equation (2.2) generalizes as:

P(xq|xE) = min
k=1,...,m

∑

xM

∏n

i=1
Pk(x i|πi)

∑

xM ,xq

∏n

i=1
Pk(x i|πi)

, (2.10)

and similarly with a maximum replacing the minimum for upper probabilities

P(xq|xE). More generally, we could also be interested in the computation of the
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posterior credal set for the queried variable Xq given the evidence xE , i.e.,

K(Xq|xE) := CH
¦

Pk(Xq|xE)
©m

k=1
. (2.11)

Note that, according to Proposition 1, for separately specified credal networks,

the number m of compatible Bayesian networks is exponential in the input size.

Thus, Equation (2.10) cannot be solved in general by exhaustive iteration of up-

dating algorithms for Bayesian networks. In fact, exact updating displays higher

complexity than Bayesian networks: credal networks updating is NP-complete

for polytrees5, and NPPP-complete for general credal networks [dCC05]. We

point the reader to Section 2.6 for a summary about the existing algorithms for

credal networks exact and approximate updating.

2.6 Algorithms for Credal Networks Updating

2.6.1 The 2U Algorithm and Its Loopy Extension

The extension to credal networks of Pearl’s algorithm for efficient updating on

polytree-shaped Bayesian networks faced serious computational problems. To

solve Equation (2.2), Pearl’s propagation scheme computes the joint probabil-

ities P(xq, xE) for each xq ∈ ΩXq
; the conditional probabilities associated to

P(Xq|xE) are then obtained using the normalization of this mass function. Such

approach cannot be easily extended to Equation (2.10), because P(Xq|xE) and

P(Xq|xE) are not normalized in general.

A remarkable exception to this situation is the case of binary credal networks,

i.e., models for which all the variables are binary. The reason is that a credal set

for a binary variable has at most two vertices and can therefore be identified with

an interval. This enables an efficient extension of Pearl’s propagation scheme.

The result is an exact algorithm for polytree-shaped binary separately specified

credal networks, called 2-Updating (or simply 2U), whose computational com-

plexity is linear in the input size. Loosely speaking, 2U computes lower and

upper messages for each node according to the same propagation scheme of

Pearl’s algorithm but with different combination rules. Any node produces a lo-

cal computation and the global computation is concluded updating all the nodes

in sequence. See [FZ98] for a detailed description of 2U.

Loopy propagation is a popular technique that applies Pearl’s propagation to

multiply connected Bayesian networks [MWJ99]: propagation is iterated until

probabilities converge or for a fixed number of iterations. In [IC04], Ide and

5We extend to credal networks the notion of polytree introduced for Bayesian networks in

Section 2.2.2.
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Cozman extend these ideas to belief updating on credal networks, by developing

a loopy variant of 2U (called loopy 2U or simply L2U) that makes 2U usable for

multiply connected binary credal networks.

Initialization of variables and messages follows the same steps used in the

2U algorithm. Then nodes are repeatedly updated following a given sequence.

Updates are repeated until convergence of probabilities is observed or until a

maximum number of iterations is reached. Concerning computational complex-

ity, L2U is basically an iteration of 2U and its complexity is therefore linear in the

number input size and in the number of iterations. Overall, the L2U algorithm is

fast and returns good results, with low errors after a small number of iterations

[IC04, Section 6]. However, at the present moment, there are no theoretical

guarantees about convergence.

Briefly, L2U overcomes 2U limitations about topology, at the cost of an ap-

proximation. In Section 5.1 we show how to make it bypass also the limitations

about the number of possible states.

2.6.2 Other Methods

As noted in Section 2.5, the difficulty faced by inference algorithms is due to

the potentially enormous number of vertices that a strong extension may have,

even for small networks. Exact inference algorithms typically examine poten-

tial vertices of the strong extension to produce the required lower/upper val-

ues [CCM94; Coz00; FdRC02; FdRC03]. Approximate inference algorithms can

produce either outer or inner approximations: the former produce intervals that

enclose the correct probability interval between lower and upper probabilities

[CM02; dRCdC03; HDVH98; Tes92], while the latter produce intervals that are

enclosed by the correct probability interval [CCM94; Coz96]. Some of these al-

gorithms emphasize enumeration of vertices, while others resort to optimization

techniques (as computation of lower/upper values for P(xq|xE) is equivalent to

minimization/maximization of a fraction containing polynomials in probability

values). Rather detailed overviews of inference algorithms for imprecise proba-

bilities have been published by Cano and Moral (e.g., [CM99]).

2.7 Summary

In this chapter the reader is given the necessary background leading up to the

formalism of probabilistic graphical models. More specifically, the formal defi-

nitions of both Bayesian and credal networks are provided. The latter is a gen-

eralization to sets of probability mass function of the first. This generalization



18 2.7 Summary

is based on the fundamental notion of credal set, i.e., a closed convex set of

probability mass functions.

This extension poses many challenges concerning both the modeling phase

and the inferences. At the moment, in fact, there is no a single standard way to

specify a credal network. Two main subclasses of models, called respectively se-

parately specified and non-separately specified credal networks, exist and a dif-

ferent language of specification characterizes each class. Regarding inferences,

those based on credal networks are considerably more difficult than those based

on Bayesian networks. Despite the presence of a number of inference algo-

rithms proposed during the last decade, there are no algorithms based on pure

message-propagation schemes that can update credal networks of any kind.

The findings presented in the rest of this thesis should be regarded as an at-

tempt to meet these challenges. More specifically, a unifying graphical language

for both non-separately specified and separately specified credal networks is pro-

posed in Chapter 4, while a message-propagation algorithm for credal networks

of any kind is described in Chapter 5.



Chapter 3

Reasons for Non-Separately Specified

Credal Networks: Conservative

Inference Rule on Bayesian Networks

and Other Problems

According to the discussion in the previous chapter, we have two different classes

of credal networks: those separately specified, introduced in Section 2.4.2, for

which each conditional mass function is allowed to vary in its credal set inde-

pendently of the others, and the non-separately specified credal networks, that

allow for relationships between conditional mass functions in different credal

sets, which can be far away from each other in the net. Although the idea of non-

separately specified credal nets is relatively intuitive, it should be stressed that

this kind of nets has been investigated very little: in fact, there has been no at-

tempt so far to develop a general graphical language to describe them; and there

is no algorithm to compute with them.1 This appears to be an unfortunate gap

in the literature as the non-separate specification seems to be the key to model

many important problems in uncertain reasoning. In this chapter, we illustrate

this necessity by a few examples. An algorithmic solution for these problems

are indeed provided by the theoretical results developed in Chapter 4. The first

problem motivating the need of non-separately specified credal networks is an

equivalence results that we prove, with respect to a specific updating problem,

between credal and Bayesian networks. This is what we detail in the following

section.

1An exception is the classification algorithm developed for the naive credal classifier [Zaf01],

but it is ad hoc for a very specific type of network. More generally speaking, it is not unlikely that

some of the existing algorithms for separately specified nets can be extended to special cases of

non-separate specification, but we are not aware of any published work dealing with this issue.

19
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3.1 Conservative Inference Rule on Bayesian Networks

In this section we establish an intimate connection between Bayesian and cre-

dal networks. We focus on traditional belief updating with credal networks,

and on the kind of belief updating that arises with Bayesian networks when the

reason for the missingness of some of the unobserved variables in the network

is unknown. We show that the two updating problems are formally the same.

Notably, in order to obtain the equivalence, also non-separately specified credal

networks should be considered.

Imagine the following situation. You want to use a graphical model to for-

malize your uncertainty about a domain. You prefer precise probabilistic models

and so you choose Bayesian networks. You take care to precisely specify the

graph and all the conditional mass functions required. At this point you are

done with the modeling phase, and start updating beliefs about a target variable

conditional on the observation of some variables in the net. The remaining vari-

ables are not observed, i.e., they are missing. You know that some of the missing

variables are simply missing at random (MAR, see [LR87]), and so they can eas-

ily be dealt with by traditional approaches. Yet, there is a subset of missing

variables for which you do not know the process originating the missingness.

This innocuous-looking detail is going to change the very nature of your

model: while you think you are working with Bayesian networks, what you are

actually using are credal networks.

The implicit passage from Bayesian to credal nets is based on two steps. First,

the above conditions, together with relatively weak assumptions, give rise to a

specific way to update beliefs called conservative inference rule (CIR, see Sec-

tion 3.1.1) [Zaf05]. CIR is an imprecise-probability rule: it leads, in general,

to imprecise posterior probabilities for the target variable, even if the original

model is precise. The second step is done in Section 3.1.2: we show the formal

equivalence between CIR-based updating in Bayesian networks, and the tradi-

tional credal-network updating described in Section 2.5.

CIR and credal networks have been proposed with quite different motiva-

tions in the literature: CIR as an updating rule for the case of partial ignorance

about the missingness (or incompleteness) process; credal networks as a way

to relax the strict modeling requirements imposed by precise graphical models.

The main interest in our result is just the established connection between two

such seemingly different worlds. But the result appears also to be a basis for

using algorithms for credal networks to solve CIR-based updating problems (as

in fact we do in Section 4.4).



21 3.1 Conservative Inference Rule on Bayesian Networks

3.1.1 Conservative Inference Rule

The most popular approach to missing data in the literature and in the statistical

practice is based on the so-called missing-at-random assumption [LR87]. MAR

allows missing data to be neglected, thus turning the incomplete data problem

into one of complete data. Unfortunately, MAR embodies the idea that the pro-

cess responsible for the missingness (i.e., the missingness process) is not selective,

which is not realistic in many cases. De Cooman and Zaffalon have developed

an inference rule based on much weaker assumptions than MAR, which deals

with near-ignorance about the missingness process [dCZ04]. This result has

been expanded by Zaffalon [Zaf05] to the case of mixed knowledge about the

missingness process: for some variables the process is assumed to be nearly un-

known, while it is assumed to be MAR for the others. The resulting updating

rule is called conservative inference rule (CIR).

To show how CIR-based updating works, we partition the variables in X in

four classes: (i) the queried variable Xq, (ii) the observed variables XE , (iii)

the unobserved MAR variables XM , and (iv) the variables X I made missing by

a process that we basically ignore. CIR leads to the following credal set as our

updated beliefs about the queried variable:

K(Xq||X I xE) := CH
¦

P(Xq|xE , x I)
©

x I∈ΩXI

, (3.1)

where the superscript on the double conditioning bar is used to denote beliefs

updated with CIR and to specify the set of missing variables X I assumed to be

non-MAR, and clearly P(Xq|xE, x I) =
∑

xM
P(Xq, xM |xE, x I).

3.1.2 Equivalence between CIR-Based Updating in Bayesian Nets

and Credal Nets Updating

In this section we prove the formal equivalence between updating with CIR on

Bayesian networks and standard updating on credal networks, defining two dis-

tinct mappings from a generic instance of the first problem in a corresponding

instance of the second and vice versa. Figure 3.1 reports the correspondence

scheme with the names of the mappings that will be introduced next. We focus

on the case of Bayesian networks assigning positive probability to each event.

From Bayesian to credal networks

First let us define the B2C transformation, mapping a Bayesian network 〈G ,P〉,
where a subset X I of X is specified, in a credal network. For each variable X ∈
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globally
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specified

separately
specified

CCM’
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CCM

B2CCredal networks CIR-based Bayesian networks

Figure 3.1: Relations between updating on credal networks and CIR-updating in

Bayesian networks.

X I , B2C prescribes to: (i) add to X an auxiliary child node2 X ′, associated to a

binary variable with possible values x ′ and ¬x ′; and (ii) extensively specify the

probability table P(X ′|X ), to belong to the following set of |ΩX | tables:

n

�

100 . . . 0

011 . . . 1

�

, . . . ,

�

0 . . . 010 . . . 0

1 . . . 101 . . . 1

�

, . . . ,

�

000 . . . 01

111 . . . 10

�

o

. (3.2)

Each table in Equation (3.2) specifies a conditional probability for the state x ′ of

X ′ (corresponding to the first row of the table), which is zero conditionally on

any state of X except a single one, different for any table. The B2C transforma-

tion, clearly linear in the input size, is the basis for the following:

Theorem 1. Consider a CIR instance on a Bayesian network 〈G ,P〉 over X. Let

X I ⊂ X be the array of the unobserved non-MAR variables. Let K(Xq||X I xE) be the

credal set returned by CIR for a queried variable Xq given the evidence XE= xE . If

K(Xq|xE, x ′
I
) is the posterior credal set for Xq in the credal network 〈G ′,P′

1
, . . . ,P′

m
〉

over X ∪ X ′
I
, obtained from 〈G ,P〉 by a B2C transformation with the nodes X I

specified, conditional on the evidences XE = xE and X ′
I
= x ′

I
, then:3

K(Xq||X I xE) = K(Xq|xE, x ′
I
). (3.3)

Proof. According to Equation (3.1) and Equation (2.11) respectively, we have:

K(Xq||X I xE) = CH{P(Xq|xE, x̃ I)} x̃ I∈ΩXI
(3.4)

K(Xq|xE, x ′
I
) = CH{P ′

k
(Xq|xE, x ′

I
)}m

k=1
. (3.5)

2This transformation is inspired by Pearl’s prescriptions about boundary conditions for prop-

agation [Pea88, Section 4.3].
3Theorem 1 can be extended also to CIR instances modeling incomplete observations where

the value of the observed variable is know to belong to a generic subset of the possibility space,

rather than missing observations for which the universal space is considered.
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An obvious isomorphism holds between {P ′
k
(X′)}m

k=1
and ΩX I

: that follows from

the correspondence, for each X i ∈ X I , between the conditional probability tables

for P(X ′
i
|X i) as in Equation (3.2) and the elements of ΩX i

. Accordingly, we de-

note by x̃ I the element of ΩX I
corresponding to P ′

k
(X′). The thesis is proved by

showing, for each k = 1, . . . , m, P ′
k
(Xq|xE) = P(Xq|xE , x̃ I). For each xq ∈ ΩXq

:

P(xq|xE, x̃ I) =
∑

xM

P(xq, xM |xE, x̃ I)∝
∑

xM

P(xq, xM , xE, x̃ I) (3.6)

P ′
k
(xq|xE, x ′

I
) =
∑

xM ,x I

P ′
k
(xq, xM , x I |xE, x ′

I
)∝
∑

xM ,x I

P ′
k
(xq, xM , x I , xE, x ′

I
).(3.7)

According to the Markov condition:

P ′
k
(xq, xM , x I , xE , x ′

I
) =
∏

i:X i∈X I

h

P ′
k
(x ′

i
|x i)·P ′k(x i|πi)
i

·
∏

j:X j∈~X ′\(X I∪X ′
I
)

P ′
k
(x j|π j), (3.8)

with the values of x ′
i
, x i, πi, x j and π j consistent with (xq, xM , xE, x I , x ′

I
).

According to Equation (3.2), P(x ′
i
|x i) is zero for each x i ∈ ΩX i

except for

the value x̃ i, for which is one. The sum over x i ∈ ΩX i
of the probabilities in

Equation (3.8) is therefore reduced to a single non-zero term. Thus, taking all

the sums over X i with X i ∈ X I :

∑

x I

P ′
k
(xq, xM , x I , xE, x ′

I
) =
∏

i:X i∈X I

P( x̃ i|πi) ·
∏

j:X j∈~X\X I

P(x j|π j) = P(xq, xM , xE , x̃ I),

(3.9)

with the values of πi, x j and π j consistent with (xq, xM , xE, x̃ I). But Equa-

tion (3.9) allows us to rewrite Equation (3.6) as Equation (3.7) and conclude

the thesis.

From credal to Bayesian networks

For credal networks specified as in Definition 2, we define a transformation that

returns a Bayesian network given a credal network as follows. The Bayesian

network is obtained: (i) adding a dummy node X ′′ that is parent of all the nodes

in X (see Figure 3.2 left) and such that there is a one-to-one correspondence

between the elements of ΩX ′′ and those of {P ′
k
(X)}m

k=1
; and (ii) setting for each

X i ∈ X and x ′′ ∈ ΩX ′′: P(X i|Πi, x ′′) := P ′
k
(X i|Πi), where Πi are the parents of X i

in the credal network and P ′
k
(X) is the element of {P ′

k
(X)}m

k=1
corresponding to

x ′′.
In the special case of extensively specified credal networks, we consider a

slightly different transformation, where: (i) we add a dummy node X ′′
i

for each

X i ∈ X, that is parent only of X i (see Figure 3.2 right) and such that there is
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Figure 3.2: The Bayesian networks returned by CCM’ (left) and CCM (right).

Dummy nodes are gray, while the nodes of the original credal network are white.

a one-to-one correspondence between the elements of ΩX ′′
i

and the probability

tables P(X i|Πi) in the extensive4 specification of K(X i|Πi); and (ii) we set for

each X i ∈ X: P(X i |Πi, x ′′
i
) := P ′

k
(X i |Πi), where Πi are the parents of X i in the

credal network and P ′
k
(X i|Πi) is the probability table of K(X i |Πi) relative to x ′′

i
.

Note that no prescriptions are given about the unconditional mass functions for

the dummy nodes in both the transformations, because irrelevant for the results

we obtain. The second is the so-called CCM transformation [CCM94] for credal

networks, while the first is simply an extension of CCM to the case of globally

specified credal networks and will be denoted as CCM’. These transformations

are the basis for the following:

Theorem 2. Let K(Xq|xE) be the posterior credal set of a queried variable Xq, given

some evidence XE = xE , for a credal network 〈G ,P1, . . . ,Pm〉. Let also 〈G ′,P′〉 be

the corresponding Bayesian network obtained through CCM’ (or CCM if the credal

network is not globally specified). Denote as K(Xq||X
′′
xE) the CIR-based posterior

credal set for Xq in the Bayesian network obtained assuming what follows: the

nodes in XE instantiated to the values xE, the dummy nodes, denoted as X ′′ also if

CCM is used, to be not-MAR and the remaining nodes MAR. Then:

K(Xq|xE) = K(Xq||X
′′
xE). (3.10)

Proof. Consider a credal network specified as in Definition 2, for which CCM’

should be used and X ′′ denotes a single dummy node. According to Equa-

tion (3.1):

K(Xq||X
′′
xE) = CH{P(Xq|xE, x ′′)}x ′′∈ΩX ′′

. (3.11)

4Separately specified credal sets can be extensively specified, considering all the probabi-

lity tables obtained from the combinations of the vertices of the original credal sets. Although

correct, this transformation gives rise to an exponential explosion of the number of tables.
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Setting XM := X \ (XE ∪ {Xq}), for each xq ∈ ΩXq
:

P(xq|xE, x ′′) =
∑

xM

P(xq, xM |xE , x ′′)∝
∑

xM

P(xq, xM , xE, x ′′). (3.12)

According to the Markov condition and CCM’ definition, we have:

P(xq, xM , xE, x ′′) = P(x ′′) ·
n
∏

i=1

P(x i|πi, x ′′) ∝
n
∏

i=1

P̃(x i|πi) = P ′
k
(xq, xM , xE),

(3.13)

where P̃(X) is the joint mass function corresponding to the compatible Bayesian

network associated to x ′′ ∈ ΩX ′′ . The sum over xM of the probabilities in Equa-

tion (3.13) is proportional to P̃(xq|xE). Thus, P̃(Xq|xE)= P(Xq |xE, x ′′) for each

(P̃, x ′′), that proves the thesis. Analogous considerations can be done for exten-

sive and separate specification of credal networks transformed by CCM.

3.1.3 Comments

We have proved the formal equivalence between two updating problems on dif-

ferent graphical models: CIR-based updating on Bayesian networks and tra-

ditional updating with credal networks. The result follows easily via simple

transformations of the graphical models. An important consequence of the es-

tablished link between Bayesian networks and credal networks is that under

realistic conditions of partial ignorance about the missingness process, working

with Bayesian networks is actually equivalent to working with credal networks.

This appears to make credal networks even more worthy of investigation than

before.

Here we have mapped CIR problems on Bayesian networks to standard up-

dating on extensively specified credal networks, while the existing algorithms

for credal networks consider the case of separately specified credal networks.

This limitation is overcome in Section 4.4.1, where our result, together with the

formalism developed in Section 4.1, is employed to develop a first algorithm for

CIR-based updating on Bayesian networks.

3.2 Qualitative Networks

Qualitative probabilistic networks [Wel90] can be regarded as an abstraction of

Bayesian networks, where the probabilistic assessments are replaced by qualita-

tive relations describing the influences or synergies between the variables. If we

regard qualitative nets as credal nets, we see that not all types of relations can
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be represented by separate specifications of the conditional credal sets. This is,

for instance, the case of (positive) qualitative influence, which requires, for two

binary variables A and B, that

P(a|b) ≥ P(a|¬b). (3.14)

The qualitative influence between A and B can therefore be modeled by requir-

ing P(A|b) and P(A|¬b) to belong to credal sets, which cannot be separately

specified because of the constraint in Equation (3.14). An extensive specifica-

tion for A should therefore be considered to model the positive influence of B

[CdCIFdR04].

3.3 Equivalent Graphs for Credal Networks

Remember that DAGs represent independencies between variables according to

the Markov condition. Different DAGs describing the same independencies are

called equivalent [VP91]. Thus, a Bayesian network can be reformulated using

an equivalent DAG. The same holds with credal networks, when (as implicitly

done in this thesis) strong independence replaces standard probabilistic indepen-

dence in the Markov condition [MC02].

Consider, for example, A→ B and B→ A, which are clearly equivalent DAGs.

One problem with separately specified credal networks is that they are not closed

under this kind of (equivalent) structure changes: if we define a separately spe-

cified credal network for A→ B, and then reverse the arc, the resulting net is

not separately specified in general.

In order to see that, we consider the following specification of a credal net-

work over A → B, where both A and B are binary variables: 1

4
≤ P(a) ≤ 1

2
,

1

2
≤ P(b|a) ≤ 3

4
and P(b|¬a) = 3

4
. As all the variables are binary, the computa-

tion of the credal set corresponding to these intervals is trivial. E.g., the vertices

of K(A) are clearly the two mass functions [1

4
, 3

4
]T and [1

2
, 1

2
]T . Overall, we have

a separately specified credal network with four compatible Bayesian networks,

corresponding to the possible combinations of the two vertices of K(A) with the

two vertices of K(B|a). From the joint mass functions corresponding to these

Bayesian networks, we can evaluate the conditional mass functions for the cor-

responding Bayesian networks over B → A, which are those corresponding to

the following probabilities:

P1(b) =
11

16

P1(a|b) = 2

11

P1(a|¬b) = 2

5

P2(b) =
3

4

P2(a|b) = 1

4

P2(a|¬b) = 1

4

P3(b) =
5

8

P3(a|b) = 2

5

P3(a|¬b) = 2

3

P4(b) =
3

4

P4(a|b) = 1

2

P4(a|¬b) = 1

2
.
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According to Definition 2, these four distinct Bayesian network specifications

define a credal network over B → A, which cannot be separately specified as

in Definition 3. To see this, note for example that the specification P(b) = 5

8
,

P(a|b) = 1

2
and P(a|¬b) = 2

3
, which would be possible if the conditional credal

sets were separately specified, leads to the inadmissible value P(a) = 9

16
> 1

2
.

It is useful to observe that general, non-separately specified, credal networks

do not suffer for these problems just because of their definition.

3.4 Learning from Incomplete Data

Given three binary random variables A, B and C , let the DAG A→ B → C ex-

press independencies between them. We want to learn the model probabilities

(i.e., the parameters) for such a DAG from the incomplete data set in Table 3.1,

assuming no information about the process making the observation of B missing

in the last record of the data set. The most conservative approach in this case is

to learn two distinct Bayesian networks from the two complete data sets corres-

ponding to the possible values of the missing observation, and consider indeed

the credal network made of these compatible Bayesian networks.

A B C

a b c

¬a ¬b c

a b ¬c

a ∗ c

Table 3.1: A data set about three binary variables; “∗” denotes a missing obser-

vation.

To make things simple we compute the probabilities for the joint states by

means of the relative frequencies in the complete data sets.5 Let P1(A, B, C) and

P2(A, B, C) be the joint mass functions obtained in this way, which define the

same conditional mass functions for

P1(a) = P2(a) =
3

4

P1(b|¬a) = P2(b|¬a) = 0

P1(c|¬b) = P2(c|¬b) = 1;

5We do this only for illustrative purposes, as there are arguably better ways to learn proba-

bilities from data, such as the imprecise Dirichlet model [Wal96]. Yet, also these other methods

would incur the same problem [CGOM07].
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and different conditional mass functions for

P1(b|a) = 1

P1(c|b) = 2

3

P2(b|a) = 2

3

P2(c|b) = 1

2
.

We have therefore obtained two Bayesian networks over A→ B→ C , which can

be regarded as the compatible Bayesian networks of a credal network. Such a

credal network is non-separately specified. To see that, just note that if the credal

network would be separately specified the values P(b|a) = 1 and P(c|b) = 1

2

could be regarded as a possible instantiation of the conditional probabilities,

despite the fact that there are no complete data sets leading to this combination

of values.

3.5 Summary and Outlooks

The need of a general formalism together with a corpus of inference algorithms

for non-separately specified credal networks has been advocated by means of

four important problems of uncertain reasoning.

First, we have determined a one-to-one correspondence between Bayesian

networks updating based on conservative inference rule and standard updating

on credal networks. Notably, the first problem can be mapped into the latter,

only if we consider also non-separately specified credal networks.

We have also shown that the kind of constraints between conditional prob-

abilities assumed by qualitative networks can be regarded as non-separate con-

straints between the different conditional credal sets. Furthermore, we have

illustrated by an example that the class of credal networks is closed under the

transformation of their DAGs into DAGs expressing the same dependence re-

lations only if we consider also non-separately specified models. Finally, the

quantification of a credal network from incomplete datasets has been proved to

require, in general, a non-separate specification of its conditional credal sets.

With respect to future research, it seems possible to extend the class of up-

dating problem on Bayesian (and also credal) networks with missing data, that

can be mapped into standard updating problem on non-separately specified cre-

dal networks. More specifically, the natural development of the transformation

detailed in Section 3.1.2, would concern the case of soft evidence specified by

a collection of likelihood ratio, for which a generalization to imprecise proba-

bilities seems to be possible. The mapping into a standard updating problem

on a credal network would represent therefore a generalization of Pearl’s virtual

evidence method to sets of probability mass functions.



Chapter 4

Decision-Theoretic Specification of

Credal Networks: A Unified Language

for Uncertain Modeling with Sets of

Bayesian Networks

According to the discussion in the previous chapter, there are a number of rea-

sons for which both separately and non-separately specified credal networks

should be considered. An important question is whether or not all those cre-

dal networks can be represented in a way that emphasizes locality. The answer

is clearly positive for separately specified credal networks. In fact, for these

models, each conditional mass function is allowed to vary in its credal set inde-

pendently of the others. The representation is naturally local because there are

no relationships between different credal sets. The question is more complicated

for non-separately specified credal networks, which can be formulated only by

the enumerative specification in Definition 2 and not as in Definition 3. The

idea of non-separately specified credal nets is in fact to allow for relationships

between conditional mass functions in different credal sets, which can be far

away from each other in the net.

In this chapter we give two major contributions. First, we define a unified

graphical language to locally specify credal networks in the general case (Sec-

tion 4.1). This specification is called decision-theoretic being inspired, via the

Cano-Cano-Moral (CCM) transformation [CCM94], by the formalism of influ-

ence diagrams, and more generally of decision graphs [ZQP93]. In this language

the graph of a credal network is augmented with control nodes that express the

relationships between different credal sets. We give examples to show that the

new language provides one with a natural way to define non-separately speci-

fied nets; and we give a procedure to reformulate any separately specified net in

29
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the new language.

Second, we make a very simple observation (Section 4.2), which has sur-

prisingly powerful implications: we show that for any credal network specified

with the new language there is a separately specified credal network, defined

over a larger domain, which is equivalent. The procedure to transform the for-

mer into the latter network is very simple, and takes only linear time. The key

point is that this procedure can be used as a tool to “separate” the credal sets

of non-separately specified nets. This makes it possible to model, by separately

specified nets, problems formerly modeled by non-separately specified ones; and

hence to use any (both exact and approximate) existing algorithm for separately

specified nets to solve such problems.

In Section 4.3 we explore this possibility in the case of the 2U algorithm. We

show that the algorithm, originally designed only for separately specified credal

networks, can be extended to deal exactly and efficiently also with a class of

non-separately specified models.

Our contributions also apply to the problem of belief updating on Bayesian

networks by the conservative inference rule. In Section 3.1.2, this problem has

been mapped onto a standard updating problem on a non-separately specified

credal network, a result not straightforward to exploit in practice because of the

lack of algorithms for non-separately specified credal networks. A feasible solu-

tion of this problem based on our formalism is presented in Section 4.4. First,

we represent the problem by the new decision-theoretic language. Second, we

use our transformation to reformulate the problem on a separately specified cre-

dal network defined over a larger domain. At this point, the problem can be

solved by the existing algorithms for separately specified credal nets. Addition-

ally, we also prove the NP-hardness of belief updating with this rule by similar

transformations based on the results presented in this chapter.

4.1 Decision-Theoretic Specification of Credal Networks

Here we provide an alternative definition of credal network with the same gener-

ality of Definition 2, but obtained through local specifications as in Definition 3.

This result, which is inspired by the formalism of decision networks [ZQP93] via

the CCM transform [CCM94], is reported in Section 4.1.2.

Remarkably, both non-separately (Section 4.1.3) and separately specified

credal networks (Section 4.1.4) can be reformulated in accord to this defini-

tion by means of transformations taking only polynomial time. We can therefore

regard the new definition as the basis for a graphical language to represent in a

unified form credal networks of any kind. Before considering this derivation, let

us first outline the basic idea of this approach by means of a small example.
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4.1.1 A Preliminary Example

Consider a credal network over three binary variables associated to the directed

acyclic graph in Figure 2.1. Set two extreme mass functions for the uncon-

ditional credal set K(X1), say P1(X1) = [.3, .7]T and P2(X1) = [.4, .6]T . For

the node X2, assume a non-separate specification of its conditional credal sets

K(X2|x1) and K(X2|¬x1), corresponding to an extensive specification of the con-

ditional probability table P(X2|X1), that can take values is a set of two possible

tables as in the example in Figure 2.2. Finally, consider the three mass functions

over X3, P1(X3) = [.2, .8]T , P2(X3) = [.3, .7]T , P3(X3) = [.4, .6]T . Assume the

following (separate) specification of the conditional credal sets associated to X3,

K(X3|x1) = CH[P1(X3), P2(X3)] and K(X3|¬x1) = CH[P2(X3), P3(X3)].

Figure 4.1 depicts an alternative specification of the same credal network,

obtained by means of three auxiliary control variables. Consider the variable

X1, the two extreme mass functions of the unconditional credal set K(X1) are

indexed by a binary control node D1. This basically means that P(X1) depends on

the value of D1, being P1(X1) if D1 = d1 and P2(X1) if D1 = ¬d1. This assumption

states a probabilistic dependence between X1 and D1, which can be modeled by

setting that D1 is a parent of X1. Similarly, a binary control node D2 can index

the two conditional probability tables in the extensive specification of P(X2|X1).

Finally, regarding X3, a control node D3 whose three possible values are used to

index {Pj(X3)}3j=1
is employed. This time we should assume that, if X1 = x1, D3

can take its value only from the two first states, and only from the last two if X1 =

¬x1. This influence of X1 to the possible states of D3 is modeled by assuming

that X1 is a parent of D3. The overall structure is reported in Figure 4.1 and will

be regarded as an example of the new class of graphical model introduced by

Definition 4.

4.1.2 General Definition of Decision-Theoretic Specification

Definition 4. A decision-theoretic specification of a credal network over X is a

triplet 〈G ′,O,P′〉 such that: (i) G ′ is a DAG over X′ := (XD,X); (ii) O is a collection

of non-empty sets Ω
πi

X i
⊆ ΩX i

, one for each X i ∈ XD and πi ∈ ΩΠi
;1 (iii) P′ is a set of

conditional mass functions P ′(X j|π j), one for each X j ∈ X and π j ∈ ΩΠj
.

We intend to show that Definition 4 specifies a credal network over the vari-

ables in X; the nodes corresponding to X are therefore called uncertain and will

be displayed by circles, while those corresponding to XD are called decision nodes

and will be displayed by squares. Let us associate each decision node X i ∈ XD

with its collection of so-called decision functions. For each X i ∈ XD, the decision

1If X i corresponds to a root node of G , a single set equal to the whole ΩX i
is considered.
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D2 X2

D1 X1

D3 X3

Figure 4.1: A credal network over (X1, X2, X3) defined by means of three auxil-

iary nodes.

functions of X i are all the possible maps fX i
: ΩΠi
→ ΩX i

returning an element

of Ω
πi

X i
for each πi ∈ ΩΠi

. Note that the decision functions of a root node X i are

the single elements of ΩX i
. Call strategy s an array of decision functions, one

for each X i ∈ XD. We denote as ΩS the set of all the possible strategies. As an

example, note that the model described in Section 4.1.1 is a decision-theoretic

specification of a credal network over (X1, X2, X3) (with 12 possible strategies).

Each strategy s ∈ ΩS determines a Bayesian network over X′ via Definition 4,

as illustrated below. A conditional mass function P ′(X j |π j) for each uncertain

node X j ∈ X and π j ∈ ΩΠ j
is already specified by P′. To determine a Bayesian

network we have then to simply represent decision functions by mass functions:

for each decision node X i ∈ XD and πi ∈ ΩΠi
, we consider the conditional mass

function P ′
s
(X i |πi) assigning all the mass to the value fX i

(πi) ∈ ΩX i
, where fX i

is

the decision function corresponding to s. The Bayesian network obtained in this

way will be denoted as 〈G ′,P′
s
〉, while for the corresponding joint mass function,

we clearly have, for each x′ = (xD,x) ∈ ΩX′ , the following factorization:

P ′
s
(xD,x) =
∏

X i∈XD

P ′
s
(x i|πi) ·
∏

X j∈X
P ′(x j|π j). (4.1)

The next step is then obvious: we want to define a credal network over X

by means of the set of Bayesian networks determined by all the possible strate-

gies s ∈ ΩS. The question, at this point, is whether or not all these networks

have the same DAG, as required by Definition 2. To show this we need to intro-

duce the following transformation that removes from G ′ the decision nodes by

maintaining the dependence relations between the other nodes:
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Transformation 1. Given a decision-theoretic specification of a credal network

〈G ′,O,P′〉, obtain a DAG G associated to the variables X iterating, for each decision

node X i ∈ XD, the following operations over G ′: (i) draw an arc from each parent

of X i to each child of X i; (ii) remove the node X i .

Y X

Figure 4.2: The DAG G returned by Transf. 1 given a decision-theoretic specifi-

cation of a credal network whose DAG is that in Figure 4.3 (or also Figure 4.4

or Figure 4.5 or Figure 4.6).

Figure 4.2 reports an example of the output of Transformation 1. The DAG

G returned by Transformation 1 is considered by the next theorem.

Theorem 3. The marginal for X relative to 〈G ′,P′
s
〉, i.e., the mass function Ps(X)

such that

Ps(x) :=
∑

xD∈ΩXD

P ′
s
(xD,x), (4.2)

for each x ∈ ΩX, factorizes as the joint mass function of a Bayesian network 〈G ,Ps〉
over X, where G is the DAG obtained from G ′ by Transformation 1.

Proof. Let us start the marginalization in Equation (4.2) from a decision node

X j ∈ XD. According to Equation (4.1), for each x′ ∈ ΩX′:

∑

x j∈ΩX j

P ′
s
(x′) =
∑

x j∈ΩX j





∏

X l∈XD

P ′
s
(x l |πl) ·
∏

X i∈X
P ′(x i|πi)



 . (4.3)

Thus, moving out of the sum the conditional probabilities that do not refer to

the states of X j (which are briefly denoted by ∆), Equation (4.3) becomes:

∆ ·
∑

x j∈ΩX j





P
′
s
(x j|π j) ·
∏

X r∈ΓX j

P ′(x r |x j, π̃r)





 , (4.4)

where ΓX j
denotes the children of X j and, for each X r ∈ ΓX j

, Π̃r are the parents

of X r deprived of X j. Therefore, considering that the mass function P ′
s
(X j |π j)
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assigns all the mass to the value fX j
(π j) ∈ ΩX j

, where fX j
is the decision function

associated to s, Equation (4.4) rewrites as

∆ ·
∏

X r∈ΓX j

P ′(x r | fX j
(π j), π̃r). (4.5)

It is therefore sufficient to set Πr :=Π j ∪ Π̃r , and

Ps(X r |πr) := P ′(X r | fX j
(π j), π̃r), (4.6)

to regard Equation (4.5) as the joint mass function of a Bayesian network over

X′ \ {X j} based on the DAG returned by Transformation 1 considered for the

single decision node X j ∈ XD. The thesis therefore follows from a simple iteration

over all the X j ∈ XD.

From this, considering the Bayesian networks 〈G ,Ps〉 for each strategy s ∈ ΩS

as compatible Bayesian networks of a credal network, it is straightforward to

obtain the following result:

Corollary 1. A decision-theoretic specification of a credal network as in Definition 4

defines a credal network over X, based on the DAG G returned by Transformation 1.

The strong extension of 〈G ′,O,P′〉 is therefore intended as the strong ex-

tension K(X) of the credal network considered in Corollary 1. What we show

in the next sections is how to provide decision-theoretic specifications of cre-

dal networks, according to Definition 4, for both separately and non-separately

specified credal networks.

4.1.3 Decision-Theoretic Specification of Non-Separately Specified

Credal Networks

It is worth noting that any credal network defined as in Definition 2 can be

reformulated as in Definition 4, by simply adding a single decision node, which

is parent of all the other nodes (see Figure 4.3).

The conditional mass functions, corresponding to different values of the de-

cision node, are assumed to be those specified by the compatible Bayesian net-

works. This means that, if D denotes the decision node, the states of D index the

compatible Bayesian networks, and P(X i|πi, d) := Pd(X i|πi), where Pd(X i|πi)

are the conditional mass functions specified by the d-th compatible Bayesian

network for each X i ∈ X and πi ∈ ΩΠi
and d ∈ ΩD. This formulation, which is an

example of the CCM transformation [CCM94], is only seemingly local, because

of the arcs connecting the decision node with all the uncertain nodes. However,
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in many cases, this is not the only way to provide a decision-theoretic specifica-

tion of a credal network.

Consider, for example, the class of extensively specified credal networks in-

troduced in Section 2.4.3. We can provide a decision-theoretic specification, as

in Definition 4, of a credal network of this kind by introducing a decision parent

for each node of the original credal network (Figure 4.4). The conditional mass

functions of the uncertain nodes corresponding to different values of the related

decision nodes are assumed to be those specified by the different tables in the

extensive specification. This means that, if X i is an uncertain node and Di the

corresponding decision node, the states di ∈ ΩDi
index the tables Pdi

(X i|Πi) of

the extensive specification for X i , and, for each πi ∈ Πi, P(X i|di,πi) is the mass

function Pdi
(X i|πi) associated to the di-th table of the extensive specification.

E.g., the two tables defined in the extensive specification of the node B for the

credal network in Figure 2.2, can be indexed by a binary decision parent D:

P(B|a, d) =

�

.2

.8

�

P(B|¬a, d) =

�

.3

.7

�

P(B|a,¬d) =

�

.4

.6

�

P(B|¬a,¬d) =

�

.5

.5

�

.

More generally, constraints for the specifications of conditional mass func-

tions relative to different nodes can be similarly represented by decision nodes

which are the parents of these nodes (see for example Figure 4.5).

4.1.4 Decision-Theoretic Specification of Separately Specified Cre-

dal Networks

Finally, to provide a decision-theoretic specification, as required by Definition 4,

of a separately specified credal network, it would suffice to reformulate the se-

parately specified credal network as an extensive credal network whose tables

are obtained considering all the combinations of the vertices of the separately

specified conditional credal sets of the same variable.

As an example, let us consider the node X of a separately specified credal

network defined over the DAG in Figure 4.2. Assume Y to be binary and both

the credal sets K(X |y) and K(X |¬y) to be made of three extreme mass functions.

A requirement for the probability table P(X |Y ) to belong to a set of nine tables,

obtained from all the possible combinations where the first column takes values

in ext[K(X |y)] and the second in ext[K(X |¬y)], is clearly equivalent to leave

the conditional probability mass functions P(X |y) and P(X |¬y) to vary in the

relative credal sets.
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Y X

Figure 4.3: Decision-theoretic specification of a non-separately specified credal

network over the DAG in Figure 4.2. Remember that circles denote uncertain

nodes, while the square is used for the decision node.

Y X

Figure 4.4: Decision-theoretic specification of an extensive credal network over

the DAG in Figure 4.2.

Y X

Figure 4.5: Decision-theoretic specification of a non-separately specified credal

network over the DAG in Figure 4.2. Constraints between the specifications of

the conditional credal sets of the nodes X and Y , and also between the three

remaining nodes are assumed.
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Yet, this approach suffers for an obvious exponential explosion (of the num-

ber of tables) in the input size. A more effective procedure consists in adding

a decision node in between each (uncertain) node and its parents, according to

the following graphical transformation.

Transformation 2. Obtain a DAG G ′ from a DAG G over X by iterating, for each

X i ∈ X, the following operations: (i) add a decision node Di; (ii) draw an arc from

each parent of X i to Di; (iii) delete the arcs connecting the parents of X i with X i;

(iv) draw an arc from Di to X i.

It is straightforward to check that Transformation 2 requires only a number

of operations linear in the input size.

Given a separately specified credal network 〈G ,K〉 over X, it is possible to

consider a decision-theoretic specification of a credal network 〈G ′,O,P′〉, where

G ′ is the DAG returned by Transformation 2, D is the set of decision nodes (one

for each node) added by the same transformation. To complete the decision-

theoretic specification proceed as follows. For each uncertain node X i , consider

the set
⋃

πi∈ΩΠi

ext[K(X i|πi)], i.e., the union of the extreme mass functions of

all the conditional credal sets specified for X i. Let the states di ∈ ΩDi
of the

corresponding decision node Di index the elements of this set. Accordingly,

for each uncertain node X i, the conditional mass function P ′(X i|di) corresponds

to the vertex of the conditional credal set K(X i|πi) associated to di, for each

di ∈ ΩDi
. Regarding decision nodes, for each decision node Di and the related

value πi of the parents, we simply set the subset Ω
πi

Di
⊆ ΩDi

to be such that

{P ′(X i|di)}di∈Ω
πi
Di

are the vertices of K(X i|πi). For this approach, which is clearly

polynomial in the overall number of vertices of the conditional credal sets in K,

we have taken inspiration from probability trees representations, as defined in

[CM02].2

As an example, consider the decision-theoretic specification of a separately

specified credal network over the DAG G in Figure 4.2. The output G ′ returned

by Transformation 2 is the DAG in Figure 4.6. Regarding the quantification,

consider for instance the procedure for the node X . Assume Y to be binary, and

let

ext[K(X |y)] = {P1(X |y), P2(X |y), P3(X |y)}
and

ext[K(X |¬y)] = {P4(X |¬y), P5(X |¬y), P6(X |¬y)}.
For the decision node D added in between X and Y , we set ΩD := {1, 2, 3, 4, 5, 6},
and, for the subsets of ΩD corresponding to the possible values of Y , Ω

y

D :=

2It should be pointed out that the probability tree representation is different as it adds a

variable for each configuration of the parents. Nevertheless the complexity of the representation

does not increase as probability trees can represent asymmetrical irrelevance relationships.
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Y X

Figure 4.6: Decision-theoretic specification of a separately specified credal net-

work over the DAG in Figure 4.2.

{1, 2, 3} and Ω
¬y

D := {4, 5, 6}, whereas, regarding X , we set P ′(X |D = d) :=

Pd(X |yd) for each d ∈ ΩD (where clearly yd := y if d ∈ Ωy

D and yd := ¬y if

d ∈ Ω¬y

D ).

4.2 From Decision-Theoretic to Separate Specification

of Credal Networks

The transformations described in Section 4.1.3 and in Section 4.1.4 can be used

to obtain in polynomial time a decision-theoretic specification of a credal net-

work of any kind.3 In this section, we prove that any decision-theoretic speci-

fication of a credal network over X can equivalently be regarded as a separate

specification of a credal network over X′ := (XD,X). This transformation is tech-

nically straightforward: it is based on representing decision nodes by uncertain

nodes (Figure 4.7) with vacuous conditional credal sets, as formalized below.

Transformation 3. Given a decision-theoretic specification of a credal network

〈G ′,O,P′〉 over X, obtain a separately specified credal network 〈G ′,K〉 over X′ :=
(XD,X), where the conditional credal sets in K are as follows, for each X i ∈ X and

πi ∈ ΩΠi
:

K(X i |πi) :=







P ′(X i|πi) if X i ∈ X

KΩπi
Xi

(X i) if X i ∈ XD,
(4.7)

3As a side note, it is important to be aware that a credal set can have a very large number of

vertices, and this can still be a source of computational problems for algorithms (such as those

based on the CCM transformation) that explicitly enumerate the vertices of a net’s credal sets.

This is a well-know issue, which in the present setup is related to the possibly large number of

states for the decision nodes in the decision-theoretic representation of a credal net.
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where P ′(X i|πi) is the mass function specified in P′ and KΩπi
Xi

(X i) the vacuous credal

set for Ω
πi

X i
.

Y X

Figure 4.7: The DAG associated to the separately specified credal network re-

turned by Transformation 3, from the decision-theoretic specification of the cre-

dal network based on the DAG in Figure 4.6. The conditional credal sets of the

white nodes (corresponding to the original uncertain nodes) are precisely speci-

fied, while the gray nodes (i.e., new uncertain nodes corresponding to the former

decision nodes) represent variables whose conditional credal sets are vacuous.

The (strong) relation between a decision-theoretic specification of a credal

network 〈G ′,O,P′〉 over X and the separately specified credal network 〈G ′,K〉
over X′ := (XD,X) returned by Transformation 3 is outlined by the following

result:

Theorem 4. Let K̃(X) be the marginal for X of the strong extension K̃(X′) of 〈G ′,K〉
and K(X) the strong extension of 〈G ′,O,P′〉. Then:

K(X) = K̃(X). (4.8)

Proof. Consider a vertex of the strong extension of 〈G ′,K〉, i.e., a joint mass

function P̃(X′) ∈ ext[K̃(X′)]. According to Proposition 1, P̃(X′) can be obtained

by the product, as in Equation (2.8), of a combination of vertices of the condi-

tional credal sets in K. Thus, for each X i ∈ XD and πi ∈ ΩΠi
, P̃(X i|πi) is a vertex

of the vacuous credal set KΩπi
Xi

(X i), i.e., a degenerate mass function over X i as-

signing all the mass to a single x̃ i ∈ ΩX i
. Consider, on 〈G ′,O,P′〉, the decision

function fX i
of X i such that fX i

(πi) = x̃ i for each πi ∈ ΩΠi
. Let s̃ ∈ ΩS be the

strategy corresponding to the array of decision functions selected in this way for

each X i ∈ XD. Clearly Ps̃(X
′) = P̃(X′). Thus, considering all the vertices of K̃(X′),

we conclude K̃(X′)⊆ K(X′).
In order to prove the inverse inclusion, given a strategy s ∈ ΩS, consider

the joint mass function Ps(X
′) associated to the Bayesian network 〈G ′,P′

s
〉. As



40 4.3 An Application: 2U for Extensive Specifications

shown in Section 4.1.2, the elements of P′
s

corresponding to the nodes X i ∈ X

are just the same conditional probability mass functions P ′(X i|πi) specified in

Equation (4.7). On the other side, the elements of P′
s

corresponding to the nodes

X i ∈ XD are (degenerate) mass functions reproducing the decision functions of s,

and should therefore belong to the vacuous credal sets in Equation (4.7). Thus,

Ps(X
′) ∈ K̃(X′), and hence K(X′)⊆ K̃(X′).

Overall we have K(X′) = K̃(X′), from which the thesis follows by a simple

marginalization.

From Theorem 4, it is straightforward to obtain the following result:

Corollary 2. Any inference problem on a credal network obtained by a decision-

theoretic specification can be equivalently solved in the separately specified credal

network returned by Transformation 3.

Let us stress that Transformation 3 is very simple, and it is surprising that it is

presented here for the first time, as it is really the key to “separate” the credal sets

of non-separately specified nets: in fact, given a non-separately specified credal

network, one can obtain a decision-theoretic specification using the prescriptions

of Section 4.1.3, and apply Transformation 3 to obtain a separately specified

credal network. According to Corollary 2, then, any inference problem on the

original credal network can equivalently be represented on this new separately

specified credal network. In the following sections, two examples of applications

of this procedure are presented. 4

4.3 An Application: 2U for Extensive Specifications

The NP-hardness of credal networks belief updating has been proved even for

singly connected topologies [dCC05]. Nevertheless, a singly connected credal

network with binary variables can be efficiently updated by the 2U algorithm

[FZ98]. At the present moment, 2U is the only polynomial-time algorithm for

exact updating of credal networks, but it is designed only for separately specified

credal networks. Here we show how 2U can be readily extended to deal exactly

and efficiently also with extensively specified credal networks.

Consider a singly connected credal network as in Figure 4.8.a, defined over

a set of binary variables with extensive specification of the conditional proba-

bility tables. According to the discussion of Section 4.1.3, a decision-theoretic

4It should be pointed out that the transformation described in Section 4.1.4, returning a

decision-theoretic specification of a separately specified credal network, is not the inverse of

Transformation 3, as the sequential application of the two transformations produces a model

defined over a larger domain.
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specification of this credal network can be obtained by simply adding to each

node a decision parent indexing the different tables. Instead of a single decision

parent, a set of binary decision parents whose joint states correspond to the ta-

bles can be equivalently adopted (Figure 4.8.b). This means that, for example, a

set of four probability tables providing an extensive specification of a node can

be indexed by a single decision parent with four states, or by the joint states of

two binary decision parents. Clearly, if the number of tables is not an integer

power of two, this procedure introduces a number of redundant joint states for

the decision parents.

Finally, from the decision-theoretic specification, we obtain a separately spe-

cified credal network through Transformation 3 (Figure 4.8.c). The overall pro-

cedure preserves the topology of the credal network, which remains singly con-

nected, and is still defined over binary variables only. We can therefore update

the credal network by 2U without making any change to the algorithm itself.

4.4 Application to Conservative Inference Rule

As a more involved application of the results in Sections 4.1 and Section 4.2,

let us consider the CIR-based updating problem detailed in Section 3.1. In Sec-

tion 4.4.1, the problem is mapped into a standard updating problem on a sepa-

rately specified credal network, which can be updated by standard techniques.

The result follows from a general equivalence relation regarding CIR-based in-

ference in general. In the special case of updating, we also obtain, by similar

transformations, a hardness proof in Section 4.4.2.

4.4.1 Algorithms for CIR-Based Inference

Consider a Bayesian network over X := (X̃,XI), assigning positive probability to

any joint state, where XI are the variables missing by a process we do not know.

As shown in Equation (3.1) in the special case of updating, CIR-based inference

requires the evaluation of all the possible completions of the missing variables

XI . This is equivalent to making inferences using the following credal set:

KXI
(X̃) := CH{P(X̃|xI)}xI∈ΩXI

, (4.9)

where the conditional mass function P(X̃|xI) is obtained from the joint mass

function P(X) associated to the Bayesian network.

The Bayesian network becomes an extensively specified credal network over

(X̃,XI ,X
′
I
) after the transformation B2C defined in Section 3.1.2. A decision-

theoretic specification of this non-separately specified credal network can be
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(a)

(b)

(c)

Figure 4.8: (a) A singly connected credal network over four binary variables;

(b) its decision-theoretic specification with binary decision parents, assuming

extensive specifications by sets of two tables for the root nodes, and four tables

for the others; (c) the separately specified credal network returned by Transfor-

mation 3.
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indeed obtained by simply adding to each node X ′ ∈ X′
I

a decision parent of X ′,
say X ′′, indexing the different tables. Such decision-theoretic credal network

specification corresponding to the CIR-based inference problem is considered in

the following theorem.

Theorem 5. The following equivalence between credal sets holds:

KXI
(X̃) = K(X̃|x′

I
), (4.10)

where the conditional credal set on the right-hand side is obtained from the strong

extension of the decision-theoretic credal network specification corresponding to the

CIR-based inference problem.

Proof. Let P(X̃,XI) be the joint probability mass function associated to the Bay-

esian network. Let also X′′
I

denote the array of decision nodes of the credal

network. For each X ∈ XI , the corresponding elements of X′
I

and X′′
I

are in-

dicated as X ′ and X ′′, i.e., X ′ is the auxiliary child added to X according to the

transformation B2C defined in Section 3.1.2,and X ′′ is the decision parent added

to X ′ according to the prescriptions in Section 4.1.3. Let also x
′ ∈ ΩX ′ denote the

component corresponding to X ′ of x
′
I
∈ ΩX′I

(i.e., the value of the binary variable

X ′ corresponding to the first row of the tables P(X ′|X ) in Equation (3.2)). Note

that X ′′ indexes the set of probability tables P(X ′|X ) in Equation (3.2), which

are in correspondence with the elements of ΩX . We can therefore set ΩX ′′ := ΩX

and regard the state X ′′ = x , for each x ∈ ΩX , as the index of the table in Equa-

tion (3.2) such that P(X ′ = x
′|X = x) = 1. Thus, the elements of ΩX′′

I
, indexing

the compatible Bayesian networks of the credal network, can be identified with

those of ΩXI
. Let PX′′

I
=x̂I
(X̃,XI ,X

′
I
) denote, for each x̂I ∈ ΩX′′

I
, the joint probabi-

lity mass function of the compatible Bayesian network corresponding to x̂I . The

following factorization clearly holds:

PX′′I =x̂I
(x̃,xI ,x

′
I
) = P(x̃,xI) ·
∏

X∈XI

�

PX′′I =x̂I
(x ′|x)
�

. (4.11)

According to Equation (3.2), we have:

PX̂′′I =x̂I
(x
′|x) = δx , x̂ , (4.12)

where δx , x̂ is equal to one if and only if x = x̂ and zero otherwise. Thus, from

Equation (4.11) and Equation (4.12), it follows that:
∑

xI∈ΩXI

PX′′
I
=x̂I
(x̃,xI ,x

′
I
) = P(x̃, x̂I). (4.13)

From this we obtain

PX′′
I
=x̂I
(X̃|x′

I
) = P(X̃|XI = x̂I). (4.14)

The thesis follows by simply considering Equation (4.14) for each x̂I ∈ ΩXI
.
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Equation (4.10) can be used to map general CIR-based inference problems in

Bayesian networks into corresponding standard inferences on credal networks.

The equivalence with respect to CIR-based updating in Equation (3.1) can be

regarded as an obvious corollary of Theorem 5.

Finally, according to Theorem 4, the conditional credal set on the right-hand

side of Equation (4.10) can be equivalently obtained from the strong extension

of the separately specified credal network returned by Transformation 3. Over-

all, this procedure, which is illustrated in Figure 4.9, maps CIR-based inference

problems in Bayesian networks into corresponding problems in separately speci-

fied credal networks, for which existing algorithms can be employed. An analo-

gous procedure could be developed to address CIR-based inference problems on

credal networks.

(a) (b) (c) (d)

Figure 4.9: (a) A CIR-based inference problem on a Bayesian network where the

missing variables XI correspond to the root nodes; (b) the corresponding exten-

sive credal network returned by the transformation B2C defined in Section 3.1.2;

(c) the decision-theoretic specification of this extensive credal network; (d) the

separately specified credal network returned by Transformation 3.

4.4.2 Hardness of CIR-Based Updating

In this section we determine the computational complexity of CIR-based updat-

ing on Bayesian networks.

To this end, consider the class of separately specified credal networks such

that the specification of the non-root nodes is precise, i.e., the corresponding

conditional credal sets are reduced to a single conditional probability mass func-

tion. These credal networks are called to be with precise non-root nodes and are
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considered in the following theorem.

Theorem 6. Any updating problem on a credal network with precise non-root

nodes can be mapped into a CIR-based updating problem on a Bayesian network in

linear time.

Proof. Consider a (separately specified) credal network over X with precise non-

root nodes. A decision-theoretic specification of this credal network can be ob-

tained by simply adding to each root node a decision parent node indexing the

vertices of the unconditional credal set associated to this node. Let XD be the

decision nodes added to the credal network by the transformation. For each

xD ∈ ΩXD
, let PxD

(X) be the joint probability mass function associated to the

compatible Bayesian network indexed by xD.

Obtain a Bayesian network from the decision-theoretic specification of the

credal network, by simply regarding the decision root nodes XD as uncertain

nodes for which uniform unconditional mass functions have been specified. Let

P̃(X,XD) be the joint probability mass function associated to this Bayesian net-

work. It is straightforward to check that, for each xD ∈ ΩXD
,

P̃(x|xD) = PxD
(x). (4.15)

Thus, a generic updating problem on the credal network can be mapped into

a CIR-based updating problem on this Bayesian network, by simply assuming

the variables XD to be missing by an unknown mechanism.

Remarkably, the hardness proof of updating with credal networks reported in

[dCC05, Theorem 3] is based on the reduction of a Boolean satisfiability [GJ79]

problem to the updating of a (singly-connected) credal network with precise

non-root nodes. According to Theorem 6, it is therefore straightforward to con-

clude the following result:

Corollary 3. CIR-based updating on Bayesian networks is NP-hard.

4.5 Summary and Conclusions

We have defined a new graphical language to formulate any type of credal net-

work, both separately and non-separately specified. We have also shown that

any net represented with the new language can be easily transformed into an

equivalent separately specified credal net. This implies, in particular, that non-

separately specified nets have an equivalent separately specified representation,

for which updating algorithms are available in the literature.
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Two examples of applications of this procedure have been detailed: the gen-

eralization of the 2U algorithm to the extensive case, and a general algorithmic

procedure to solve CIR-based inference on Bayesian networks. Additionally, we

have also exploited our formalism to prove the NP-hardness of CIR-based updat-

ing on Bayesian networks.

With respect to future work, many other developments seem to be possible.

First of all it is important to note that the proposed transformation also shows

that a subclass of separately specified credal networks can be used to solve infer-

ence problems for arbitrary specified credal nets: this is the class of nets in which

the credal sets are either vacuous or precise. An important development of the

approximate L2U algorithm is particularly suited just for such a class, and will

be considered in Chapter 5. Finally, the strong connection between the language

for credal networks introduced in this paper and the formalism of decision net-

works (including influence diagrams), seems to be particularly worth exploring

for cross-fertilization between the two fields.



Chapter 5

Generalized Loopy 2U: A New

Algorithm for Approximate Inference in

Credal Networks

Credal networks generalize Bayesian networks relaxing numerical parameters.

As described in Section 2.5, this considerably expands expressivity, but makes

belief updating a hard task even on polytrees. Nevertheless, if all the variables

are binary, polytree-shaped credal networks can be efficiently updated by the 2U

algorithm (see Section 2.6.1). In the first part of this chapter we present a bina-

rization algorithm that makes it possible to approximate an updating problem in

a credal net by a corresponding problem in a credal net over binary variables.

The procedure leads to outer bounds for the original problem. The binarized

nets are in general multiply connected, but can be updated by the loopy vari-

ant of 2U. The overall procedure is very fast and provides relatively accurate

inferences.

A significant improvement of the quality of this approximation is obtained

in the second part of this chapter, where we develop a new efficient algorithm

for approximate belief updating in credal nets. The algorithm is based on an

important representation result we prove for general credal nets: that any cre-

dal net can be equivalently reformulated as a credal net with binary variables;

moreover, the transformation, which is considerably more complex than in the

Bayesian case, can be implemented in polynomial time. The equivalent binary

credal net is then updated by L2U. Thus, we generalize L2U to non-binary credal

nets, obtaining an accurate and scalable algorithm for the general case, called

GL2U, which is approximate only because of its loopy nature. The accuracy of

the inferences of the algorithm is evaluated by promising empirical tests.

47
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5.1 Binarization Algorithms

As noted in Section 2.6.1, 2U is the only efficient algorithm for exact updating

of credal networks. 2U has two main limitations: the topology of the network,

which is assumed to be singly connected, and the number of possible states for

the variables, which is limited to two for any variable. The limitation about

topology is partially overcome by L2U, which can be employed to update mul-

tiply connected credal networks. Here, we overcome also the limitation of 2U

about the number of possible states. To this end, a map is defined to transform

a generic updating problem on a credal net into a second updating problem on

a corresponding binary credal net. First, we show how to represent a random

variable as a collection of binary variables (Section 5.1.1). Secondly, we em-

ploy this idea to represent a Bayesian network as an equivalent binary Bayesian

network (Section 5.1.3) with an appropriate graphical structure (Section 5.1.2).

Finally, we extend this binarization procedure to the case of credal networks

(Section 5.1.4).1

5.1.1 Binarization of Variables

Assume di, which is the number of states for X i , to be an integer power of two,

i.e., ΩX i
= {x i0, . . . , x i(di−1)}, with di = 2mi and mi integer. An obvious one-to-one

correspondence between the states of X i and the joint states of an array of mi

binary variables (X̃ i(mi−1), . . . , X̃ i1, X̃ i0) can be established: we assume that the

joint state ( x̃ i(mi−1), . . . , x̃ i0) ∈ {0, 1}mi is associated to x il ∈ ΩX i
, where l is the

integer whose mi-bit binary representation is the sequence x̃ i(mi−1) · · · x̃1 x̃0. We

refer to this procedure as the binarization of X i and the binary variable X̃ i j is

called the j-th order bit of X i. As an example, the state x i6 of X i, assuming for

X i eight possible values, i.e., mi = 3, would be represented by the joint state

(1, 1, 0) for the three binary variables (X̃ i2, X̃ i1, X̃ i0).

If the number of states of X i is not an integer power of two, the variable is

called not binarizable. In this case we can make X i binarizable simply adding

to ΩX i
a number of impossible states2 up the the nearest power of two. For ex-

ample we can make binarizable a variable with six possible values by adding

two impossible states. Clearly, once the variables of X have been made binariz-

able, there is an obvious one-to-one correspondence between the joint states of

X and those of the array of the binary variables returned by the binarization of

X, say X̃ = (X̃1(m1−1), . . . , X̃10, X̃2(m2−1), . . . , X̃n(mn−1), . . . , X̃n0). Regarding notation,

1The work presented in this section has been done in cooperation with Jaime Shinsuke Ide

and Fabio Gagliardi Cozman.
2This denomination is justified by the fact that, in the following, we will set the probabilities

for these states equal to zero.
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for each x ∈ ΩX, x̃ is assumed to denote the corresponding element of ΩX̃ and

vice versa. Similarly, x̃E denotes the joint state for the bits of the nodes in XE

corresponding to xE.

5.1.2 Graph Binarization

Let G be a DAG associated to a set of binarizable variables X. We call the bina-

rization of G with respect to X, a second DAG G̃ associated to the variables X̃

returned by the binarization of X, obtained with the following prescriptions: (i)

two nodes of G̃ corresponding to bits of different variables in X are connected

by an arc if and only if there is an arc with the same orientation between the

relative variables in X; (ii) an arc connects two nodes of G̃ corresponding to bits

of the same variable of X if and only if the order of the bit associated to the node

from which the arc departs is lower than the order of the bit associated to the

remaining node.

Figure 5.1 reports a multiply connected DAG G and its binarization G̃ . As an

example of Prescription (i) for G̃ , note the arcs connecting all the three bits of

X0 with all the two bits of X2, while, considering the bits of X0, the arcs between

the bit of order zero and those of order one and two, as well as that between the

bit of order one and that of order two, are drawn because of Prescription (ii).

X0

X1 X2

X3

X̃ 0
0

X̃ 1
0

X̃ 2
0

X̃ 0
2

X̃ 0
1

X̃ 1
2

X̃ 0
3

X̃ 1
3

Figure 5.1: A multiply connected DAG (left) and its binarization (right) assum-

ing d0 = 8, d1 = 2 and d2 = d3 = 4.

5.1.3 Bayesian Networks Binarization

The notion of “binarizability” extends to Bayesian networks as follows: 〈G ,P〉 is
binarizable if and only if X is a set of binarizable variables. A non-binarizable
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Bayesian network can be made binarizable by the following procedure: (i) make

the variables in X binarizable; (ii) specify zero values for the conditional prob-

abilities of the impossible states, i.e., P(x i j|πi) = 0 for each j ≥ di, for each

πi ∈ Ωπi
and for each i = 1, . . . , n; (iii) arbitrarily specify the mass function

P(X i|πi) for each πi such that at least one of the states of the parents Πi corres-

ponding to πi is an impossible state, for i = 1, . . . , n. Considering Equation (2.1)

and Prescription (ii), it is easy to note that, if the joint state x = (x1, . . . , xn) of

X is such that at least one of the states x i, with i = 1, . . . , n, is an impossible

state, then P(x) = 0, irrespectively of the values of the mass functions specified

as in Prescription (iii). Thus, given a non-binarizable Bayesian network, the pro-

cedure described in this paragraph returns a binarizable Bayesian network that

preserves the original probabilities. This makes possible to focus on the case of

binarizable Bayesian networks without loss of generality, as in the following:

Definition 5. Let 〈G ,P〉 be a binarizable Bayesian network over X. The binariza-

tion of 〈G ,P〉 is a binary Bayesian network 〈G̃ , P̃〉 over X̃ obtained as follows: (i)

G̃ is the binarization of G with respect to X (ii) the joint probability mass func-

tion P̃(X̃) associated to 〈G̃ , P̃〉 corresponds to the following specifications of the

conditional probabilities for the variables in X̃ given their parents:3

P̃( x̃ i j| x̃ i( j−1), . . . , x̃ i0, π̃i) ∝
∑∗

l
P(x il|πi)

i=1, . . . , n

j=0, . . . , mi − 1

πi ∈ ΩΠi
,

(5.1)

where the sum
∑∗

is restricted to the states x il ∈ ΩX i
such that the first j + 1 bits

of the binary representation of l are x̃ i0, . . . , x̃ i j, πi is the joint state of the parents

of X i corresponding to the joint state π̃i for the bits of the parents of X i , and the

symbol ∝ denotes proportionality.

The variables (X̃ i( j−1), . . . , X̃ i0, Π̃i) are clearly the parents of X̃ i j according to

G̃ . In the following, the joint state ( x̃ i( j−1), . . . , x̃ i0, π̃i) will be denoted as πX̃ i j
.

As an example of the procedure described in Definition 5, let X0 be a variable

with four states associated to a parentless node of a Bayesian network. Assuming

for the corresponding mass function

[P(x00), P(x01), P(x02), P(x03)]
T = [.2, .3, .4, .1]T ,

we can use Equation (5.1) to obtain the mass functions associated to the two

bits of X0 in the binarized Bayesian network. This leads to:

P̃(X̃00) = [.6, .4]T ,

3If the sum on the right-hand side of Equation (5.1) is zero for both the values of X̃ i j , the

corresponding conditional mass function is arbitrary specified.
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P̃(X̃01|X̃00 = 0) = [
1

3
,
2

3
]T ,

P̃(X̃01|X̃00 = 1) = [
3

4
,
1

4
]T ,

where an array notation [P(X̃ = 0), P(X̃ = 1)] is employed to denote a mass

function of a binary variable X̃ .

A Bayesian network and its binarization are basically the same probabilistic

model and we can represent any updated belief in the original Bayesian network

as a corresponding belief in the binarized Bayesian network, according to the

following:

Theorem 7. Let 〈G ,P〉 be a binarizable Bayesian network and 〈G̃ , P̃〉 its binariza-

tion. Then, given a queried variable Xq ∈ X and an evidence XE = xE:

P(xq|xE) = P̃( x̃q(mq−1) . . . x̃q0| x̃E), (5.2)

where ( x̃q(mq−1), . . . , x̃q0) is the joint state of the bits of Xq corresponding to xq.

Proof. With some algebra it is easy to check that the inverse of Equation (5.1)

is:

P(x il|πi) =

mi−1
∏

j=0

P̃( x̃ i j| x̃ i( j−1), . . . , x̃ i0, π̃i), (5.3)

where ( x̃ i(mi−1), . . . , x̃ i0) is the mi-bit binary representation of l. Thus, ∀x ∈ ΩX:

P(x) =

n
∏

i=1

P(x i|πi) =

n
∏

i=1

mi−1
∏

j=0

P̃( x̃ i j| x̃ i( j−1), . . . , x̃ i0, π̃i) = P̃(x̃), (5.4)

where the first passage is because of Equation (2.1), the second because of Equa-

tion (5.3) and the third because of the Markov condition for the binarized Bay-

esian network. Thus:

P(xq|xE) =
P(xq, xE)

P(xE)
=

P̃( x̃q(mq−1), . . . , x̃q0, x̃E)

P̃( x̃E)
, (5.5)

that proves the thesis as in Equation (5.2).

5.1.4 Extension to Credal Networks

In order to generalize the binarization from Bayesian networks to non-separately

specified credal networks, we first extend the notion of binarizability: a credal

network 〈G ,K〉 over X is called binarizable if and only if X is binarizable. A
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non-binarizable credal network can be made binarizable by the following proce-

dure: (i) make the variables in X binarizable; (ii) specify zero upper (and lower)

probabilities for conditional probabilities of the impossible states: P(x i j|πi) =

P(x i j|πi) = 0 for each j ≥ di, for each πi ∈ ΩΠi
, and for each i = 1, . . . , n; (iii)

arbitrarily specify the conditional credal sets K(X i|πi) for each πi such that at

least one of the states of the parents Πi corresponding to πi is an impossible

state, for i = 1, . . . , n. According to Prescription (i), it is easy to check that, if

the joint state x= (x1, . . . , xn) of X is such that at least one of the states x i, with

i = 1, . . . , n, is an impossible state, then P(x) = 0, irrespectively of the condi-

tional credal sets specified as in the Prescription (iii), and for each P(X) ∈ K(X).

Thus, given a non-binarizable credal network, the procedure described in this

paragraph returns a binarizable credal network, that preserves the original prob-

abilities. This makes possible to focus on the case of binarizable credal networks

without loss of generality, as in the following:

Definition 6. Let 〈G ,P(X)〉 be a binarizable credal network.4 The binarization

of 〈G ,P(X)〉 is a binary credal network 〈G̃ , P̃(X̃)〉, with G̃ binarization of G with

respect to X and the following separate specifications of the extreme probabilities:5

P̃( x̃ i j|πX̃ i j
) ≡ min

k=1,...,m
P̃k( x̃ i j|πX̃ i j

), (5.6)

where 〈G̃ , P̃k(X̃)〉 is the binarization of 〈G , Pk(X)〉 for each k = 1, . . . , m.

Definition 6 implicitly requires the binarization of all the Bayesian networks

〈G , Pk(X)〉 associated to 〈G ,P(X)〉, but the right-hand side of Equation (5.6) is

not a minimum over all the Bayesian networks associated to a 〈G̃ , P̃(X̃)〉, being

in general P̃(X̃) 6= {P̃k(X̃)}mk=1
. This means that it is not possible to represent an

updating problem in a credal network as a corresponding updating problem in

the binarization of the credal network, and we should therefore regard 〈G̃ , P̃(X̃)〉
as an approximate description of 〈G ,P(X)〉.

Remarkably, according to Equation (5.1), the conditional mass functions for

the bits of X i relative to the value π̃i, can be obtained from the single mass func-

tion P(X i|πi). Therefore, if we use Equation (5.1) with Pk(X) in place of P(X) for

each k = 1, . . . , m to compute the probabilities P̃k( x̃ i j|πX̃ i j
) in Equation (5.6), the

4In the following, we adopt the compact notation P(X) to denote the collection of joint pro-

bability mass functions corresponding to the compatible Bayesian networks of a credal network.

Accordingly, we denote a credal network as 〈G ,P(X)〉 and a Bayesian network as 〈G , P(X)〉.
5Note that in the case of a binary variables a specification of the extreme probabilities as in

Equation (5.6) is equivalent to the explicit specification of the (two) vertices of the conditional

credal set K(X̃ i j |πX̃ i j
): if X̃ is a binary variable and we specify P(X̃ = 0) = s and P(X̃ = 1) = t,

then the credal set K(X̃ ) is the convex hull of the mass functions P1(X̃ ) = (s, 1− s) and P2(X̃ ) =

(1− t, t).
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only mass function required to do such calculations is Pk(X i |πi). Thus, instead

of considering all the joint mass functions Pk(X), with k = 1, . . . , m, we can re-

strict our attention to the conditional mass functions P(X i|πi) associated to the

elements of the conditional credal set K(X i |πi) and take the minimum, i.e.,

P̃( x̃ i j|πX̃ i j
) = min

P(X i |πi)∈K(X i |πi)
P̃( x̃ i j|πX̃ i j

), (5.7)

where P̃( x̃ i j|πX̃ i j
) is obtained from P(X i |πi) using Equation (5.1) and the mini-

mization on the right-hand side of Equation (5.7) can be clearly restricted to the

vertices of K(X i |πi). The procedure is therefore linear in the input size.

As an example, let X0 be a variable with four possible states associated to

a parentless node of a credal network. Assuming that the credal set K(X0)

is the convex hull of the mass functions (.2, .3, .4, .1), (.25, .25, .25, .25), and

(.4, .2, .3, .1), we can use Equation (5.1) to compute the mass functions associ-

ated to the two bits of X0 for each vertex of K(X0) and then consider the min-

ima as in Equation (5.7), obtaining: P̃(X̃00) = (.5, .3), P̃(X̃01|X̃00 = 0) = (1

3
, 3

7
),

P̃(X̃01|X̃00 = 1) = (1

2
, 1

4
).

The equivalence between an updating problem in a Bayesian network and in

its binarization as stated by Theorem 7 is generalizable in an approximate way

to the case of credal networks, as stated by the following:

Theorem 8. Let 〈G ,P(X)〉 be a binarizable credal network and 〈G̃ , P̃(X̃)〉 its bina-

rization. Then, given a queried variable Xq ∈ X and an evidence XE = xE:

P(xq|xE)≥ P̃( x̃q(mq−1), . . . , x̃q0| x̃E), (5.8)

where ( x̃q(mq−1), . . . , x̃q0) is the joint state of the bits of Xq corresponding to xq.

In order to prove Theorem 8, we first need the following result.

Lemma 1. Let {〈G , Pk(X)〉}mk=1
be the Bayesian networks associated to a credal

network 〈G ,P(X)〉. Let also 〈G̃ , P̃(X̃)〉 be the binarization of 〈G ,P(X)〉. Then, the

Bayesian network 〈G̃ , P̃k(X̃)〉, which is the binarization of 〈G , Pk(X)〉, specifies a

joint mass function that belongs to the strong extension of 〈G̃ , P̃(X̃)〉, i.e.,

P̃k(X̃) ∈ K̃(X̃), (5.9)

for each k = 1, . . . , m, with K̃(X̃) denoting the strong extension of 〈G̃ , P̃(X̃)〉.

Proof. As noted in Section 2.4, the strong extension of 〈G̃ , P̃(X̃)〉 is:

K̃(X̃) := CH
n ∏

X̃ i j∈ X̃

P̃(X̃ i j |ΠX̃ i j
) : P̃(X̃ i j|πX̃ i j

) ∈ K̃(X̃ i j|πX̃ i j
)
∀πX̃ i j

∈ ΩΠX̃ i j

∀X̃ i j ∈ X̃

o

.

(5.10)
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On the other side, considering the Markov condition for 〈G̃ , P̃k(X̃)〉, we have:

P̃k(X) =
∏

X̃ i j∈X̃

P̃k(X̃ i j |ΠX̃ i j
). (5.11)

But, for each πX̃ i j
∈ ΩΠi j

and X̃ i j ∈ X̃, the conditional mass function P̃k(X̃ i j |πX̃ i j
)

belongs to the conditional credal set K̃(X̃ i j|πX̃ i j
) because of Equation (5.6). Thus,

the joint mass function in Equation (5.11) belongs to the set in Equation (5.10),

and that holds for each k = 1, . . . , m.

Lemma 1 basically states an inclusion relation between the strong exten-

sion of 〈G̃ , P̃(X̃)〉 and the set of joint mass functions {Pk(X)}mk=1
, which, accord-

ing to the equivalence in Equation (5.4), is just an equivalent representation of

〈G ,P(X)〉. This will be used to prove the relation between inferences in a credal

network and in its binarization as stated by Theorem 8.

Proof of Theorem 8. We have:

P(xq|xE) = min
k=1,...,m

Pk(xq|xE) = min
k=1,...,m

P̃k( x̃q(mq−1), . . . , x̃q0| x̃E), (5.12)

where the first passage is because of Equations (2.10) and (2.2), and the second

because of Theorem 7 referred to the Bayesian network 〈G , Pk(X)〉, for each

k = 1, . . . , m.

On the other side, the lower posterior probability probability on the right-

hand side of Equation (5.8) can be equivalently expressed as:

P( x̃q(mq−1), . . . , x̃q0| x̃E) = min
P̃(X̃)∈K̃(X̃)

P̃( x̃q(mq−1), . . . , x̃q0| x̃E), (5.13)

where K̃(X̃) is the strong extension of 〈G̃ , P̃(X̃)〉. Considering the minima on the

right-hand sides of Equations (5.12) and (5.13), we observe that they refer to the

same function and the first minimum is over a domain that is included in that of

the second because of Lemma 1. Thus, the lower probability in Equation (5.12)

cannot be less than that on Equation (5.13), that is the thesis.

The inequality in Equation (5.8) together with its analogous for the upper

probabilities provides an outer bound for the posterior interval associated to a

generic updating problem in a credal network. Such approximation is the pos-

terior interval for the corresponding problem on the binarized credal network.

Note that L2U cannot update joint states of two or more variables: this means

that we can compute the right-hand side of Equation (5.8) by a direct application

of L2U only in the case mq = 1, i.e, if the queried variable Xq is binary.
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If Xq has more than two possible states, a simple transformation of the bina-

rized credal network is necessary to apply L2U. The idea is simply to define an

additional binary random variable, which is true if and only if

(X̃q(mq−1), . . . , X̃q0) = ( x̃q(mq−1), . . . , x̃q0).

This variable is a deterministic function of some of the variables in X̃, and

can therefore be easily embedded in the credal network 〈G̃ , P̃(X̃)〉. We sim-

ply add to G̃ a binary node, say C x̃q(mq−1),..., x̃q0
, with no children and whose par-

ents are X̃q(mq−1), . . . , X̃q0, and specify the probabilities for the state 1 (true) of

C x̃q(mq−1),..., x̃q0
, conditional on the values of its parents X̃q(mq−1), . . . , X̃q0, equal to

one only for the joint value of the parents ( x̃q(mq−1), . . . , x̃q0) and zero otherwise.

Then, it is straightforward to check that:

P̃( x̃q(mq−1), . . . , x̃q0| x̃E) = P̃
′
(C x̃q(mq−1),..., x̃q0

= 1| x̃E), (5.14)

where P′ denotes the lower probability in the credal network with the additional

node. Thus, according to Equation (5.14), if Xq has more than two possible

values, we simply add the node C x̃q(mq−1),..., x̃q0
and run L2U on the modified credal

network.

Overall, the joint use of the binarization techniques described in this section,

with the L2U algorithm represents a general procedure for efficient approximate

updating in credal networks. Clearly, the lack of a theoretical quantification of

the outer approximation provided by the binarization as in Theorem 8, together

with the fact that the posterior probabilities computed by L2U can be lower as

well as upper approximations, suggests the opportunity of a numerical investi-

gation of the quality of the overall approximation, which is the argument of the

next section.

5.1.5 Numerical Tests

We have implemented a binarization algorithm to binarize credal networks as

in Definition 6 and run experiments for two sets of 50 random credal networks

based on the topology of the Alarm network [BSCC89]. The binarized networks

were updated by an implementation of L2U, choosing the node “VentLung”,

which is a binary node, as target variable, and assuming no evidences. The

L2U algorithm converges after 3 iterations and the overall computational time

is quick: posterior beliefs for the networks were produced in less than one sec-

ond in a Pentium computer, while the exact calculations used for the compar-

isons, based on branch-and-bound techniques [dCC04], took a computational
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time between 10 and 25 seconds for each simulation.6 Results can be viewed in

Figure 5.2.

As a comment, we note a good accuracy of the approximations with a mean

square error around 3% and very small deviations. Remarkably the quality of the

approximation is nearly the same for both the sets of simulations. Furthermore,

we observe that the posterior intervals returned by the approximate method al-

ways include the corresponding exact intervals. This seems to suggest that the

approximation due to the binarization dominates that due to L2U. It should also

be pointed out that the actual difference between the computational time re-

quired by the two approaches would dramatically increase for larger networks:

the computational complexity of the branch-and-bound method used for exact

updating is exponential in the input size, while both our binarization algorithm

and L2U (assuming that it converges) take a linear time; of course both the

approaches have an exponential increase with an increase in the number of cat-

egories for the variables.

5.2 Exact Binarization & GL2U

In this section we improve the “binarization + L2U” updating procedure con-

sidered in the previous section. Such improvement is based on an important

representation result: that any credal network can be equivalently reformulated

as one with binary variables. The corresponding transformation, which is con-

siderably more complex than in the Bayesian case, is based on two distinct trans-

formations: (i) first we reformulate the original credal network as a separately

specified model over a wider domain by means of its decision-theoretic specifi-

cation according to the procedures described in Sections 4.1 and 4.2, (ii) then,

we apply the binarization described in Section 5.1.4.

We prove that the sequential application of these two transformations, orig-

inally developed for independent reasons, returns an equivalent binary repre-

sentation of the original credal network (Section 5.2.1). Such equivalent binary

credal network can be finally updated by L2U. Overall, that leads to a gener-

alized loopy 2U (GL2U) algorithm for the updating in general credal networks,

whose only source of approximation is the loopy part (Section 5.2.2). The al-

gorithm, which takes polynomial time (Section 5.2.3), has been implemented

in a software tool. Experimental evaluations in Section 5.2.4 show that its ac-

curacy is comparable to that of state-of-the-art approximate methods for credal

networks. This, together with its scalability, makes of GL2U the algorithm of

choice especially for large nets.

6The exact inferences have been computed by Cassio Polpo de Campos.



57 5.2 Exact Binarization & GL2U

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index of the CN

P
ro

ba
bi

lit
ie

s

exact
binarization+L2U

(a) Conditional credal sets with 4 vertices
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(b) Conditional credal sets with 10 vertices

Figure 5.2: A comparison between the exact results and approximations re-

turned by the “binarization+L2U” procedure for the upper and lower values of

P(VentLung = 1) on two sets of 50 randomly generated credal networks based

on the ALARM, with a fixed number of vertices for each conditional credal set.
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5.2.1 Exact Binarization

In this section, we consider the sequential application of the transformations de-

tailed in Section 4.1 and Section 5.1. Thus, given a credal network 〈G ,P(X)〉, we

first obtain 〈G ′,P′(X′)〉 by a decision-theoretic specification, and hence, after the

binarization, 〈G̃ ′, P̃′(X̃′)〉. The latter credal network is called exact binarization

of the first. Such a terminology is justified by the following result.

Theorem 9. Consider a credal net 〈G ,P(X)〉 and its exact binarization 〈G̃ ′, P̃′(X̃′)〉.
Let K(X) and K̃ ′(X̃′) be their corresponding strong extensions. Then:

K(X) = K̃ ′(X̃), (5.15)

where K̃ ′(X̃) is obtained marginalizing out of K̃ ′(X̃′) the variables in X̃′ \ X̃.

In order to prove Theorem 9, we first need the following result.

Lemma 2. Consider a CN made of a single node X with vacuous K(X ) := KΩ∗X (X ),

where Ω∗
X
⊆ ΩX . Let K̃(X̃ ) denote the strong extension of its binarization (as

described in Section 5.1). Then:

K̃(X̃ ) = K(X ). (5.16)

Proof. Let d̃ := log2 |ΩX | and X̃ := (X̃ 0, . . . , X̃ d̃−1). Consider a generic P̃∗(X̃ ) ∈
ext[K̃(X̃ )]. As described in Section 5.1, a corresponding mass function over X ,

say P∗(X ) := P̃∗(X̃ ), can be therefore defined. The following factorization holds:

P̃∗( x̃) =

d̃−1
∏

j=0

P̃∗( x̃
j| x̃ j−1, . . . , x̃0), (5.17)

for each x̃ ∈ ΩX̃ such that ( x̃0, . . . , x̃ d̃−1) = x̃ . For each j=0, . . . , d̃ − 1 and each

possible value of their parents, the conditional mass functions P̃∗(X̃
j | x̃ j−1, . . . , x̃0)

are vertices of their corresponding conditional credal sets because of Proposi-

tion 1. Thus, the values of the conditional probabilities on the right-hand side

of Equation (5.17) are obtained by a minimization as in Equation (5.6) (or an

analogous maximization). The values to be minimized are obtained from Equa-

tion (5.1), where the conditional probabilities on the right-hand side are the

vertices of K(X ), i.e., the m := |Ω∗
X
| degenerate extreme mass functions of the

vacuous credal set KΩ∗X (X ). This means that there is only a non-zero term in the

sum in Equation (5.1) and therefore each vertex of KΩ∗
X

produces a degenerate

conditional mass function for the corresponding binary variable. Consequently,

also the extreme values returned by Equation (5.6) will be degenerate. We can

therefore conclude that, according to Equation (5.17), also P̃∗(X̃ ) and hence
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P∗(X ) is a degenerate mass functions. Let x∗ ∈ ΩX be the state of X such that

P∗(X = x∗) = 1. Considering Equation (5.17) for x̃∗ ∈ ΩX̃ , we conclude that all

the conditional probabilities on the right-hand side are equal to one. Consid-

ering the highest order bit, according to Equation (5.1) and denoting by Pk(X )

a vertex of Ω∗(X ), we have P̃∗( x̃
d̃−1
∗ | x̃ d̃−2

∗ , . . . , x̃0
∗ ) = Pk(x∗) = 1, that requires

x∗ ∈ Ω∗X . Thus, P∗(X ) ∈ ext[K(X )], that implies ext[K̃(X̃ )] ⊆ ext[K(X )], and

finally K̃(X̃ ) ⊆ K(X ). On the other side, as an obvious corollary of Theorem 8,

K̃(X̃ )⊇ K(X ), and hence the thesis.

Proof of Theorem 9. Consider a generic P̃ ′∗(X̃
′) ∈ ext[K̃ ′(X̃′)]. The following fac-

torization holds:

P̃ ′∗(x̃
′) =

2n
∏

i=1

d̃i−1
∏

j=0

P̃ ′∗( x̃
j

i |π̃
j

i ) =

2n
∏

i=1

P̃ ′∗( x̃
0
i
, . . . , x̃

d̃i−1

i |π̃′i), (5.18)

for each x̃′ ∈ ΩX̃′ , where the values of the other variables are those consistent

with x̃, and the last equality is obtained through chain rule. Equation (5.18)

implicitly defines P ′∗(X i|π′i) := P̃ ′∗(X̃
0
i
, . . . , X̃

d̃i−1

i |π̃′i). According to the discussion

in Section (4.1), for each i = 1, . . . , n and πi ∈ ΩΠi
, K ′(X i|π′i) is a credal set

made of a single point. Thus, as an obvious corollary of Theorem 7, we have

that P ′∗(X i |π′i) ∈ ext[K ′(X i|π′i)], being in fact the only element of this credal set.

Similarly, for each i = 1, . . . , n, the conditional credal set K ′(X i+n|π′i+n
) is vacu-

ous. Thus, regarding this conditional credal set as a CN made of a single node,

we can invoke Lemma 1 and obtain from P̃ ′∗(X̃ i+n|π̃′i+n
) ∈ ext[K̃ ′(X̃ i+n|π̃′i+n

)]

that P ′∗(X i+n|π′i+n
) ∈ ext[K ′(X i+n|π′i+n

)]. Overall, we have proved that P ′∗(X
′)

is a combination of local vertices of the conditional credal sets of 〈G ′,P′(X′)〉.
Thus, P ′∗(X

′) ∈ ext[K ′(X′)], from which ext[K̃ ′(X̃′)] ⊆ ext[K ′(X′)], and finally

K̃ ′(X̃′) ⊆ K ′(X′). On the other side, according to Lemma 1, K̃ ′(X̃′) ⊇ K ′(X′).
Thus, K̃ ′(X̃′) = K ′(X′). Marginalizing on both the sides we get K̃ ′(X̃) = K ′(X).
Finally, Theorem 4 states that K(X) = K ′(X), from which the thesis.

According to Equation (5.15), we can regard 〈G̃ ′, P̃′(X̃′)〉 as an equivalent

binary representation of 〈G ,P(X)〉. A similar equivalence has been already ob-

tained for Bayesian networks in Section 5.1.3. Let us stress that the general-

ization to credal networks presented here is a substantial advancement: while

an equivalent binary representation of a single joint mass function (correspon-

ding to a Bayesian network) simply consists into an appropriate relabeling of

the joint states, for credal networks and hence for credal sets the exact bina-

rization must exactly reproduce the geometrical structure of the original convex

sets.7 It is therefore noteworthy that a procedure developed independently as

7For this reason a straight binarization, as described in Section 5.1, does not produce an

equivalent model, unless a decision-theoretic specification is done first.
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the decision-theoretic specification was identified as the key to produce an equi-

valent representation.

It should be also pointed out that, even we have focused on the case of

credal networks with separately specified credal sets, Theorem 9 holds also for

so-called non-separately specified credal networks, for which a decision theoretic

specification can be provided as well. For the same reason, the algorithm pre-

sented in the following section can be equivalently applied to any, separately or

non-separately specified, credal network and is therefore very general.

5.2.2 GL2U

Theorem 9 can be regarded as a result with self-sufficient relevance for repre-

sentation issues. Moreover, it is a basis for the solution of general inference

problems, as stated by this straightforward corollary.

Corollary 4. Any inference problem on a credal network can be equivalently com-

puted in its exact binarization.

According to Corollary 4, we can therefore consider a so-called generalized

L2U algorithm (GL2U), where given an updating problem on a credal network,

we solve by L2U the corresponding updating problem on the exact binariza-

tion of the original credal network. The overall procedure is still approximate,

but differently from the procedure without decision-theoretic specification con-

sidered in the previous section, the only source of approximation is the loopy

component.

5.2.3 Complexity Issues

Consider the original credal net before any transformation. Let:

ω̄ :=
n

max
i=1
|ΩX i
|, (5.19)

π̄ :=
n

max
i=1
|Πi|, (5.20)

k̄ :=
n

max
i=1
|
⋃

πi∈ΩΠi

ext[K(X i |πi)]|. (5.21)

These are, respectively, the worst-case number of states, parents, and vertices,

over the variables in the net. We assume that there is a variable in the net,

say X j, which attains all the three worst cases. This implies that in the exact

binarization, the variable X̃
d̃ j+n−1

j+n maximizes the number of incoming arcs; call

such a maximum ā . Each of the parents of X j is transformed in a cluster of
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⌈log2 ω̄⌉ binary nodes, which contribute then with π̄⌈log2 ω̄⌉ incoming arcs. The

node X̃ j+n in the decision-theoretic specification is instead transformed into a

cluster of ⌈log2 k̄⌉ binary nodes, which contribute with additional ⌈log2 k̄⌉ − 1

arcs (the last one does not contribute as it is just the node on which we focus,

i.e., X̃
d̃ j+n−1

j+n ).

Overall, we obtain that ā = π̄⌈log2 ω̄⌉ + ⌈log2 k̄⌉ − 1. By applying 2U, the

worst-case complexity local to node X̃
d̃ j+n−1

j+n is then O(22ā) = O(( ¯̄ω
π̄¯̄k)2) (see

[FZ98, Section 5], where we use the extra upper bar to denote the smallest

power of 2 that is larger than or equal to the considered number. This is the

worst-case complexity local to a node. Globally, an iteration of GL2U is linear

in the size (i.e., the longest path) of the net, which can be regarded as a linear

function of the size of the original network.

5.2.4 Numerical Tests

In order to test the performance of GL2U, we have chosen two well-known nets:

Alarm [BSCC89] and Insurance [BKRK97], as well as some random generated

nets. We work with random polytrees with 50 nodes (Polyt-50), and random

multiply connected nets with 10 and 25 nodes (Multi-10 and Multi-25, respec-

tively). For the Alarm and the Insurance nets, we use the original graph (37

and 27 nodes, respectively) and the original number of possible states for each

variable. Ten nets are generated with random parametrization and two vertices

in each local credal set. The same is repeated with four instead of two vertices.

For the random polytree nets, we generate random graphs with 50 nodes and at

most 4 categories in each variable. Ten nets with two vertices and ten nets with

four vertices by local credal set are created. With random multiply connected

nets, we work with 10 and 25 nodes, and 4 and 8 categories by variable. Again,

ten nets are used in each configuration.8

In each net, we run marginal inferences for each one of its variables us-

ing GL2U, the “rough” binarization without decision-theoretic specification as

proposed in the previous section (BIN), the state-of-the-art approximate local

search method described in [dRCdC03] (LS) limited to 20 iterations in order to

have running times similar to those of GL2U, and the exact method presented

in [dCC07]. Table 5.1 shows the mean square error of LS, GL2U and BIN meth-

ods when compared to the exact solution. We point out that we have always

observed convergence of GL2U (and BIN).

We verify that GL2U always displays convergence after a small number of

8The simulations presented in this section has been done in cooperation with Cassio Polpo de

Campos.
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LS GL2U BIN

Multi-10 4 / 2 0.0189 0.0140 0.0181

Multi-10 8 / 2 0.0195 0.0107 0.0338

Multi-10 4 / 4 0.0120 0.0175 0.0308

Multi-10 4 / 8 0.0027 0.0125 0.0222

Multi-10 8 / 4 0.0234 0.0189 0.0693

Multi-25 4 / 2 0.0231 0.0160 0.0184

Multi-25 4 / 4 0.0248 0.0204 0.0303

Polyt-50 4 / 2 0.0112 0.0193 0.0289

Polyt-50 4 / 4 0.0145 0.0221 0.0392

Insurance 5 / 2 0.0055 0.0117 0.0175

Insurance 5 / 4 0.0113 0.0132 0.0193

Alarm 4 / 2 0.0290 0.0190 0.0302

Alarm 4 / 4 0.0331 0.0239 0.0423

Table 5.1: Average mean square error of LS, GL2U and BIN methods on sev-

eral nets. The second column reports the maximum number of states and the

maximum number of vertices for each conditional credal set. For each row, the

smallest error is boldfaced.

iterations and improves, often substantially, the approximation accuracy when

compared to the straight binarization BIN; moreover, it has accuracy similar to

LS. Moreover, the running time and the amount of allocated memory for LS

rapidly increases with the size of the net, which makes unfeasible a solution for

large nets, which can be instead quickly updated by GL2U (see Figure 5.3).

5.3 Summary and Outlooks

In this chapter we have proposed an efficient, accurate, and scalable algorithm

for approximate updating on credal nets. This task is achieved augmenting the

credal net by a number of nodes enumerating the extreme points of the condi-

tional credal sets and then transforming the credal net in a corresponding credal

net over binary variables, and updating such binary credal net by the loopy ver-

sion of 2U. Remarkably, the procedure can be applied to any credal net, without

restrictions related to the net topology or to the number of possible states of the

variables, and the only approximation is due to the loopy propagation.

Empirical analysis show that the algorithm can be regarded as a state-of-the-

art procedure for approximate inference in credal nets both in terms of accuracy

and scalability. The algorithm is also purely distributed and allows for simultane-

ous updating of all the variables in the net: these characteristics are usually not
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Figure 5.3: Average running time versus net size for LS (triangles) and GL2U

(circles). LS cannot solve CNs with more than 80 nodes for memory constraints.



64 5.3 Summary and Outlooks

shared by optimization-based algorithms for CNs, and appear especially suited

for complex applications (e.g., sensor networks). Moreover, the computational

complexity GL2U makes it possible to solve (very) large networks, which can

either not be updated by existing algorithms or not as accurately as GL2U.

As a future work, we intend to perform other numerical studies of the per-

formance of the algorithm, also with extensive comparisons with other updating

algorithms for credal networks. We also intend to specialize L2U to the updating

of binary credal networks obtained through the exact binarization of a generic

credal networks. The particular features of these specific credal nets, allow for

an improvement of the performances of L2U and hence of the overall computa-

tional time.



Chapter 6

Fast Algorithms for Robust

Classification with Bayesian Nets

In this chapter, we focus on a well-known classification task with Bayesian net-

works: predicting the state of a target variable given an incomplete observation

of the other variables in the network, i.e., an observation of a subset of all the

possible variables. To provide conclusions robust to near-ignorance about the

process that prevents some of the variables from being observed, we adopt con-

servative updating, which is just a special case of CIR, corresponding to a sit-

uation where all the missing observations are missing in a not-MAR way. We

address the problem to efficiently compute the conservative updating rule for

robust classification with Bayesian networks. We show first that the general

problem is NP-hard, thus establishing a fundamental limit to the possibility to do

robust classification efficiently. Then we define a wide subclass of Bayesian net-

works that does admit efficient computation. We show this by developing a new

classification algorithm for such a class, which extends substantially the limits

of efficient computation with respect to the previously existing algorithm. The

algorithm is formulated as a variable elimination procedure, whose computation

time is linear in the input size.

6.1 Preliminaries

Probabilistic expert systems yield conclusions on the basis of evidence about a

domain. For example, we have seen how Bayesian networks are queried for up-

dating the confidence on a target variable given an evidence, i.e., after observing

the value of other variables in the network model. Very often, at the time of a

query, only a subset of all the variables is in a known state, as there is a so-called

missingness process that prevents some variables from being observed. This is

65
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a crucial point. The traditional way to update beliefs in probabilistic expert

systems relies on Kolmogorov’s conditioning rule. In order to yield correct con-

clusions, such a rule needs that the missingness process is explicitly modeled,

or at least that it does not act in a selective way (i.e., that it is not malicious

in producing the missingness). Unfortunately, the missingness process may be

difficult to model, and assuming that it is unselective is equivalent to assum-

ing the well-known missing at random (MAR) condition [LR87], which is often

unrealistic [GH03].

To address such a fundamental issue, De Cooman and Zaffalon [dCZ04] have

recently derived a new rule to update probabilities with expert systems in the

case of near-ignorance about the missingness process. As a more realistic model

of this condition of partial information, the new, so-called, conservative updating

rule (or CUR), yields lower and upper probabilities in general, as well as par-

tially determined decisions. With classification problems, for instance, where

the goal is to predict the state of the target variable (also called class variable)

given an evidence, CUR leads to set-based classifications, or, in other words, to

credal classifiers [Zaf02] (see Section 6.2.2). De Cooman and Zaffalon have in-

deed specialized CUR to solve classification problems with Bayesian networks.

Yet, their algorithm is efficient only on a relatively limited class of Bayesian net-

works: those in which the Markov blanket1 of the class variable together with

the variable itself forms a polytree, that is, a graph that becomes a tree after

dropping the orientation of the arcs. Two natural questions arise in relationship

with the above algorithm: is it possible to provide an algorithm for CUR-based

classification that is similarly efficient on more general network structures? And,

at a more fundamental level, what are the limits of efficient computation posed

by the nature of the problem?

In this chapter we address both questions. Initially, we prove the hardness

of the problem, thus solving the second question: doing classification with CUR

on Bayesian nets is shown to be NP-hard in Section 6.3. This parallels analo-

gous results obtained for Bayesian nets that implement the traditional updating

[Coo90]; in those cases, the algorithms are efficient when the entire graph is a

polytree, and are exponential with more general, so called, multiply connected

graphs.

Then we address the first question by developing a new algorithm that sub-

stantially extends the limits of efficient computation with respect to De Cooman

and Zaffalon’s original algorithm. We achieve this goal, which is relatively in-

volved from the technical point of view, in different steps. We first introduce

in Section 6.4.1 a new kind of network model, called s-network, that abstracts

1The set of nodes made by the parents, the children, and the parents of the children of a

given variable.
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the main features of a CUR-based classification on a Bayesian net. Secondly, in

Section 6.4.2, we show that our classification problem can be solved through

suitable calculations on a corresponding s-network; an algorithm that imple-

ments this mapping is also provided. In Section 6.5.1 this particular calculation

over s-networks is proved to be equivalent to a variable elimination procedure

in the abstract framework of a valuation algebra [Koh03] (see Section 6.2.3). In

Section 6.5.2, a strategy that defines a particular order in which the variables

should be eliminated is provided for the special case of classification problems

such that the corresponding s-network is a polytree (or a collection of them, i.e.,

a polyforest). In this way it is possible to provide a linear time algorithm per-

forming these calculations (Section 6.5.3). That concerns also many cases when

the class variable with its Markov blanket forms a multiply connected graph in

the original Bayesian net. This, together with the fact that the complexity of

CUR-based classification depends on the structure of the Markov blanket rather

than that of the entire net, makes the new algorithm efficient on a truly large

subset of Bayesian networks.

Overall, we develop a computational basis to do classification in expert sys-

tems when there is little knowledge about the process producing the missing-

ness. This enables efficient computation to take place on a large subset of Bay-

esian networks, which is of course important for applications. General remarks

about CUR-based classification are in Section 6.6.

6.2 Setup

6.2.1 Classification by Bayesian Networks

In this chapter we adopt a slightly different formalism for Bayesian networks,

which is more oriented to classification problems. Thus, we consider the random

variables A0, . . . , An, where variable Ak (k = 0, . . . , n) takes generic value ak from

the finite set Ak. The available information about the relationship between the

random variables is specified by a (prior) mass function P(A0, . . . , An), which we

assume to be positive in the following.

The mass function P(A0, . . . , An) can be conveniently provided by a domain

expert using a Bayesian network. Accordingly, each node Ak holds a conditional

mass function P(Ak|πAk
) for each joint state πAk

of its direct predecessor nodes

(or parents) ΠAk
. The joint probability P(a0, . . . , an) is given by P(a0, . . . , an) =

∏n

k=0
P(ak|πAk

) for all the (n + 1)-tuples (a0, . . . , an) ∈ ×n

k=0
Ak, where πAk

is

the assignment to the parents of Ak consistent with (a0, . . . , an).

For our purposes, we arbitrary choose A0 as target node, aiming at predicting

its state given values of some other nodes. In the following A0 is called class
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variable and is also be denoted by C , with generic value c from the set of classes

C :=A0. The remaining variables are called attribute variables, and their values

attributes. We refer to this predictive problem as classification.

6.2.2 Robust Classification

In classification problems, we typically observe (or measure) only a subset of the

attribute variables at the time of a query. In order to update probabilities about

the class variable given the observations, there is a frequent habit to neglect the

missing attribute variables after the conditioning bar. However, this method is

justified only when the process responsible for the missingness is unselective,

that is, when it creates the missingness without any specific purpose. More

technically, this happens when the probability that a measurement is missing is

the same irrespectively of the specific measurement. In this case we say that

the process is MAR [LR87]. Unfortunately, MAR is quite a strong assumption

[GH03] and for this reason MAR-based approaches are somewhat criticized (see

also [Man03]).

Following a deliberately conservative approach, De Cooman and Zaffalon

[dCZ04] have instead used coherent lower previsions [Wal91], which are equi-

valent to credal sets, to model the case of near-ignorance about the missingness

process. This has led to a new rule to update beliefs in expert systems that is

called conservative updating rule. In order to denote incomplete observations

of the attribute variables (the class variable is clearly unobserved, as it is the

variable to predict), let us use E for the subset of the attribute variables that are

observed and e for their joint value. Let us denote by R the remaining attribute

variables, whose values are missing. We also denote the set of their possible

joint values by R , and a generic element of that set by r. Observe that for ev-

ery r ∈ R , the attributes vector (e, r) is a possible completion of the incomplete

observation (E, R) = (e,∗), where the symbol ∗ denotes missing values. The up-

dated probability of the class variable given (e,∗) is an interval, according to the

conservative updating rule, whose extremes are the following:

P(c|e,∗) := min
r∈R

P(c|e, r) (6.1)

P(c|e,∗) := max
r∈R

P(c|e, r). (6.2)

In this chapter we are concerned with predicting the value of the class vari-

able given (e,∗). This is equivalent to producing the set of the undominated

classes according to the conservative updating rule. Say that class c′ credal-

dominates, or simply dominates, class c′′, if P(c′|e, r) > P(c′′|e, r) for all r ∈ R .

The notation c′>c′′ is adopted to formalize this kind of dominance. A class
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is called undominated if there is no class that dominates it. This dominance

criterion is a special case of strict preference proposed by Walley [Wal91, Sec-

tion 3.7.7]. In other words, the conservative updating rule generally produces

set-based classifications, where each class in the output set should be regarded

as a candidate optimal class. Classifiers that produce set-based classifications are

also called credal classifiers by Zaffalon [Zaf02].

It is easy to show that testing whether c′>c′′ can be carried out in the follow-

ing equivalent way:

min
r∈R

P(c′, e, r)

P(c′′, e, r)
> 1. (6.3)

Let us use π′ and π′′ to denote values of parent variables consistent with the

completions (c′, e, r) and (c′′, e, r), respectively. Regarding C , let π denote the

value of its parents consistent with (e, r). Furthermore, without loss of general-

ity, let A1, . . ., Am, m ≤ n, be the children (i.e., the direct successor nodes) of C .

Denote by B+ the union of C with its Markov blanket. De Cooman and Zaffalon

[dCZ04] show that the minimum in (6.3) can be computed by restricting the

attention to B+, in the following way:

min
a j∈A j ,

A j∈B+∩R





P(c′|πC)

P(c′′|πC)

m
∏

i=1

P(ai|π′Ai
)

P(ai|π′′Ai
)



 . (6.4)

Note that Expression (6.4) does not change by removing the arcs such that their

second endpoint2 is neither C nor one of its children. In the following, we refer

to B+ just as the subgraph deprived of those negligible arcs.

6.2.3 Local Computations on Valuation Algebras

Many different formalisms for managing uncertainty in expert systems share a

common algebraic structure based on elementary operations such as aggrega-

tion of knowledge and focus on part of the overall information. In this section

we present a formal definition of this structure together with an algorithm for

solving many computational tasks on this framework.

Let V be a finite collection of random variables over finite domains and Φ

a set of abstract objects called valuations. Three operations are assumed to be

defined over Φ and V , namely a labeling d : Φ→ 2V , a combination ⊗ : Φ×Φ→
Φ and a variable elimination El : Φ×V → Φ.

Every valuation φ ∈ Φ is interpreted as a piece of knowledge about the

possible values of the variables in d(φ) ⊆ V and d(φ) is called domain of φ.

2Two nodes connected by an arc are called its endpoints. The first endpoint is the node from

which the arc departs, while the second is the remaining node.
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Given two valuations φ,ψ ∈ Φ, the combined valuation φ ⊗ψ represents the

aggregate knowledge coming from both φ and ψ. Finally, given a valuation

φ ∈ Φ and a variable A ∈ V , El(φ, A) represents a valuation that focuses on the

knowledge associated to φ with no attention to what is related to A. We use also

the notation φ−A to denote El(φ, A).

The 5-tuple (Φ,V , d,⊗, El) is called valuation algebra (VA) [Koh03] if the

operations of labeling d, combination ⊗, and variable elimination El over the

set of valuations Φ and the set of random variables V , satisfy the following

system of axioms:

(A1) Φ is commutative and associative under ⊗

(A2) If φ, ψ ∈ Φ, then d(φ ⊗ψ) = d(φ)∪ d(ψ)

(A3) If φ ∈ Φ and V ∈ V is such that V ∈ d(φ), then d(φ−V ) = d(φ) \ {V}

(A4) If φ ∈ Φ and V, W ∈ V then (φ−V)−W = (φ−W )−V

(A5) If φ,ψ ∈ Φ and V ∈ V is such that V /∈ d(φ), then (φ ⊗ψ)−V = φ ⊗ψ−V .

Let (Φ,V , d,⊗, El) be a valuation algebra and {φi}mi=0
a set of valuations in Φ

such that
⋃m

i=0
d(φi) = V . According to (A1), a joint valuation φ := ⊗m

i=0
φi

of this set can be defined with no ambiguities. According to (A2), d(φ) = V .

According to (A4), the valuation obtained eliminating from φ all the variables

of its domain is independent from the elimination sequence and can therefore

be unequivocally denoted as φ−V . According to (A3), φ−V is a valuation with

empty domain and is called the full marginal of the joint valuation φ.

The complexity of the operation of variable elimination typically increases

exponentially with the domain of the valuation considered. That often makes

the computation of φ−V intractable, even if all the given valuations are defined

on small domains.

However, (A5) suggests the possibility of eliminating some variable on a local

domain, that is, without explicitly computing the joint valuation. This approach,

called fusion algorithm [Koh03], consists in the elimination of a variable only

from the combination of the valuations such that the variable to eliminate is in

their domain, i.e.:

φ−V =
�

⊗i=0,...,m/V /∈d(φi)
φi

�

⊗
�

⊗ j=0,...,m/V∈d(φ j)
φ j

�−V

. (6.5)

The elementary procedure portrayed in (6.5) can be iterated over all the ele-

ments of V , leading to φ−V . According to (A4), any elimination sequence can

be employed. Nevertheless, it should be pointed out how different sequences

require in general different computational times.
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6.3 Hardness of CUR-Based Classification

Call CCUR the problem to compute the undominated classes in a CUR-based

classification problem with Bayesian nets. Let us initially focus on the binary

version of the CCUR problem, that is, on a classification problem with only two

classes, say c′ and c′′. We denote by CCURD the corresponding decision prob-

lem that involves deciding whether or not c′ dominates c′′. CCURD is clearly

equivalent to (6.3), being ‘true’ (T) if (6.4) is greater than one and ‘false’ (F)

otherwise. As a preliminary result, we prove that CCURD is coNP-complete, i.e.,

the complement of an NP-complete problem [Pap94]. In our proof, we take inspi-

ration from the well-known result of Cooper [Coo90], concerning probabilistic

inference with Bayesian nets.

Recall that a decision problem Q is NP-complete if Q lies in the class NP

and some known NP-complete problemQ′ polynomially transforms toQ [GJ79,

p. 38]. In our case, we transform a well known NP-complete problem, called

3-satisfiability (3SAT) [GJ79], to the complement of CCURD. Let us recall the

definition of 3SAT.

LetU be a collection of n binary variables. If U is a variable inU then u and

¬u are called literals over U . The literal u is true if and only if the variable U is

true, while ¬u is true if and only if the variable U is false. Let K = {K1, . . . , Km}
be a non-empty collection of clauses, which are disjunctions of triples of literals,

corresponding to different3 variables of U . The collection of clauses K over U
is called satisfiable if and only if there exists a truth assignment for U , that is,

an assignment of Boolean values to the variables in U , such that all the clauses

inK are simultaneously true. The 3SAT decision problem involves determining

whether or not there is a truth assignment for U such that K is satisfiable.

The NP-completeness of 3SAT can be used to prove the following:

Theorem 10. CCURD is coNP-complete.

Proof. Given a generic 3SAT instance, U = {U1, . . . , Un} and K = {K1, . . . , Km},
we construct a Bayesian network such that c′ > c′′ if and only if K is not

satisfiable. The nodes of the network correspond to the variables in U , the

clauses in K and the class C . The nodes corresponding to the clauses have

four incoming arcs, three from the variables associated to the literals present

in the definition of the clause and the fourth from the class node. The di-

rected acyclic graph underlying the Bayesian network is therefore G (V ,E ), with

3This assumption is not included in the original transformation of the prototypical NP-

complete problem SAT to 3SAT. Nevertheless, the transformation (see for example [GJ79, p. 48])

does not require any clause to include literals corresponding to the same variable. Thus, also

this version of 3SAT is NP-complete.
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V = {C , U1, . . . , Un, K1, . . . , Km} and

E={(Uαi j
, K j) |

i = 1, 2, 3,

j = 1, . . . , m
} ∪ {(C , K j) | j=1, . . . , m}, (6.6)

where αi j indexes the element ofU corresponding to the i-th literal of the clause

K j. As an example, Figure 6.1 reports the graph corresponding to a 3SAT in-

stance with three clauses and four variables in U .

C U1 U2 U3 U4

K1 K2 K3

Figure 6.1: A Bayesian network corresponding to an instance of the 3SAT prob-

lem with U = {U1, U2, U3, U4} and K = {(u1 ∨ u2 ∨ u3), (¬u1 ∨ ¬u2 ∨ u3), (u2 ∨
¬u3 ∨ u4)}.

Each node of G is assumed to represent a binary variable. The unconditional

mass functions for the root nodes (i.e., the nodes without incoming arcs) are

assumed to be uniform. Regarding the conditional mass functions we define

them as in Table 6.1. Those values define a unique positive mass function for

each clause and for every possible value of the parents of the clause.

c uα1 j
∨ uα2 j

∨ uα3 j
P(K j = T|c, uα1 j

, uα2 j
, uα3 j

)

c′ T 2−2

c′′ T 2−1

c′ F 2−1

c′′ F 2−(m+1)

Table 6.1: Implicit definition of the conditional mass functions for the clause K j,

for each j = 0, . . . , m. With an abuse of notation, uαi j
denotes the i-th literal of

K j.

The directed acyclic graph G , together with the specified mass functions,

defines a Bayesian network. This is equivalent to a joint mass function, which

assigns positive probability to every event. With respect to the evidence E=e in

the network, we suppose all the clauses inK are instantiated to the state ‘true’.
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The remaining attribute variables, which are the variables in U , are assumed to

be missing. Expression (6.4) becomes:

min
u j∈{F,T},

U j∈U

m
∏

i=1

φi(uα1i
, uα2i

, uα3i
), (6.7)

where, for each i = 1, . . . , m,

φi(uα1i
, uα2i

, uα3i
) :=

P(Ki = T|c′, uα1i
, uα2i

, uα3i
)

P(Ki = T|c′′, uα1i
, uα2i

, uα3i
)
. (6.8)

Using the values of Table 6.1, the functions in (6.8) take the form:

φi(uα1i
, uα2i

, uα3i
) =

�

2−1 if uα1i
∨ uα2i
∨ uα3i

= T

2m otherwise.
(6.9)

According to (6.9), if a clause is satisfied, the corresponding function attains

its minimum value. Thus, if 3SAT is true, there exists a truth assignment overU
satisfying all the clauses in K , and all the functions (6.8) in (6.7) are simulta-

neously minimized. The minimum (6.7) is therefore 2−m and the corresponding

CCURD instance is false. If 3SAT is false, for all truth assignments at least one

clause is violated and the corresponding function takes the value 2m. That makes

(6.7) always greater than one, because all the remaining m−1 functions cannot

be less than 2−1. Thus, CCURD is true.

This shows that each 3SAT instance is equivalent to an instance of the com-

plement of CCURD; and we have achieved this by a transformation that is poly-

nomial in the size of the 3SAT instance. Note, in addition, that the complement

of CCURD is also in the class NP. A non-deterministic algorithm to solve the com-

plement of CCURD has only to return a truth assignment for U , provided that

the corresponding value of the functions in (6.9) can be evaluated efficiently. It

follows that the complement of CCURD is NP-complete and hence the thesis.

As a direct consequence of Theorem 10, we can prove the following:

Corollary 5. CCUR is NP-hard.

Proof. Let CCURD′ be the complement of CCURD. In order to prove the hardness

of CCUR we consider a polynomial-time Turing reduction [GJ79, p. 111] from

CCURD′ to the binary version of CCUR. Suppose a hypothetical algorithm that

solves instances of the binary CCUR problem is available. Let I be a CCURD′

instance that is true if c′ does not dominate c′′ and false otherwise. In order to

solve such an instance we use the above algorithm for CCUR problems in the
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following way. If the algorithm yields c′, then necessarily c′>c′′, and I is false.

If it yields both c′ and c′′, c′ cannot dominate c′′ and I is true. Analogously, if

the algorithm yields only c′′, I is still true. In any case, it turns out that a single

call of the algorithm makes it possible to solve the CCURD′ instance I . Therefore

CCURD′, which is NP-complete because of Theorem 10, is Turing reducible to the

binary version of CCUR. This means that the binary version of CCUR is NP-hard,

and, as a consequence, so is the general version.

6.4 S-Networks

The hardness result of the previous section establishes a limit to the possibility to

compute classifications efficiently with CUR on Bayesian nets. Yet, efficient com-

putation is possible on special classes of Bayesian networks: in fact, De Cooman

and Zaffalon [dCZ04] provide a linear time algorithm to solve CCUR problems

when the subgraph B+, defined at the end of Section 6.2.2, is singly connected.

In this chapter we substantially extend such a result by providing a linear time

algorithm that works in many cases also when B+ is multiply connected.

The development of the new algorithm relies on the definition of a new kind

of graphical model, called s-network, which allows us to abstract the main com-

ponents of a CCUR problem.

6.4.1 Basic Definitions

Definition 1. Let G be a directed acyclic graph in which some nodes, say A0, . . . , Am

(m ≥ 0), are marked as special nodes (or s-nodes) such that every arc of G has a

special node as second endpoint. Each node of G is identified with a variable that

takes finitely many values. Every special node Ai in G (i = 0, . . . , m) is associated

with a so-called potential φi(A
+
i
), defined for all the values of its argument. A+

i
is

the vector variable (Ai,ΠAi
), with generic value a+

i
, where ΠAi

are the parents of Ai.

The graph G , together with the collection of potentials {φi}mi=0
, is called s-network.

Given an s-network G , its minimum is defined by

min
a+

j
∈A +

j
,

j∈{0,...,m}

m
∏

i=0

φi(a
+
i
). (6.10)

Note that Definition 1 does not exclude the case of disconnected s-networks.

If Gk is a connected component of a (disconnected) s-network G , we can regard

Gk, together with the potentials of G corresponding to the s-nodes of Gk, as an

s-(sub)network. The following result holds:
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Theorem 11. Let G be a disconnected s-network. The minimum of G factorizes

in the product of the minima of the s-networks corresponding to the connected

components of G with at least one s-node.

In order to prove Theorem 11, we first need the following result.

Lemma 3. Let Ak and Al be two distinct s-nodes of an s-network G . A+
k

and A+
l

can

share some variables if and only if Ak is a parent or a child or a sibling of Al .

Proof. Let S be a variable included both in A+
k
= (Ak,ΠAk

) and A+
l
= (Al ,ΠAl

). We

distinguish the four possible cases: (i) S=Ak=Al . (ii) S = Ak and S ∈ ΠAl
(iii)

S = Al and S ∈ ΠAk
(iv) S ∈ ΠAk

and S ∈ ΠAl
.

The first case cannot take place because Ak and Al are assumed to be distinct

nodes. In the second case Ak is clearly a parent of Al , while, vice versa, Al is

parent of Ak in the third case. Finally, Ak and Al are sibling through their common

parent S in the fourth case.

On the other hand, if Ak is a parent (child) of Al , clearly A+
k

shares the variable

Ak (Al) with A+
l
. Finally, if Ak and Al are siblings, their common parents appear

both in A+
k

and A+
l
.

Proof of Theorem 11. Let (G1, . . . ,Gs) be the connected components of G with

at least one s-node. We denote as Mi the vector of the indexes of the s-nodes

that are in Gi (i = 1, . . . , s). Clearly, (M1, . . . , Ms) represents a partition of M :=

{0, . . . , m}.
For each k ∈ Mi and l ∈ M j (i, j = 1, . . . , s and i 6= j), A+

k
and A+

l
cannot

share any variable because of Lemma 3. The minimum of G can therefore be

expressed as a product of local minima
∏s

k=1
µk, where, for each k = 1, . . . , s:

µk := min
a+

j
∈A +

j
,

j∈Mk

∏

i∈Mk

φi(a
+
i
). (6.11)

But (6.11) is the minimum of the s-(sub)network Gk, that proves the thesis.

In the next section, we show that by calculating the minima of s-networks

we can solve CCUR instances.

6.4.2 Minima of S-Networks Solve CCURD Problems

Let I be a CCURD instance that involves deciding whether or not c′ > c′′. We

denote by GI the directed graph obtained from B+ marking as special C = A0

together with its children, removing the arcs that leave C and the observed

nodes, and removing the observed nodes that are not special. The following

algorithm is an obvious (linear time) implementation of this transformation:
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Algorithm 1. An algorithm to build up a graph GI(V ,E ) given a CCURD (or

CCUR) instance I. T(ε) represents the first endpoint of the arc ε, while E is the

subset of the observed attribute variables of I .

1 GI := B+;

2 for each V ∈ V {
3 if V = C or C parent of V {
4 mark V as special; }}
5 for each ε ∈ E {
6 if T(ε) ∈ E or T (ε) = C {
7 remove ε; }}
8 for each V ∈ E {
9 if V not special {

10 remove V; }}

Each node of GI is identified with a variable that takes finitely many values,

as follows. The target node A0 and the nodes of GI corresponding to the ob-

served attribute variables of I are assumed to be constants, i.e., their possibility

spaces contain a single value, while the remaining nodes, which are the missing

attribute variables in I , are identified with the same categorical variables of the

original problem. Finally, we set:

φ0(a
+
0
) :=

P(c′|πC)

P(c′′|πC)
(6.12)

φi(a
+
i
) :=

P(ai|π′Ai
)

P(ai|π′′Ai
)

i = 1, . . . , m. (6.13)

The graph GI together with the potentials as in (6.12) and (6.13) can be easily

recognized to be an s-network. The computation of the minimum of this s-

network solves the original CCURD instance, according to the following:

Theorem 12. I is true if and only if the minimum of the s-network GI is greater

than one.

Proof. Using (6.12) and (6.13), the minimum of GI becomes:

min
a j∈A j ,

j={0,...,n}





P(c′|πC)

P(c′′|πC)
·

m
∏

i=1

P(ai|π′Ai
)

P(ai|π′′Ai
)



 . (6.14)

The missing attribute variables of the CCURD instance I are exactly the non-

constant variables in (6.14), while the constant variables have the same values of
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the observed attribute variables in I . Finally, as observed in [dCZ04, Section 6],

(6.3) is preserved by dropping the arcs leaving the nodes in the subset of the

observed nodes E for each c ∈ C and r ∈ R . Thus, (6.14) coincides with the

expression (6.4) relative to I . That proves the thesis.

As a numerical example, let us consider a Bayesian network over the Boolean

variables (A0, . . . , A6) with the graphical structure displayed in Figure 6.2. Let

C := A0 be the class variable and c′ and c′′ the possible classes.

A6 A0 A5 A4

A3 A2 A1

Figure 6.2: A multiply connected Bayesian network.

We assume uniform unconditional mass functions for the root nodes, while

Tables 6.2, 6.3, 6.4 and 6.5 specify the conditional mass functions for the re-

maining nodes.

a4 P(C = c′|a4)

T 0.8

F 0.9

Table 6.2: Conditional mass functions for node C .

The decision whether c′ dominates c′′ or not, assuming all the attribute vari-

ables (A1, . . . , A6) to be missing, can be regarded as a CCURD instance I . First,

we use Algorithm 1 to construct the graph GI corresponding to the instance I .

The result is the s-network displayed in Figure 6.3.

According to the procedure described in this section, each node of GI is iden-

tified with the same Boolean variable of the original Bayesian network, except A0

that is assumed to be constant. Furthermore, we can use the probability specifi-

cations in Tables 6.2, 6.3, 6.4 and 6.5 to define a potential for each special node

of GI as in (6.12) and (6.13). Finally, according to Theorem 12, the computation

of the minimum of GI solves the CCURD instance I .
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c a2 a4 a5 P(A1 = T|c, a2, a4, a5)

c′ T T T 0.4

c′ T T F 0.2

c′ T F T 0.3

c′ T F F 0.1

c′ F T T 0.7

c′ F T F 0.9

c′ F F T 0.8

c′ F F F 0.1

c′′ T T T 0.2

c′′ T T F 0.3

c′′ T F T 0.3

c′′ T F F 0.2

c′′ F T T 0.4

c′′ F T F 0.9

c′′ F F T 0.7

c′′ F F F 0.2

Table 6.3: Conditional mass functions for node A1.

c P(A2 = T|c)
c′ 0.4

c′′ 0.7

Table 6.4: Conditional mass functions for node A2.

A4 A0

A6 A3 A2 A1

A5

Figure 6.3: The s-network GI returned by the application of Algorithm 1 to

a CCURD instance I on the Bayesian network of Figure 6.2. The s-nodes are

displayed in gray.
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c a2 a6 P(A3 = T|c, a2, a6)

c′ T T 0.6

c′ T F 0.7

c′ F T 0.2

c′ F F 0.8

c′′ T T 0.2

c′′ T F 0.9

c′′ F T 0.2

c′′ F F 0.4

Table 6.5: Conditional mass functions for node A3.

Theorem 12 is the basis to solve also a class of CCUR problems. Let us there-

fore consider a generic classification problem with missing data, whose set of

classes is C := {c1, . . . , cr}. For each pair of classes, we can consider the corres-

ponding binary CCUR instance. For each binary CCUR instance, we consider two

CCURD instances as follows. If the binary CCUR instance requires to compare

the classes between ci and c j, the first CCURD instance checks whether or not

ci>c j, while the second checks c j>ci. Whenever one of these CCURD instances

is true, the dominated class is rejected. The following algorithm reports the full

procedure detecting the optimal classes:

Algorithm 2. The procedure to solve a CCUR instance with set of classes C :=

(c1, . . . , cr). The output is the set of the optimal classes Copt.

1 Copt := C ;
2 for i = 1, . . . , r {
3 for j = 1, . . . , r {
4 if i < j {
5 if ci>c j { remove c j from Copt;}
6 if c j>ci { remove ci from Copt;}}}}
7 return Copt;

Concerning the computational complexity of Algorithm 2, the total number

of solved CCURD instances is quadratic in the input size, being exactly r ·(r−1).

6.5 Solving Problems on S-Networks

In this section we show that the minimum of an s-network can be regarded as a

full marginal of a joint valuation in a VA, as defined in Section 6.2.3. Further-
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more, the fusion algorithm (6.5) can be employed to minimize s-networks. In

the special case of s-polytrees, the algorithm takes linear time for an appropriate

elimination sequence.

6.5.1 Minima of S-Networks as Local Computations on Valuation

Algebras

We firstly introduce the following:

Theorem 13. Let G be an s-network. Let V be the nodes of G and Φ the set of all

the nonnegative real functions of any possible subset of V . Let d be the map return-

ing the variables in the argument of those functions and ⊗ the pointwise function

product. Let also El be a variable elimination defined as φ−Ai :=minai∈Ai
φ. Thus,

(Φ,V , d,⊗, El) is a valuation algebra and the potentials of G , say {φi}mi=0
, are

valuations in Φ.

Proof. It is obvious to see that the operations of labeling, combination and vari-

able elimination defined as in the statement of Theorem 13 are well defined

according to the definition of VA in Section 6.2.3. In order to prove the theorem,

it is therefore sufficient to check that the five axioms are satisfied. The commuta-

tivity and associativity of ⊗ naturally comes from the same property satisfied by

the pointwise product between function and (A1) is therefore satisfied. It is also

obvious to observe that the argument of a product of two functions is the union

of the arguments of the functions and therefore also (A2) holds. The argument

of φ−Ai = minai∈Ai
φ is clearly the argument of φ deprived by Ai. Thus, also

(A3) is satisfied. Regarding (A4), the minimization of a function over two vari-

ables on its arguments are independent from the order of minimization and also

this axiom holds. if ψ and φ are two valuations and Ai is only in the argument

of ψ, then the minimization over Ai of the product of this two functions is the

product between φ and the minimum of ψ. That means (ψ⊗φ)−Ai =ψ⊗φ−Ai ,

i.e., also (A5) holds.

Accordingly, we can express the minimum of G as follows:

Theorem 14. Let G be an s-network, {φi}mi=0
its potentials and (Φ,V , d,⊗, El) the

corresponding VA as in Theorem 13. Then, minG = (φ0 ⊗ · · · ⊗φm)
−V .

Proof. It is sufficient to rewrite the products between potentials in (6.10) as

combinations, according to the definition in the statement of Theorem 13, and

the minimization as a (full) variable elimination.
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The fusion algorithm can therefore be used to calculate the minimum of an

s-network. In general, the computation takes exponential time. Nevertheless,

for a particular topology of the s-network G , and an appropriate choice of the

ordering in which the variables of V are eliminated, the algorithm becomes

efficient. That is shown in the following.

6.5.2 Nodes Sorting on S-Polytrees

We call s-polytree an s-network G such that the underlying graph is a polytree.

As an example, the s-network in Figure 6.3 is an s-polytree. The set V of the

nodes of an s-polytree G has a natural structure of metric space. Given two

nodes U and V , there is a single undirected path connecting them. Let δ(U , V )

be the number of edges making up this path. The map δ is clearly a metric over

V and δ(U , V ) is called the distance between U and V . Let us call neighbors of

U the nodes of V at distance one from U .

Given an s-polytree G , an s-node Ak of G is called lonely if there is a node U

of G such that Ak is the s-node at maximum distance from U (or one of them, if

there are many). As an example, in the s-polytree of Figure 6.3, A0 is the s-node

at maximum distance from A6 and can therefore be regarded as a lonely node.

The lonely nodes of an s-polytree can be characterized as follows:

Theorem 15. Let G be an s-polytree with at least two s-nodes and Ak a lonely node

of G . The variables in A+
k
, with the exception of a single variable S, appear only in

the argument of φk.

In order to prove Theorem 15, we first need the following result.

Lemma 4. Let G be an s-polytree with at least two s-nodes. Let Ak be a lonely node

of G . Then the following holds:

(i) Ak has at most a special neighbor.

(ii) Ak can have special siblings, but all these siblings have a single parent in com-

mon with Ak, that is the same for all of them.

(iii) If Ak has actually a special neighbor Al , the possible special siblings of Ak

should have in Al the single parent in common with Ak.

Proof. Let U be a node of G such that Ak is the s-node of G (or one of them,

if there are many) at maximum distance from U . The undirected path from U

to Ak is unequivocally determined, because G is a polytree. Clearly U 6= Ak,

because otherwise another s-node of G would be more distant from U than Ak.
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Therefore, the path includes at least two nodes. Let S be the node preceding Ak

in the path.

With the only possible exception of S, the neighbors of Ak cannot be special.

If A would be a special neighbor of Ak different from S, the undirected path

between U and A would cross Ak and A would be an s-node more distant from U

than Ak. That proves (i).

If Ak has special siblings, all these s-nodes should have S as common parent.

If A would be a special sibling of Ak through a common parent different from S,

A would be an s-node more distant from U than Ak. That proves that S is the

only parent common to Ak and its special siblings, as stated by (ii).

Finally, it was already proved that, if Ak has a special neighbor, this is S.

Therefore the parent common to the special siblings of Ak, if actually Ak has a

special neighbor, is exactly this neighbor. That proves (iii).

Proof of Theorem 15. Let us first consider the case where Ak has not special

neighbors. According to Lemma 3, A+
k

can share some variables only with the

vector variables corresponding to the possible special siblings of Ak. As a conse-

quence of (ii) in Lemma 4, all the siblings of Ak have a single parent in common

with Ak, that is the same for all of them. Let S be this node. S is clearly the only

variable of A+
k

that can appear also in some other vector variable.

Otherwise, if Ak has some special neighbor, then this is unique because of

(i) in Lemma 4. Let Al be this s-node. Point (iii) in Lemma 4 states that, if

Ak has some special sibling, Al should be a parent of Ak and also parent of all

these siblings. Therefore, if Al is child of Ak, Ak cannot have special siblings. In

this case, A+
k

can share some variable only with A+
l

and, clearly, the only shared

variable is Ak.

Finally, if Al is parent of Ak, Ak can have some special sibling. We have already

observed that Al should be parent of all these siblings. Lemma 3 states that A+
k

can share its variables only with A+
l

and with the vector variables associated to

the possible special siblings of Ak. In any case, Al is the only variable of A+
k

appearing also in some other vector variable.

As an example, in the case of the s-polytree of Figure 6.3, A+
0
= (A0, A4), and

while A0 appears only in the argument of φ0, A4 appears also in φ1.

Given a lonely node Ak, we denote by Ã+
k

the vector variable that includes all

the variables in A+
k

except S and we refer to these variables as the extreme leaves

of the s-polytree G with respect to Ak. In the case of s-polytrees with a single

s-node, all the nodes are extreme leaves.

In the example of Figure 6.3, A0 is the only extreme leave of G with respect

to A0 itself.
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An s-node Al is called conjugate node of a lonely node Ak, if the variable

S ∈ A+
k
, which is not included in Ã+

k
, appears also in A+

l
. We can therefore regard

S as the intersection of A+
k

and A+
l
.

For example, A1 is clearly the only conjugate of A0 in the s-polytree of Fi-

gure 6.3, and A4 can be regarded as the intersection between A+
0
= (A0, A4) and

A+
1
= (A1, A2, A4, A5).

Call siblings two distinct children of the same parent. The conjugate nodes

of a lonely node are characterized by the following:

Theorem 16. Let Ak be a lonely node of an s-polytree G with at least two s-nodes.

The conjugate nodes of Ak are the special neighbors and the siblings of Ak. Further-

more, Ak has at most a special neighbor; and if no s-nodes lie in the neighborhood

of Ak, then Ak has at least one sibling.

Proof. All the special neighbors and the special siblings of Ak are conjugate nodes

of Ak because of Lemma 3. On the other side, if Ak is a lonely node of G and Al a

conjugate node of Ak, then A+
k

and A+
l

should share some variable. Thus, always

because of Lemma 3, Ak and Al are neighbors or siblings.

Furthermore, Ak has at most a special neighbor because of (i) in Lemma 4.

If the neighbors of Ak are all non-special, they all should be parents of Ak. The

reason is that the arcs of an s-network cannot terminate on a non-special node.

For the same reason those non-special parents of Ak cannot have any parent.

Nevertheless, at least one of them should have a child, because otherwise G
would include only a single s-node. This child is a second endpoint of an arc of

an s-network and it is therefore a special node. Let Al be this s-node. Clearly,

Al is a special sibling of Ak. That proves that a lonely node with no special

neighbors should have at least one special sibling.

In the case of the s-polytree of Figure 6.3, A0 has no special neighbor and its

unique special sibling A1 is the only conjugate of A0.

As a consequence of Theorem 16, for each lonely node Ak, there is at least a

conjugate Al .

It is indeed possible to show that the pruning of the extreme leaves of G
preserves the s-polytree structure, as stated in the following:

Theorem 17. Let G be an s-polytree with at least two special nodes, and Ak a

lonely node of G . If Ak is marked as not special, the nodes in Ã+
k

are removed from

G , and φk is dropped from {φi}mi=0
, then a new s-polytree G ′ is obtained.

In order to prove Theorem 17, we first need the following result.

Lemma 5. Let G be an s-polytree with at least two s-nodes. Let Ak be a lonely node

of G . If Ak has a special neighbor, the non-special parents of Ak are leaf nodes of the
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undirected tree obtained from G by dropping the orientations. The same holds also

if Ak has not special neighbors, with the only exception of the non-special parent of

Ak that is also parent of the special siblings of Ak.

Proof. According to Definition 1, the non-special nodes of G cannot receive in-

coming arcs. Thus, a non-special parent V of Ak is a leaf node of the undirected

tree corresponding to G if and only if V has not any child in addition to Ak.

Let U be the node of G such that Ak is the s-node of G (or one of them, if

there are many) at maximum distance from U .

If Ak has a special neighbor, it should be unique because of (i) in Lemma 4.

Let Al be this node. The undirected path from U to Ak should cross Al , because

otherwise Al would be more distant from U than Ak. If a non-special parent of

Ak would have a child, this node would be special by definition of s-network and

would be an s-node more distant from U than Ak. This is against the definition

of U . Thus, in this case, the non-special parents of Ak cannot have any child.

That proves the first part of the Lemma.

If Ak has no special neighbors, it should have at least one special sibling

because of Theorem 16. Point (ii) in Lemma 4 states that Ak and its special

siblings have a single common parent, say S. The path from U to Ak crosses S,

because otherwise the special siblings of Ak would be more distant from U , than

Ak. Thus, the non-special parents of Ak different from S cannot have any child,

because otherwise their child would be s-nodes more distant from U than Ak.

That proves the second part of the lemma.

Proof of Theorem 17. The nodes of Ã+
k
, removed from G to obtain G ′, appear

only in the potential φk by definition of Ã+
k
. All the potentials associated to the

s-nodes of G ′ are therefore well defined.

Let S be the variable of A+
k

not included in Ã+
k
. If S=Ak, then Ã+

k
includes all

the parents of Ak, while, if S ∈ ΠAk
, Ã+

k
should include Ak. In the first case, to

obtain G ′, we remove from G all the arcs having Ak as second endpoint, while in

the second case Ak itself is removed. In any case, the condition about the second

endpoints of the arcs of an s-network is always satisfied by G ′. That proves that

G ′ is an s-network.

In order to prove that G ′ is an s-polytree, let U be the node of G such that

Ak is the s-node of G (or one of them, if there are many) at maximum distance

from U .

If Ak actually has a special neighbor, say Al , we distinguish whether Ak is a

parent or a child of Al .

If Ak is a parent of Al , then Ak appears both in A+
k

and A+
l

and Ã+
k
= ΠAk

.

According to (i) in Lemma 4, Al is the only special neighbor of Ak and all the

parents of Ak should be non-special.
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Therefore, to obtain G ′ from G , we remove the non-special parents of the

lonely node Ak. According to Lemma 5, these nodes are leaf nodes in the tree

corresponding to G . Thus, G ′ is a polytree.

If Al is a parent of Ak, Al appears both in A+
k

and A+
l
. This means that Ã+

k
is

composed by Ak and the parents of Ak different from Al .

The parents of Ak different from Al cannot be special because of the point (i)

in Lemma 4. These nodes are therefore non-special parents of a lonely node and

they should be leaf nodes in the undirected tree corresponding to G because of

Lemma 5.

Furthermore, Ak cannot have any child. The path from U to Ak crosses Al

because otherwise Al would be more distant from U than Ak. If Ak would have

a child, this node would be special because of Definition 1, resulting an s-node

more distant from U than Ak.

To obtain G ′ from G , we can therefore remove first the parents of Ak different

from Al . Once we have removed these leaf nodes, Ak has a single parent (namely

Al) and no children. Thus, removing also Ak, we obtain a polytree, that is G ′.
If Ak has not special neighbors, it should have at least a special sibling be-

cause of Theorem 16. All the special siblings of Ak have a single parent in com-

mon with Ak because of (ii) in Lemma 4. Let S be this non-special parent of Ak.

Ã+
k

includes Ak and the parents of Ak different from S.

According to Lemma 5, the parents of Ak different from S are leaf nodes in

the undirected tree corresponding to G .

Ak cannot have any child also in this case. The path from U to Ak crosses S

because otherwise the special siblings of Ak would be more distant from U than

Ak. If Ak would have a child, this node would be special because of Definition 1,

resulting an s-node more distant from U than Ak.

It is therefore possible to obtain G ′ from G , removing first the parents of Ak

different from S. Once we have removed these leaf nodes, Ak has a single parent

(namely S) and no children. Thus, removing also Ak, we obtain a polytree, that

is exactly G ′.

As an example, the s-polytree of Figure 6.3 becomes a new s-polytree with

three s-nodes after the pruning of A0 (and the removal of φ0). A lonely node in

a pruned s-polytree G ′ can be characterized by the following:

Theorem 18. Let G be an s-polytree. Given an arbitrary node of G , say U, let Ak

and Ak′ be respectively the first and the second s-nodes at maximum distance from

U (or one of them, if there are many). Let G ′ be the s-polytree obtained marking Ak

as not special, removing the nodes in Ã+
k

from G , and φk from the set of potentials,

as in Theorem 17. Thus, Ak′ is a lonely node of G ′.

In order to prove Theorem 18, we first need the following results.



86 6.5 Solving Problems on S-Networks

Lemma 6. Let G be an s-polytree with at least two s-nodes. Let Ak be a lonely node

of G and U a node of G such that Ak is the s-node of G (or one of them, if there

are many) at maximum distance from U. Then, U cannot be included in Ã+
k
.

Proof. Because of its definition, Ã+
k

cannot include U , if δ(U , Ak) > 1 and also if

U is a child of Ak.

If U is a parent of Ak and it is also special, U should appear both in A+
k

and

U+. Therefore, U cannot be included in Ã+
k
.

If U is a non-special parent of Ak, let Al be a second s-node of G . Al should

be a neighbor of U , because otherwise it would be more distant from U than

Ak. According to Definition 1, Al cannot be a parent of the non-special node U .

Thus, Al is a child of U . This means that U appears both in A+
k

and A+
l
, and

therefore cannot be in Ã+
k
.

Finally, it is obvious to see that, U cannot coincide with Ak, because otherwise

the remaining s-nodes of G would be more distant from U than Ak = U .

Lemma 7. Ak is the only special node that can appear in Ã+
k
.

Proof. Ak is clearly the only special node included in A+
k

if Ak has no special

neighbors. Thus, in this case, Ak is the only s-node that can be in Ã+
k
. If Ak has

some special neighbor, then this is unique because of (i) in Lemma 4. Let Al be

this s-node. If Ak is a parent of Al , Ak appears both in A+
k

and A+
l
. This means that

Ak cannot be in Ã+
k
. Thus, Ã+

k
includes only the parents of Ak and none of them

is special, because Al is the only special neighbor of Ak. In this case, therefore,

no s-nodes are in Ã+
k
.

Finally, if Al is parent of Ak, all the parents of Ak different from Al are non-

special, because Al is the only special neighbor of Ak. Thus, Ak and Al are the

only s-nodes of A+
k
. But Al appears also in A+

l
and cannot be in Ã+

k
. Thus, Ak is

the only s-node that can appear in Ã+
k
.

Proof of Theorem 18. U is not included in Ã+
k

because of Lemma 6 and therefore

it should be a node of G ′. Furthermore, all the s-nodes of G different from Ak

are s-nodes of G ′ because of Lemma 7. Thus, G ′ includes U and all the s-nodes

of G ′ except Ak. The removal of some arcs and some nodes from G to obtain

G ′, which is connected because of Theorem 17, cannot modify the distances

between U and the s-nodes different from Ak. That means that the Ak′ is the

s-node of G ′ at maximum distance from U .

In the case of the s-polytree G of Figure 6.3, A1 is the second s-node, after

A0, at maximum distance from A6 and can therefore be regarded as a lonely

node of the pruned s-polytree G ′, obtained removing A0 and φ0 according to

Theorem 17.



87 6.5 Solving Problems on S-Networks

This pruning procedure described in Theorem 17 yields an s-polytree and

can therefore be iterated until an s-polytree with a single s-node is returned. As

a consequence of Theorem 18, if we sort the s-nodes of G according to their

distance from U , the i-th element of this sequence is a lonely node of the s-

polytree returned by the i-th iteration of the pruning procedure. For each node

of this sequence, we can consider the corresponding extreme leaves. It is trivial

to check that all the elements of V appear in this collection of extreme leaves.

The discussion in this section suggests the opportunity to employ this col-

lection of extreme leaves as an elimination sequence for the variables in V in

order to minimize s-polytrees through the fusion algorithm. It is finally clear

that, in the case of s-polytrees with a single s-node, there is a single potential

and therefore no particular strategy to detect an efficient elimination sequence

is required.

6.5.3 Solution Algorithm

If G is an s-polytree and Ak is a lonely node of G , the elimination of the extreme

leaves of G with respect to Ak can be restricted to φk because of Axiom (A5).

Thus:

(φ0⊗ . . .⊗φm)
−Ã+

k = (⊗i=0,...,m/i 6=kφi)⊗φ
−Ã+

k

k
. (6.15)

But d(φ
−Ã+

k

k
), that is a single variable because of Theorem 15 and Axiom (A2),

appears also in φl , where Al is a conjugate of Ak, by definition of conjugate.

With a simple redefinition of the potential of Al:

φl = φl ⊗φ
−Ã+

k

k
, (6.16)

the information associated to the potential φk after the elimination of the vari-

ables in Ã+
k

can be embedded in φl . Notably, d(φ′
l
) = d(φl) because of Ax-

iom (A2), that means that the potential redefinition in Equation (6.16) does

not affect the domain of φl . Finally, if we drop the potential φk from the set

of potentials, a new s-polytree G ′ is obtained because of Theorem 17 and the

procedure can be iterated. The overall procedure, returning the minimum of the

s-polytree because of Theorem 14, is reported in the following algorithm:

Algorithm 3. The findMin routine. In input we have an s-polytree G . The sub-

routine findInter returns a vector with the intersection of two arrays of variables.

1 U := randomly chosen node of G;
2 (δ0, . . . ,δm) := findDistances(G,U);

3 while number of s-nodes in G > 1 {
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4 k := argmax j δ j;

5 Al := findConjugate(Ak,G);
6 S := findInter(A+

k
,A+

l
);

7 Ã+
k
:= remove S from A+

k
;

8 φl = φl ⊗φ
−Ã+

k

k
;

9 mark Ak as not special;

10 drop the nodes in Ã+
k
from G;

11 remove φk, from (φ0, . . . ,φm);

12 remove δk, from (δ0, . . . ,δm);}
13 return φ

−d(φl)

l
;

The distances between a randomly chosen node U and the s-nodes of G are

initially computed (lines 1–2 of Algorithm 3). The routine findDistances(G ,U),

returning the distances between U and the s-nodes of G , can be implemented

through the well known depth first search (DFS) algorithm [Eve79] over the

undirected graph obtained forgetting the orientation of the arcs of G .

A lonely node Ak of G can therefore be detected as the s-node at maximum

distance from U (line 4). Algorithm 4, detects a conjugate Al of Ak (line 5) and

the extreme leaves of G with respect to Ak are therefore obtained (line 6–7).

These variables are indeed eliminated and the result is embedded on φl as in

(6.16) (line 8). Finally (lines 9–12), G is transformed by the pruning procedure

of Theorem 17 in a new s-polytree with an s-node fewer. The overall procedure

is iterated (line 3) until an s-polytree with a single s-node, whose minimization

is trivial (line 13), is returned.

Algorithm 4. The findConjugate function. The inputs are the polytree G and

a lonely node Ak. The output findConjugate(G ,Ak) is a conjugate of Ak. The

subroutine findNeighbors returns the neighbors of the node in its argument.

1 for each V ∈ findNeighbors(Ak) {
2 if V is special {
3 Al := V;

4 go to 8; }
5 else {
6 if V has a children W {
7 Al := W; }}}
8 return Al;

As an example, Algorithm 3 can be used to calculate the minimum of the

s-polytree of Figure 6.3. The distances between U := A6 and the s-nodes of G
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are: δ0 = 5, δ1 = 3, δ2 = 2, δ3 = 1. Thus, A0 is a lonely node of G and its sibling

A1 is a conjugate of it.

Clearly, Ã+
0
= A0 and the redefinition of φ1 should be:

φ1(a1, a2, a4, a5) = φ1(a1, a2, a4, a5) · min
a0∈A0

φ0(a0, a4). (6.17)

Furthermore, A0 is marked as not-special and dropped from G , the potential φ0

is removed from {φi}3i=0
, and similarly δ0 is removed from {δi}3i=0

. After these

operations, G is now an s-polytree with three s-nodes. A1 is clearly its s-node at

maximum distance from A6 and it is therefore a lonely node of G , while A2 is a

conjugate of it. The extreme leaves are A1, A4 and A5 and the redefinition of φ2

is:

φ2(a2) = φ2(a2) · min
a1∈A1,a4∈A4,a5∈A5

φ1(a1, a2, a4, a5). (6.18)

A further iteration of the procedure yields to:

φ3(a2, a3, a6) = φ3(a2, a3, a6) ·φ2(a2), (6.19)

and finally, we conclude that the minimum of the s-polytree GI is:

min
a3∈A3,a2∈A2,a6∈A6

φ3(a2, a3, a6) =
2

3
. (6.20)

According to Theorem 12, the CCURD instance I associated to GI is therefore

false and c′ does not dominate c′′.
Now, let I be the CCURD instance involving the decision whether or not

c′′ > c′ with all the attribute variables missing. We can proceed in complete

analogy with the procedure used to solve I . The numerical value of the minimum

of GI is 4

189
. I is therefore false and we conclude that the two classes are mutually

undominated. Therefore, if all the attribute variables are missing, we are not

able to identify a single optimal class and both the values c′ and c′′ are plausible.

Finally, to detect whether or not Algorithm 3 can be used to solve a given

CCURD instance I , it is sufficient to check if the graph GI returned by Algo-

rithm 1 is a polytree. The condition |V | = |E | + 1 for GI(V ,E ) can therefore

be used as an obvious applicability check. Note that Algorithm 1 obtains GI re-

moving some nodes and arcs from B+. Therefore GI can be a polytree also if the

original Markov blanket is multiply connected (e.g., the net in Figure 6.2).

Remember that we are focusing on connected s-networks. In the general case

of a disconnected s-network G , we have only to check whether or not the graph

is a polyforest. In the positive case, Algorithm 3 can be used to calculate the

minima of the s-polytrees associated to the connected component of G with at

least one s-node, while the overall minimum is just the product of these minima

because of Theorem 11.

Finally, concerning the efficiency of the overall procedure:
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Theorem 19. Algorithm 3 has linear complexity.

Proof. The subroutine findDistances is known to be linear in the number of arcs

of G [Eve79]. On the other hand, findConjugate(Ak,G ) requires a number of

operations equal to the number of neighbors of Ak. The children of Ak should

be s-nodes because of Definition 1, while Ak has at most a special neighbor, and

hence a children, because of (i) in Lemma 4. That means that Ak has at most

a children. The number of neighbors of Ak is therefore dominated by |ΠAk
|+ 1.

The subroutine findConjugate is invoked m times, and the overall number of

operations can therefore be bounded by
∑m

i=0
|ΠAk
| + m. But the first term of

this sum represents the number of arcs of G because of Definition 1. Thus, also

this part of the algorithm takes only a linear number of operations. Finally the

evaluation of φ
−Ã+

k

k
was already noted to take place in a domain of the same

dimension of those defined in input. That proves the thesis.

Note that in analogy with [dCZ04, Section 6], the common technique called

loop cutset conditioning can be used to solve a CCUR instance I even if the graph

GI returned by Algorithm 1 is not a polyforest. In this case the computation

takes exponential time.

6.6 Notes on CUR-Based Classification

So far we have focused on algorithms for CUR-based classification with Bayesian

networks. In this section, we would like to give a broader perspective of this

approach so as to clarify its characteristics and possible usages.

An important point concerns the cautiousness of CUR. Remember that CUR

assumes near-ignorance about the missingness process, and this implies having

to consider all the completions of the missing values as part of the updating

rule. Not surprisingly, this procedure is likely to yield partially indeterminate

conclusions (i.e., classifications), especially when there are missing attribute

variables that are important to predict the class. Avoiding indeterminacy is

therefore tightly connected with being able to measure all good predictors. This

will probably not be the case at the initial stages of interaction with an expert

system, in which only some of the variables are measured. But the interaction

is often a dynamic rather than a static process (this is very natural with cre-

dal classifiers, and more generally with imprecise probability models) in which

more and more measures are collected along the way towards definite conclu-

sions. This dynamic way of using expert systems would eventually lead CUR to

yield strong enough conclusions, with the advantage of having the intermediate

conclusions, guiding the process, not biased by potentially strong assumptions

about the missingness process.
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Obtaining stronger conclusions would be favored also by modifying CUR in

such a way that it may apply to incomplete rather than only to missing obser-

vations. An incomplete observation is defined as a set-based observation that

does not necessarily coincide with the entire possibility space (as with missing

data); the fact that some values may be excluded obviously favors obtaining

stronger conclusions. It is worth pointing out that the algorithms presented in

this chapter for CUR can be immediately extended to incomplete observations

of attributes: whenever there is a minimization, it is sufficient for the extension

to minimize over the observed subset an attribute’s possibility space rather than

over the entire space. It should also be noted that the evolution of CUR towards

incomplete observations has already been proposed under the name of conserva-

tive inference rule [Zaf05], which actually extends CUR under more substantial

respects, for instance by establishing the theoretical underpinning for statical

applications of these conservative rules.

Given that the last observation points to possible uses of CUR in a statistical

pattern classification context, it may be useful to briefly discuss the topic. One

important thing to be aware of is that rules such as CUR find justification in a sta-

tistical classification setting that produces (complete) data in an independently

and identically distributed way, when the missingness process is not identically

distributed, i.e., when each unit of (complete) data may be subject to a different

missingness process.4 Interestingly, in such a setup traditional precise (i.e., non-

credal) classifiers cannot be really considered competitors of credal classifiers

when the missingness processes is (partly) unknown: it is very easy to build ap-

plications that make every precise classifier fail to predict the right classes; and

this may be even done so that there is no way to know such bad performance

in advance by making the empirical tests traditionally employed in the classifi-

cation practice (see [Zaf05, Section 6]). The considered setting seems therefore

particularly suited for CUR-based classification and its extensions, and worth

exploring.

6.7 Summary and Conclusions

Probabilistic expert systems suggest actions on the basis of the available evidence

about a domain. Often such an evidence is only partial, due to a number of rea-

sons such as economic or time constraints. In order for the suggested actions to

be credible, it is important to properly take into account the process that makes

the evidence partial by hiding the state of some of the variables used to describe

the domain. The recently derived conservative updating rule achieves this by

4In fact, if the missingness process is also (independently and) identically distributed, a more

traditional approach should be employed [Zaf05, Section 5].
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considering a near-ignorance about the missingness process, and by updating

beliefs accordingly. In order to make the rule profitably used it is important to

develop efficient algorithms to compute with it.

In this chapter we have shown that it is not possible in general to create

efficient algorithms for such a purpose (unless P=NP): in fact, using the con-

servative updating rule to do efficient classification with Bayesian networks is

shown to be NP-hard. This parallels analogous results with more traditional

ways to do classification with Bayesian nets: in those cases, the computation

is efficient only on polyforest-shaped Bayesian networks. Our second contribu-

tion shows that something similar happens using the conservative updating, too.

Indeed we provide a new algorithm for robust classification that is efficient on

polyforest-shaped s-networks. This extends substantially a previously existing

algorithm which, loosely speaking, is efficient only on disconnected s-networks.

Yet, it is important to stress that the computational difference between tra-

ditional classification with Bayesian nets and robust classification based on the

conservative updating rule is remarkable: first, the former is based on the en-

tire net, while the latter only on the net made by the class variable with its

Markov blanket; second, while the former needs that the entire network is a

polyforest in order to obtain efficient computation, the latter requires only that

the associated s-network is. This means that the computation is efficient also

in many cases when the class variable with its Markov blanket forms a multiply

connected net in the original Bayesian network. In other words, computing ro-

bust classifications with the conservative updating will be typically much faster

than computing classifications with the traditional updating rule. Given that

the latter classifications are necessarily included in the former, by definition of

the conservative updating rule, it seems to be worth considering robust clas-

sifications not only as a stand-alone task, but also as a pre-processing step of

traditional classification with Bayesian nets.

With respect to future research, a natural development would be a general-

ization of our algorithms to the conservative inference rule (see Section 3.1.1),

which models also an hybrid situation of near-ignorance about missingness pro-

cess of some variables and MAR condition satisfied by the others. It seems also

possible to proceed as in [dCZ04, Section 7] to employ our algorithm also in the

case of credal networks [Coz00].



Chapter 7

Credal Networks for Military

Identification Problems

In this chapter, we present a credal network for risk evaluation in case of in-

trusion of civil aircrafts into a no-fly zone. The different factors relevant for

this evaluation, together with an independence structure over them, are initially

identified. These factors are observed by sensors, whose reliabilities can be af-

fected by variable external factors, and even by the behavior of the intruder. A

model of these observation mechanisms, and the necessary fusion scheme for

the information returned by the sensors measuring the same factor, are both

completely embedded into the structure of the credal network according to the

formalism developed in the first part of this thesis. A pool of experts, facili-

tated in their task by specific techniques to convert qualitative judgments into

imprecise probabilistic assessments, has made possible the quantification of the

network. We show the capabilities of the proposed network by means of some

preliminary tests referred to simulated scenarios. Overall, we can regard this

application as an useful tool to support military experts in their decision, but

also as a quite general imprecise-probability paradigm for information fusion.1

7.1 Protection of No-Fly Areas

In the recent times, the establishment of a restricted or prohibited flight area

around important potential targets surveyed by the Armed Forces has become

usual practice, also in neutral states like Switzerland, because of the poten-

tial danger of terror threats coming from the sky. A prohibited flight area is an

airspace of definite dimensions within which the flight of aircraft is prohibited. A

1The work presented in this chapter has been done in cooperation with Alberto Piatti and

Ralph Brühlmann.
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restricted flight area is an airspace of definite dimensions within which the flight

of aircrafts is restricted in accordance with certain specified conditions [Ser07].

In particular we refer to the Swiss case, where restricted flight areas are usually

established to protect international conferences (e.g., World Economic Forum in

Davos).

Once a restricted flight area is issued for the protection of a single strategic

object, all the aircrafts flying in this region without the required permissions

are considered intruders. The restricted flight area can be imagined as divided

in two concentric regions: an external area, devoted to the identification of the

intruder, where the intruder is observed by many sensors of the civil and military

Air Traffic Control, and an internal area, called killing box, which is a small region

containing the object to protect and the military units, where fire is eventually

released if the intruder is presumed to have bad aims.

Clearly, not all the intruders have the same intentions: there are intruders

with bad aims, called renegades, intruders with provocative aims, erroneous in-

truders, and even aircrafts that are incurring an emergency situation. Since only

renegades represent a danger for the protected object, the recognition of the in-

truder’s aim plays a crucial role in the following decision, which, if it is wrong, is

going to be critical. This is the identification problem we address in this chapter.

The problem is complex for many reasons: (i) the risk evaluation usually

relies on qualitative expert judgments; (ii) it requires the fusion of informa-

tion coming from different sensors, and this information can be incomplete or

partially contradictory; (iii) different sensors can have different levels of relia-

bility, and the reliability of each sensor can be affected by exogenous factors,

as geographical and meteorological conditions, and also by the behavior of the

intruder. A short review of the problem and some detail about these difficulties

is reported in Section 7.2.

We regard credal networks as the appropriate mathematical paradigm for the

modeling of military identification problems, as they are particularly suited for

modeling and doing inference with qualitative, incomplete, and also conflicting

information.

More specifically, we have developed a credal network for the considered

identification problem. This is achieved by a number of sequential steps: de-

termination of the factors relevant for the risk evaluation and identification of a

causal structure between them (Section 7.3.1); quantification of this qualitative

structure by imprecise probabilistic assessments (Section 7.4.1); determination

of a qualitative model of the observation mechanism associated to each sen-

sor, together with the necessary fusion scheme of the information collected by

the different sensors (Section 7.3.2); quantification of this model by probability

intervals (Section 7.4.2). An analysis of the main features of our imprecise-
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probability approach to information fusion is indeed reported in Section 7.5.

The credal network is finally used to evaluate the level of risk, which is simply

the probability of the risk factor conditional on the information collected by the

sensors in the given scenario. A description of the approximate procedure used

to update the network, together with the results of some simulations, is reported

in Section 7.6.

Summarizing, we can regard this model as a practical tool to support military

experts in their decisions for this particular problem. But, at the same time,

this credal network can be regarded as a prototypical modeling framework for

general identification problems requiring information fusion.

7.2 Military Aspects

This section focuses on the main military aspects of the identification problem

addressed by this chapter. Let us first report the four possible values of the risk

factor by which we model the possible intentions of the intruder.

(i) Renegade: the intruder intends to use itself as a weapon to damage the

strategic target defended by the restricted flight area.

(ii) Agent provocateur: the aim of an agent provocateur is to provoke or demon-

strate. An agent provocateur knows exactly what it is doing and does not

want to die, therefore it is expected to react positively at a certain moment

to radio communications.

(iii) Erroneous intruder: the intruder is an aircraft entering the restricted flight

zone because of an error in the flight path due to bad preparation of the

flight or to bad level of training of the pilot.

(iv) Damaged intruder: a damaged intruder is an aircraft without bad aims that

is incurring an emergency situation due to a technical problem. The pilot

does not necessarily know what he is doing because of a possible situa-

tion of panic. A damaged intruder can react negatively to radio commu-

nications, as their instruments could be switched off because of electrical

failures. A proper identification of damaged intruders is very important

because they can be easily confused with renegades.

In order to decide which one among these four categories reflects the real aim

of the intruder an appropriate identification device should be set up. Figure 7.1

displays a typical structure for the identification devices employed in Switzer-

land. When a restricted flight area is set up for the protection of an important

object, the Air Defence Direction Center (ADDC) is in charge of the identification
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of possible intruders. The ADDC collects the information provided by three main

sources: (i) the sensors of the civil Air Traffic Control (ATC), (ii) the sensors of

the military ATC, (iii) the interceptors of the Swiss Air Force devoted to Air Po-

lice missions. Once this evidential information has been collected, the ADDC

performs the identification of the aim of the intruder.
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Figure 7.1: The structure of the identification device.

The civil ATC sensors are based on a collaborative communication between

the ATC and the intruder. In fact, the detection of the intruder by the ATC is pos-

sible only if the intruder is equipped and operates with a transponder. Transpon-

ders are electronic devices that, if interrogated by the civil ATC radar, emit a

signal enabling a two-dimensional localization of the aircraft. Radars based on

this principle are called Secondary Surveillance Radars (SSRs). Transponders also

report data about the height of the aircraft, as measured by their instruments,

allowing in fact for a tridimensional positioning. Transponders emit also an

identification code. In our model, we consider the identification code Mode 3/A,

that, in certain cases, does not allow the exact identification of the intruder to be

realized (e.g., all the aircrafts flying according to the visual flight rules emit the

same code).2 It should be also pointed out that, if the transponder is switched

off, the intruder remains invisible to the civil ATC because the SSR is unable to

detect it.

Overall, we summarize the information relevant for the identification gath-

ered by the civil ATC in terms of two distinct factors: the TRANSPONDER MODE

2The most informative identification code Mode S is not considered here, because it has not

yet been implemented extensively in practice.
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3/A,3 indicating if and eventually what type of identification code has been de-

tected by the SSR; the ATC REACTION, describing the reaction of the intruder to

the instructions that civil ATCs, reported to intruders flying in the direction of

the restricted area, in order to deviate them from their current flight route.

Unlike civil ATC sensors, sensors managed by the military ATC and military

Air Police units are based on a non-collaborative observation of the intruder.

The main military ATC sensors are the Military Radar Stations, detecting echoes

reflected by the intruder of radio pulses emitted by the radar. These radars

provide in a continuous way the tridimensional position of the intruder. The

other military sensors, that are particularly suited for the identification of in-

truders flying at relatively low height, are the pointing devices of anti-air firing

units (two-dimensional and tracking radars, TV and infrared cameras) and the

Ground Observer Corps (GOC), which are military units equipped with optical

instruments to observe the intruder from the ground.

The information gathered by these sensors which is relevant for the identi-

fication of the intentions of the intruder can be summarized by the following

factors: AIRCRAFT HEIGHT, HEIGHT CHANGES, ABSOLUTE SPEED, FLIGHT PATH, AIR-

CRAFT TYPE, and also REACTION TO ADDC, which is the analogous of REACTION TO

ATC, but referred to the case of detection (and communication) by the military

ATC.

Finally, regarding the information gathered by the interceptors of the Swiss

Air Force, which is reported to the ADDC, the possible identification missions of

the interceptors are divided into three categories according to the International

Civil Aviation Organization: surveillance, identification and intervention. In the

first type of mission, the interceptor does not establish a visual contact with the

intruder but observes its behavior using sensors,4 in this case the interceptor is

considered as a sensor observing the same factors as the other sensors of the civil

and military ATC. In the second and in the third type of missions, the interceptor

establishes a visual contact with the intruder with the intention of observing it

(identification), or giving it instructions in order to deviate the aircraft from the

current flight route, or also to land it (intervention). The reaction of the intruder

to interception is very informative about its intentions. We model this reaction

to the latter two types of mission by the factor REACTION TO INTERCEPTION.

The intruder is assumed to be observed during a sufficiently long time win-

dow called observation period. All the factors we have defined to describe the

behavior of the intruder during this observation period are discrete random vari-

3The following typographical convention is used: random variables to be considered as rele-

vant factor for the identification are written in SMALL CAPITALS, while the possible states of these

variables are written in slanted lowercase.
4E.g., the most important interceptor of the Swiss Air Force, the Boeing F/A 18, is equipped

with a powerful board radar.
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ables, whose possible values have been defined with respect to the dynamic com-

ponent of the identification process, in order to eliminate the dependency of the

model on local issues (e.g., geographical issues). To explain how these aspects

are taken into account, we detail the definitions of the factors FLIGHT PATH and

HEIGHT CHANGES. The first factor describes the route followed by the intruder

during the observation period from an intentional point of view and not from

a physical or geographical perspective. Accordingly, their possible values are

defined as follows.

(i) Suspicious Route: the intruder follows a suspicious flight route in direction

of the protected objects.

(ii) Provocative Route: the intruder flights in the restricted area without ap-

proaching significantly the protected objects in an apparently planned way.

(iii) Positive Reaction Route: the intruder corrects its flying route spontaneo-

usly or according to instructions of the ATC or interceptors.

(iv) Chaotic Route: the intruder follows an apparently chaotic flight path.

The definition of these possible states is independent of the specific geographical

situation. In practice, we assume that a route observed on the radar or on other

sensors by the ADDC is interpreted from an intentional point of view in the light

of the current geographic situation. Similarly, the factor HEIGHT CHANGES de-

scribes the behavior of the intruder with respect to its altitude, by the following

possible values.

(i) Climb: the intruder is climbing, i.e., increasing its altitude.

(ii) Descent: the intruder is descending. i.e., decreasing its altitude.

(iii) Stationary: the intruder maintains roughly the same altitude during the

observation period.

(iv) Unstable: the intruder climbs and descends in an alternate way.

These values reflect an observation of the dynamic behavior of the intruder dur-

ing the whole observation period.

Another important issue regarding our model is the description of the sensors

available in the identification device and the evaluation of their efficiency. Con-

sider, for instance, a situation where a number of GOCs are observing the FLIGHT

PATH of an intruder. Assuming this number low, the corresponding observation

is probably of low quality, due to the scarce presence of GOCs. Now consider

a restricted flight area completely surveyed by GOCs, where the meteorological
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condition is characterized by continuous low clouds. Despite the high presence

of GOCs, also in this case the observation is probably of low quality. In this case,

the reason is the scarce reliability of GOCs.

By these two examples, we intend to point out that a proper description of

the identification device can be obtained by distinguishing between the presence

and the reliability of each sensor. The presence depends on the specific archi-

tecture of the identification device, on the technical limits of the sensors, and

also on the behavior of the intruder itself, being in particular affected by the

AIRCRAFT HEIGHT (e.g., some sensors can observe the intruder only if it is flying

at low heights). The reliability depends on the meteorological and geographical

conditions, on specific technical limits of the sensors (e.g., radars have low qual-

ity in the identification of the AIRCRAFT TYPE, independently of its presence) and

on the AIRCRAFT HEIGHT. All these aspects are implicitly considered by the Expert

that is required to specify directly the presence and the reliability of the differ-

ent sensors. This model of the identification device is detailed in Sections 7.3

and 7.4.

7.3 Qualitative Assessment of the Network

We are now in the position to describe the credal network developed for our

application. According to the discussion in the previous section, this task first

requires the qualitative identification of the conditional dependencies between

the different variables involved in the model, which can be coded by a corres-

ponding directed acyclic graph.

As detailed in Section 7.2, the variables we consider in our approach are:

(i) the RISK FACTOR, (ii) the nine variables used to assess the intention of the

intruder, (iii) the variables representing the observations returned by the sen-

sors, (iv) for each observation two additional variables representing presence

and reliability of the observation with the sensor. In the following, we refer to

the variables in the categories (i) and (ii) as core variables.

7.3.1 Risk Evaluation

Figure 7.2 depicts the conditional dependencies between the core variables ac-

cording to the military and technical considerations of the Expert.5 As an exam-

ple, the arcs connecting the nodes AIRCRAFT TYPE, AIRCRAFT HEIGHT, and RISK

FACTOR with the ABSOLUTE SPEED, correspond to the following Expert’s remarks:

5We briefly call Expert a pool of military experts from the Swiss Air Force, we have consulted

during the development of the model.
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there is a strong relation between the height above the ground and the correspon-

ding speed of an aircraft (technical considerations); a renegade is expected to fly

as fast as possible (military consideration); an intruder flying with a light aircraft,

because of the limited maximal speed of this type of aircrafts, would necessarily

flight very slowly. The specification of this part of the network has required a

considerable amount of military and technical expertise that, due to confiden-

tiality reasons, cannot be explained in more detail here.

Aircraft

Type

Height

Changes

Transponder

Mode 3/A

Aircraft

Height
Risk

Factor

Reaction to

ATC

Absolute

Speed
Reaction to

ADDC

Reaction to

Interception
Flight

Path

Figure 7.2: The core of the network. Dark gray nodes are observed by single

sensors, while light gray nodes are observed by set of sensors for which the

information fusion scheme in Section 7.3.2 is required.

7.3.2 Observation and Fusion Mechanism

We use the general definition of latent and manifest variables given by [SRH04]:

a latent variable is a random variable whose realizations are unobservable (hid-

den), while a manifest variable is a random variable whose realizations can be

directly observed. According to [BMvH02], there may be different interpreta-

tions of latent variables. In our model, we consider a latent variable as an unob-

servable random variable that exists independent of the observation. The core

variables, in Figure 7.2, are regarded as latent variables that, to be determined,

usually require the fusion of information coming from different sensors, with

different levels of reliability. The observations of the different sensors are con-

sidered as manifest variables. Nevertheless, in the case of the identification code
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emitted by the intruder (TRANSPONDER MODE 3/A), the REACTION TO INTERCEP-

TION observed by the pilot, and the REACTION TO ATC observed by the controllers

through SSR, the observation mechanism is immediate; thus we simply identify

the latent with the corresponding manifest variable, adding the value missing,

as a further possible value of the variable.6 This value is considered a possible

value for every manifest variable and can have particular meanings (e.g., for the

variable TRANSPONDER MODE 3/A the value missing probably means a switched

off transponder).

Clearly, if the risk factor was the only latent variable, the network in Fi-

gure 7.2 would be the complete network needed to model the risk evaluation.

But, because we are dealing with latent variables observed by many sensors, a

model of the observation and a fusion mechanism has to be added to the current

structure.

Observation Mechanism We begin by considering observations by single sen-

sors, and then we explain the fusion scheme for several sensors. Consider the

following example: suppose that an intruder is flying at low height and is ob-

served by ground-based observation units in order to evaluate its FLIGHT PATH.

For this evaluation, the intruder should be observed by many units. If our iden-

tification architecture is characterized by too a low number of observation units,

it is probable that the observation of the flight path would be incomplete or even

absent, although the meteorological and geographical conditions are optimal. In

this case, the low quality of the observation is due to the scarce presence of the

sensor. Suppose now that the architecture is characterized by a very large num-

ber of observation units but the weather is characterized by a complete cloud

cover with low clouds, then the quality of the observation is very low although

the presence of units is optimal. In this case the low quality of the observation

is due to the low reliability of the sensor under this meteorological condition.

This example motivates our choice to define two different factors affecting the

quality of an observation by a single sensor: the RELIABILITY and the PRESENCE.

Figure 7.3 illustrates, in general, how the evidence provided by a sensor

about a latent variable is assessed. The manifest variable depends on the rela-

tive latent variable, on the PRESENCE of the sensor and on its RELIABILITY. Both

RELIABILITY and PRESENCE are categorical variables with three possible values,

high, medium and low for the RELIABILITY, and present, partially present and

absent for the PRESENCE.

6The manifest variables we consider are typically referred to the observations of correspon-

ding latent variables. Thus, if X is a latent variable, the possibility space ΩO of the corresponding

manifest variable O takes values in the set ΩX augmented by the supplementary possible value

missing (we denote this value by ‘∗’).
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According to the military principles outlined in Section 7.2, the RELIABILITY

of a sensor can be affected by the meteorological and geographical situation and

also by the AIRCRAFT HEIGHT, while, regarding the PRESENCE only the AIRCRAFT

HEIGHT and architecture of the identification device affect the quality of the

observations. The influence of the latent variable AIRCRAFT HEIGHT is related to

the technical limits of the sensors: there are sensors that are specific of the low

and very low heights, like tracking radars and TV or IR cameras; other sensors,

like the 3D radars of the fixed military radar stations, are always present at high

and very high heights, but are not always present at low and very low heights.

The meteorological and geographical conditions do not affect the PRESENCE

of a sensor, but only its RELIABILITY. It is important to point out that these condi-

tions are always observed and we do not display them explicitly as variables in

the network, being already considered by the Expert during his quantification of

the RELIABILITY.

AIRCRAFT

HEIGHT

EXOGENOUS

FACTORS

SENSOR

PRESENCE

SENSOR

RELIABILITY

MANIFEST

VARIABLE

LATENT

VARIABLE

Figure 7.3: Observation mechanism for a single sensor. The latent variable is the

variable to be observed by the sensor, while the manifest variable is the value

returned by the sensor itself.

Sensors Fusion We can finally explain how the information collected by the

different observations of a single latent variable returned by different sensors

can be fused together. Consider, for example, the determination of the latent

variable AIRCRAFT TYPE. This variable can be observed by four types of sensors:
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TV cameras, IR cameras, ground-based observation units and air-based intercep-

tors. For each possible sensor, we model the observation using a structure like

the network in Figure 7.3: there is a node representing the PRESENCE of the sen-

sor and a node representing the RELIABILITY, while the variable AIRCRAFT HEIGHT

influences all these nodes. This structure permits the fusion of the evidence

about the latent variables coming from the different sensors, taking into account

the reliability of the different observations in a very natural way and without

the need of any external specification of explicit fusion procedures. Section 7.5

reports a note on the main features of this approach, which has been inspired by

similar techniques adopted for Bayesian networks [DO06].

AIRCRAFT

HEIGHT

RELIABILITY

SENSOR 1

RELIABILITY

SENSOR 2

RELIABILITY

SENSOR 3

RELIABILITY

SENSOR 4

PRESENCE

SENSOR 1

PRESENCE

SENSOR 2

PRESENCE

SENSOR 3

PRESENCE

SENSOR 4

SENSOR 1

(TV)

SENSOR 2

(IR)

SENSOR 3

(GROUND)

SENSOR 4

(AIR)

TYPE OF

AIRCRAFT

Figure 7.4: The determination of the latent variable TYPE OF AIRCRAFT by four

sensors.

We similarly proceed for all the latent variables requiring the fusion of infor-

mation from many sensors. This practically means that we add a subnetwork

similar to the one reported in Figure 7.4 to each light gray node of the core net-

work in Figure 7.2. The resulting directed graph, which is still acyclic, is shown

in Figure 7.5.



104 7.3 Qualitative Assessment of the Network

AIRCRAFT HEIGHT

AIRCRAFT TYPE

ABSOLUTE SPEED

HEIGHT CHANGES

FLIGHT PATH

REACTION TO ADDC

TRANSPONDER

MODE 3/A

REACTION TO

ATC

REACTION TO

INTERCEPTION

RISK

FACTOR

Figure 7.5: The complete structure of the credal network. Black nodes denote

manifest variables, while latent variables are white. Boxes are used to highlight

the different subnetworks modeling the observations of the latent variables as in

Figure 7.4.
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7.4 Quantitative Assessment of the Network

According to the discussion in Section 2.4, the specification of a credal network

over the variables associated to the directed acyclic graph in Figure 7.5 requires

the specification of a conditional credal set for each variable and each possible

configuration of its parents.

For the core variables, these credal sets have been obtained by means of

probability intervals explicitly provided by the Expert (Section 7.4.1), while,

regarding observations, presence and reliability, a quantification procedure to

automatically transform Expert’s qualitative judgments in conditional credal sets

specifications has been developed (Section 7.4.2).

7.4.1 Quantification of the Network Core

Because of the scarcity of historical cases, the quantification of the conditional

credal sets for the core variables in Figure 7.2 is mainly based upon military and

technical considerations. Together with the Expert we have isolated a number of

principles, later translated into probability intervals and hence into conditional

credal sets according to the procedure outlined in Section 2.3. As an example

of the principles used to quantify this part of the network: erroneous intruders

are usually light aircrafts, or we do not expect a business jet or an airliner to be an

erroneous intruder.

In some situations, the Expert was also able to identify logical constraint

among the variables. As an example, the fact that balloons cannot maintain

high levels of height represents a constraint between the possible values of the

variables AIRCRAFT TYPE and AIRCRAFT HEIGHT. These kinds of constraints have

been embedded in the structure of the network by means of zero probability

assessments.

7.4.2 Observations, Presence and Reliability

To complete the quantification of our credal network, we should discuss, for

each sensor, the quantification of the variables associated to the observation, the

reliability and the presence.

We begin by explaining how presence and reliability are specified. Consider

the network in Figure 7.3. The Expert should quantify, for each of the four pos-

sible values of the variable AIRCRAFT HEIGHT, a credal set for the reliability and

a credal set for the presence of the sensor. In practice, the Expert is simply re-

quired to suggest a value for the presence and a value for the reliability. To assess

the value of the presence, he should take into consideration only the structure of
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the identification architecture; while to assess the value for the reliability level,

also the actual meteorological and geographical situation should be considered.

For each specified level of presence or reliability, the Expert should also de-

cide whether or not he is uncertain about this value. His judgments are then

translated into coherent probability intervals (see Section 2.3.3), from which we

can compute the corresponding credal sets reflecting his beliefs. To this pur-

pose, we have defined, together with the Expert, a set of fixed credal sets that

are used to model the different combinations of values and uncertainty values.

This procedure substantially simplifies the quantification of the network, while

maintaining a large flexibility in the specification of presence and reliability.

Regarding the observations, a conditional credal set for each possible value

of the corresponding latent variable and for each possible level of reliability

and presence has been assessed. The idea is to avoid that the Expert would

answer questions like, what is the probability (interval) that the ground-based

observers have medium reliability in observing the type of aircraft of an intruder

that is flying at low height, if the meteorological condition is characterized by dense

low clouds and we are in the plateau? In fact, it can be extremely difficult and

time-consuming to answer dozens of questions of this kind in a coherent and

realistic way. It is much easier to answer questions like the following, what is the

reliability level that you expect from ground-based observers observing the type of

aircraft of an intruder that is flying at low height, if the meteorological condition is

characterized by dense low clouds and we are in the plateau? The latter question

is much simpler than the former, because one is required to specify something

more qualitative than probabilities. This is exactly the type of question that we

asked the Expert to quantify the necessary probabilities in our network. In the

following we explain, in order, our quantification of presence and reliability of

sensors and the observation mechanism.

Let X be a latent variable, and O the manifest variable corresponding to the

observation of X as returned by a given sensor. For each possible joint value of

RELIABILITY and PRESENCE, we should assess P(O = o|X = x) and P(O = o|X =
x), for each x ∈ ΩX and o ∈ ΩO = ΩX ∪ {∗}.

This quantification step can be simplified by a symmetric non-transitive rela-

tion of similarity among the elements of ΩX . The similarities between the pos-

sible values of a latent variable according to a specific sensor can be naturally

represented by an undirected graph as in the example of Figure 7.6. In general,

given a latent variable X , we ask the Expert to determine, for each possible out-

come x ∈ ΩX , the outcomes of X that are similar to x and those that are not

similar to x .

Having defined, for each latent variable and each corresponding sensor, the

similarities between its possible outcomes, we can then divide the possible obser-
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light

aircraft
glider balloon

helicopter jet airliner

Figure 7.6: An undirected graph depicting similarity relations about the possible

values of the variable TYPE OF AIRCRAFT according to the observation of a TV

camera. Edges connect similar states. The sensor can mix up a light aircraft

with a glider or a business jet, but not with a balloon or a helicopter.

vations in four categories: (i) observing the correct value of X ; (ii) confounding

the real value of X with a similar one; (iii) confounding the true value of X

with a value that is not similar; (iv) the observation is missing. The idea is to

quantify, instead of a probability interval for P(O = o|X = x) for each x ∈ ΩX

and each o ∈ ΩO, only four probability intervals, corresponding to the four cat-

egories of observations described above. As an example, Table 7.1 reports an

interval-valued quantification of the conditional probability table P(O|X ) for the

ideal variable TYPE OF AIRCRAFT, for a combination of values of PRESENCE and RE-

LIABILITY that models a good (although not perfect) quality of the observation.

l. aircr. glider balloon helicopt. jet airliner

l. aircraft [.9, .1] [0, .1] 0 0 [0, .1] 0

glider [0, .1] [.9, 1] 0 0 0 0

balloon 1 0 [.9, 1] 0 0 0

helicopter 0 0 0 [.9, .1] 0 0

jet [0, .1] 0 0 0 [.9, 1] [0, .1]

airliner 0 0 0 0 [0, .1] [.9, .1]

missing [0, .1] [0, .1] [0, .1] [0, .1] [0, .1] [0, .1]

Table 7.1: A model of a good quality observation of the AIRCRAFT TYPE, accord-

ing to the similarity graph in Figure 7.6. A fixed probability interval [0, .1] is

assessed for the value missing and for the similar states.

Let us finally explain how the four probability intervals are quantified in our

network for each combination of reliability and presence and for each sensor.

The probability interval assigned to the case where the observation is missing

depends uniquely on the presence. In particular, if the sensor is ABSENT, then

the probability of having a MISSING observation is set equal to one and therefore

the probability assigned to all the other cases are equal to zero. It follows that

we have only seven combinations of reliability and presence to quantify. To this
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end, we use constraints based on the concept of interval dominance to charac-

terize the different combinations.7 In order of accuracy of the observation, the

combinations are the following:

(i) high, present: the correct observation dominates (clearly) the similar ob-

servations. The probability for not similar observations is zero and is there-

fore dominated by all the other categories.

(ii) high, partially present: the correct observation dominates the similar ob-

servations and dominates (clearly) the not similar observations. The simi-

lar observations dominates the not similar observations.

(iii) medium, present: the correct observation dominates the similar observa-

tions and dominates the not similar observations. The similar observations

dominates the not similar observations.

(iv) medium, partially present: the correct observation does not dominate the

similar observations but dominates the not similar observations.

(v) low, present: no dominance at all.

(vi) low, partially present: no dominance at all, but more overlapping among

the intervals than in (5).

(vii) absent (no matter what the reliability is): the probability of a missing ob-

servation is equal to one, this value dominates all the other values.

7.5 Information Fusion by Imprecise Probabilities

In this section we develop an imprecise-probability approach to the general in-

formation fusion problem.

Let us first formulate the general problem. Given a latent variable X , and the

manifest variables O1, . . . , On corresponding to the observations of X returned by

n sensors, we want to update our beliefs about X , given the values o1, . . . , on

returned by the sensors.

The most common approach to this problem is to assess a (precise) proba-

bilistic model over these variables and compute the conditional mass function

P(X |o1, . . . , on). That may be suited to model situations of consensus among the

different sensors. The precise models tend to assign higher probabilities to the

7Given a credal set K(X ) over a random variable X , and two possible values x , x ′ ∈ ΩX , we

say that the x dominates x ′ if P(X = x ′) < P(X = x) for each P ∈ K(X ). It is easy to show that

that interval dominance, i.e., P(X = x ′) < P(X = x), is a sufficient condition for dominance.
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values of X returned by the majority of the sensors, which may be a suitable

mathematical description of these scenarios.

The problem is more complex in case of disagreement among the different

sensors. In these situations, precise models assign similar posterior probabilities

to the different values of X . But a flat posterior probability mass function models

indifference, while sensors disagreement seems to reflect instead a condition of

ignorance about X .

Imprecise-probability models are more suited for these situations. Posterior

ignorance about X can be represented by the impossibility of a precise specifi-

cation of the conditional mass function P(X |o1, . . . , on). The more disagreement

we observe among the sensors, the wider we expect the posterior intervals to be,

for the different values of X .

The case where the size of the posterior probability intervals results to be

increased by conditioning is known in literature as dilation [SW93], and is rela-

tively common with coherent imprecise probabilities.

The following simple example, despite its simplicity, is sufficient to outline

how these particular features are obtained by our approach.

Example 1. Consider a credal network over a latent variable X , and two mani-

fest variables O1 and O2 denoting the observations of X returned by two identical

sensors. Assume to be given the strong independencies coded by the graph in Fi-

gure 7.7. Let all the variables be binary. Assume P(X ) to be uniform and both

P(Oi = T|X = T) and P(Oi = F|X = F) to take values in the interval [1− ε, 1],

for each i=1,2, where ε > 1

2
models a (small) error in the observation mecha-

nism. Since the network in Figure 7.7 can be regarded as a naive credal classifier

[Zaf02], where the latent variable X plays the role of the class node and the obser-

vations correspond to the class attributes, we can exploit the algorithm presented

in [Zaf02, Section 3.1] to compute the following posterior interval:

P(X = T|O1 = T, O2 = T) ∈ [
(1− ε)2

1− 2ε(1− ε) , 1].

It follows that, in case of consensus between the two sensors, the corresponding pro-

bability for the latent variable increases, given that the lower extreme is larger than
1

2
. In the case of disagreement, instead, we obtain that P(X = T|O1 = F, O2 = T) ∈
[0, 1], which means that our ignorance about X dilates, leading to a completely

uninformative posterior interval.

Remarkably, assuming fixed levels of height, reliability and presence, Fi-

gure 7.4 reproduces the same structure of the prototypical example in Figure 7.7,

with four sensors instead of two. The same holds for any sub-network modeling

the relations between a latent variables and the relative manifest variables in

our network.
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X

O1 O2

Figure 7.7: The credal network for Example 1.

7.6 Simulations

The discussion in Section 7.3 and Section 7.4 led us to the specification of a

credal network, associated to the graph in Figure 7.5, over the whole set of

random variables we consider, i.e., core variables, observations collected by the

different sensors, reliability and presence levels.

At this point, we can evaluate the risk associated to an intrusion, by simply

updating the probabilities for the four possible values of the risk factor, condi-

tional on the values of the observations returned by the sensors and on the levels

of reliability and presence observed by the Expert.

As a preliminary test of the model, we have considered a simulated scenario

of a restricted flight area for the protection of a single object in the Swiss Alps,

surveyed by an identification architecture that is characterized by the absence

of interceptors and by a relatively good coverage of all the other sensors. We

assumed as meteorological conditions discontinuous low clouds and daylight.

The simulated scenario reproduces a situation where an agent provocateur is

flying very low with a helicopter and without emitting any identification code.

The decision maker is assumed to have uniform prior beliefs about the four

classes of risk.

The size of the network suggests the opportunity of an approximate approach

to this updating problem. In our approach, we have first augmented our credal

network by a number of control nodes according to a decision-theoretic speci-

fication, according to the procedure developed in Chapter 4. Then, we have

transformed each non-binary variable of the credal network into a set of binary

variables, according to the GL2U algorithm reported in Chapter 5. In our case,

the credal network has been updated in few seconds on a 2.8 GHz Pentium 4

machine, and convergence of L2U has been observed after seven iterations.

Figure 7.8.a depicts the posterior probability intervals for this simulated sce-

nario. The upper probability for the outcome renegade is zero, and we can there-

fore exclude a terrorist attack. Similarly, the lower probability for the outcomes

agent provocateur and damaged intruder are strictly greater than the upper pro-

bability for the state erroneous, and we can reject also this latter value because
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of interval dominance. Both these results are reasonable estimates for this sim-

ulated scenario.

Remarkably, the indecision between agent provocateur and damaged intruder

disappears as we assume higher levels of reliability and presence for the sensors

devoted to the observation of the height. The results, reported in Figure 7.b,

state that the intruder is an agent provocateur, as we have assumed in the design

of this simulation.

As a final comment on these simulations, we have experienced a substantial

agreement between the estimates provided by our credal network and those

returned by the military experts for the same scenarios. Nevertheless, for sake

of fairness, it should be pointed out that, at the present moment, our model is

the result of a number of interactions with the military experts and has been

designed with the aim to meet their judgements in the considered scenarios. A

deeper validation of the quality of the estimates provided by the credal network

should be therefore considered as a necessary future work.
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Figure 7.8: Posterior probability intervals for the risk factor, corresponding to

a simulated scenario reproducing a helicopter entering the restricted flight area

for demonstrative reasons. The histogram bounds denote lower and upper prob-

abilities. The quality of the observation of the AIRCRAFT HEIGHT is assumed to be

higher in (b) than in (a).

7.7 Summary and Outlooks

A model for determining the risk of intrusion of a civil aircraft into restricted

flight areas has been presented. The model embeds in a single coherent math-
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ematical framework human expertise expressed by imprecise-probability assess-

ments, and a structure reproducing complex observation mechanisms and cor-

responding information fusion schemes.

The risk evaluation corresponds to the updating of the probabilities for the

risk factor conditional on the observations of the sensors and the estimated levels

of presence and reliability. Preliminary tests considered for a simulated scenario

are consistent with the judgments of an domain expert for the same situation.

As a comment, it seems possible to offer a practical support to the military

experts in their evaluations. They can use the network to decide the risk level

corresponding to a real scenario, but it is also possible to simulate situations

and verify the effectiveness of the different sensors in order to design an optimal

identification architecture.

Finally, we regard our approach to the fusion of the information collected by

the different sensors as a sound and flexible approach to this kind of problems,

able to work also in situations of contrasting observations between the sensors.

With respect to future work, we intend to test the model for other historical

cases and simulated scenarios. The approximate updating procedure considered

in the present work, as well as other algorithmic approaches will be considered,

in order to determine the most suited for this specific problem. In any case, it

seems already possible to offer a practical support to the military experts in their

evaluations. They can use the network to decide the risk level corresponding

to a real scenario, but it is also possible to simulate situations and verify the

effectiveness of the different sensors in order to design an optimal identification

architecture.



Chapter 8

Credal networks for Hazard Assessment

of Debris Flows

Debris flows (Section 8.1) are among the most dangerous and destructive natural

hazards that affect human life, buildings, and infrastructures. Starting from

the ’70s, significant scientific and engineering advances in the understanding of

the processes have been achieved [CW87; IRL97]. Yet, human expertise is still

fundamental for hazard identification as many aspects of the whole process are

still poorly understood.

In Section 8.2 we try to fill the modeling gap by using a separately spe-

cified credal network. According to the discussion in Section 2.4.2, we cap-

ture the causal relationships between the triggering factors of debris flows by

a directed graph, and we represent quantitative influences by probability inter-

vals, determined from historical data, expert knowledge, and theoretical models.

The model presented aims at supporting experts in the prediction of dangerous

events of debris flow. It is worth emphasizing that the credal network model

joins human expertise and quantitative knowledge; this seems to be a necessary

step for drawing credible conclusions. We are not aware of other approaches

with this characteristic.

In Section 8.2.3 we present preliminary experiments testing the model on

historical cases of debris flows happened in the Ticino canton. The case studies

highlight the good capabilities of the model: for all the areas the model produces

significant probabilities of hazard. We make a critical discussion of the results,

showing how the results are largely acceptable by a domain expert. Finally, in

Section 8.2.4, with the support of a detailed GIS analysis, we test this procedure

for a whole, debris flow prone, watershed. The results indicate that the model

detects the areas of the basin more prone to debris flow initiation and produces

113
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different hazard patters according to different rainfall events.1

8.1 Debris Flows

Debris flows are gravity-induced mass movement intermediate between land-

slides and water floods. They are composed of a mixture of water and sed-

iment with a characteristic mechanical behavior varying with water and soil

content. Three types of debris flow initiation are relevant: erosion of a channel

bed due to intense rainfall, landslide, or destruction of a previously formed nat-

ural dams. According to [CF84], prerequisite conditions for most debris flows

include an abundant source of unconsolidated fine-grained rock and soil debris,

steep slopes, a large but intermittent source of moisture (rainfall or snowmelt),

and sparse vegetation. As mentioned in [GWM04], several investigation have

focused on debris flows initiation and frequency. Among them, [Gla05] focused

on existing links between debris-flow hazard and geomorphology. Several hy-

potheses have been formulated to explain mobilization of debris flows and this

aspect still represents a research field. The identification procedure presented

here is based on the theoretical model proposed by [Tak91], although a differ-

ent explanation of the triggering of debris flow by channel-bed failure has been

recently described by [AG05].

The mechanism to disperse the materials in flow depends on the properties

of the materials (like that grain average size, which is also called granulometry

and the internal friction angle), channel slope, flow rate and water depth, par-

ticle concentration, etc., and, consequently, the behavior of flow is also various.

Unfortunately, not all the triggering factors considered by this model can be di-

rectly observed, and their causal relations with other observable quantities can

be shaped only by probabilistic relations, by means of the formalism introduced

in the following section.

8.2 The Credal Network

8.2.1 Causal Structure

The network in Figure 8.1 expresses the causal relationships between the topo-

graphic and geological characteristics, and hydrological preconditions. The leaf

node MOVABLE DEBRIS THICKNESS is the depth of debris likely to be transported

downstream during a flood event. Such node represents an integral indicator of

the hazard level. Here we describe the considerations that led to such graph.

1The work presented in this chapter has been done in cooperation with Andrea Salvetti.
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Debris flows require a minimum thickness of colluvium (loose, incoherent

deposits at the foot of steep slope) for initiation, produced from a variety of

bedrock. This is embedded in the graph with the connection to the node AVAIL-

ABLE DEBRIS THICKNESS and expresses the propensity of the rock to produce sed-

iment.

On the other side, the node GEOLOGY represents the characteristics of the

bedrock in a qualitative way. Bedrock properties influence the rate of infiltration

and deep percolation, so affecting the generation of surface runoff and the con-

centration in the drainage network. This is accounted for by the connection of

the geology to the HYDROLOGIC SOIL TYPE, which influences the MAXIMUM SOIL

WATER CAPACITY.

The SOIL PERMEABILITY, i.e. the rate at which fluid can flow through the pores

of the soil, has to be further considered. If permeability is low, the rainfall tends

to accumulate on the surface or flow along the surface if it is not horizontal.

The causal relation among geology and permeability determining the different

hydrologic soil types was adopted according to [Kun02]. The basic assumption

is that soils with high permeability and extreme thickness show a high infiltra-

tion capacity, whereas shallow soils with extremely low permeability have a low

infiltration capacity.

The LAND USE cover of the watershed is another significant cause of debris

movement. It characterizes the uppermost layer of the soil system and has a

definite bearing on infiltration.

The curve number method [Ser93] has been adopted in order to define the

infiltration amount of precipitation, i.e. the MAXIMUM SOIL WATER CAPACITY.

This method distinguishes hydrologic soil types which are supposed to show a

particular hydrologic behavior. For each land use type there is a corresponding

curve number for each hydrologic soil type.

The amount of rainfall which cannot infiltrate is considered to accumulate

into the drainage network surface runoff, increasing the WATER DEPTH and even-

tually triggering a debris flow in the river bed.

These processes are described by the deterministic part of the graph, re-

lated to runoff generation and Takahashi’s theory, which takes into account topo-

graphic and morphological parameters, such as LOCAL SLOPE of the source area,

watershed morphology (described by the BASIN RESPONSE FUNCTION), UPSTREAM

CONTRIBUTING AREA, RAINFALL INTENSITY, and CHANNEL WIDTH. Regarding the

width of the channel, it should be pointed out that the complexity of the chan-

nel geometry is usually low and almost similar in debris flow prone watersheds.

For this reasons it was decided to adopt only three categories of channel width.

The channel width is obviously decisive to determine the water depth, given

the runoff generated within the watershed according to the standard hydraulic
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assumptions. Field experience in the study region indicates that debris flows

often start in very steep and narrow creeks, with reduced accumulation area

upstream.

The climate of the regions in which debris flows are observed is as varied as

geology and this was accounted for by defining several climatological regions,

with different parameters of the depth-duration-frequency curve. In addition to

the RAINFALL DURATION and EFFECTIVE RAINFALL INTENSITY of a storm that ulti-

mately produces a debris flow, the ANTECEDENT SOIL MOISTURE conditions are

recognized as an important characteristic. The significant period of antecedent

rainfall varies from days to months, depending on local soil characteristics. Ac-

cording to the curve number theory, the transformation law to the EFFECTIVE

SOIL WATER CAPACITY depends only on the five-days antecedent rainfall amount

corresponding to different moisture conditions.

We used the linear theory of the hydrologic response to calculate the MAXI-

MUM PEAK RUNOFF values produced by constant-intensity hyetographs. We used

the multiscaling framework for intensity duration frequency curve [BR96] coupled

with the instantaneous unit hydrograph theory, proposed by [RCP+04]. Accord-

ingly, the time to peak is greater than the rainfall duration and the CRITICAL

RAINFALL DURATION is independent of rainfall return period. The instantaneous

unit hydrograph was obtained through the geomorphological theory [RIV79] and

the Nash cascade model of catchment’s response, where the required parameters

were estimated from HORTON’S RATIOS according to [Ros84].

By using the classical river hydraulics theory, the water depth in a channel

with uniform flow and given discharge, water slope and roughness coefficient

can be determined with the Manning-Strickler formula [Mai93]. The granulom-

etry is required to apply Takahashi’s theory. The friction angle was derived from

the granulometry with an empirical one-to-one relationship. Takahashi’s theory

can finally be applied to determine the THEORETICAL DEBRIS THICKNESS that could

be destabilized by intense rainfall events. The resulting value is compared with

the actual AVAILABLE DEBRIS THICKNESS in the river bed. The minimum of these

two values is the MOVABLE DEBRIS THICKNESS.

8.2.2 Quantification

Quantifying uncertainty means to specify the conditional credal sets for all the

nodes, given all the possible instances of their parents. The specification is im-

precise, in the sense that each conditional probability can lie in an interval. Inter-

vals were inferred for the nodes GEOLOGY, PERMEABILITY, LAND USE, LOCAL SLOPE,

HYDROLOGIC SOIL TYPE, and MAXIMUM SOIL WATER CAPACITY, from the GEOSTAT

database [KKW01], by the imprecise Dirichlet model (see Section 2.3.4). The
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Figure 8.1: The credal network for hazard identification.
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expert provided intervals for nodes CHANNEL WIDTH, GRANULOMETRY, HORTON’S

RATIOS, and AVAILABLE DEBRIS THICKNESS. Functional relations between a node

and its parents were available for the remaining nodes; in this case the intervals

degenerate to a single 0-1 valued mass function. We detail the functional part

in the rest of the section.

As mentioned in Section 8.1, the ANTECEDENT SOIL MOISTURE conditions were

accounted for by using the curve number method. The parametrization (b1, b2)

of the BASIN RESPONSE FUNCTION corresponding to the instantaneous unit hy-

drograph was obtained by using the number of theoretical linear reservoirs by

which the basin is represented, b1 = 3.29 · r0.78
1
· r0.07

2
; and by the time constant

of each reservoir, b2 = .7 · 0.251 · (r1 · r2)
−.48 · a0.38. Here b1 depends on Horton’s

ratios r1 and r2, and b2 is also function of the UPSTREAM CONTRIBUTING AREA a.

For this we assumed the empirical expression reported by [DR03].

Given b1 and b2, following [RCP+04], we calculate the two characteristic du-

rations, the RAINFALL DURATION t and CRITICAL RAINFALL DURATION t ′, by solving

the following system of two equations:

(

α = [ t

b2

· ( t ′

b2

)b1−1e−t ′/b2]/[γ(b1, t ′

b2

)− γ(b1, t ′−t

b2

)]

t

t ′
= 1− e

− t

b2
· 1

b1−1

, (8.1)

where γ is the incomplete lower gamma function and α is a parameter, correspon-

ding to the exponent of the multiscaling intensity duration frequency curve.

We assume that these are in the form i′ = f (τr) · t−α, where f is function of the

return period τr of the event and i′ is the RAINFALL INTENSITY. To evaluate the EF-

FECTIVE RAINFALL INTENSITY i, we have to impose the following transformation,

taking account of the (effective) curve number, the corresponding dispersion

term, and of the rainfall duration:

i =
(i′ · t −λ(c)/10)2

i′ · t −λ(c)/10
+λ(c) · 1/t , (8.2)

where λ(c) = 254 · (100/c − 1) is the water depth absorbed by the soil of given

curve number. The maximum runoff along the drainage network was calcu-

lated according to the well-established theory of the Instantaneous Unit Hydro-

graph (IUH), expressed as the convolution integral of the effective rainfall in-

put. The hydrograph shape strongly depends on the geomorphological features

of the river basin, therefore, the Geomorphologic Instantaneous Unit Hydrograph

(GIUH) presents obvious advantages in ungauged watersheds [RIV79], since the

GIUH only depends on the morphological characteristics of the watershed and

the drainage network. According to this theory, the MAXIMUM PEAK RUNOFF q is



119 8.2 The Credal Network

obtained using the following:

q =







i · a · [H (t ′)−H (t ′− t)] 0 ≤ t ≤ τc

i · a t > τc,

(8.3)

where H(t) represents the integral of the GIUH from the beginning of the storm,

t∗ is the critical duration at the considered point, and it is a function of the RAIN-

FALL DURATION t , while τc is the concentration time. Effective rainfall intensity

is determined using the well established SCS Curve Number infiltration method

and the rainfall intensity modeled by multiscaling power law relationship. The

CRITICAL RAINFALL DURATION t ′ associated with the extreme peak runoff is in-

dependent of the return period and of the rainfall intensity; the corresponding

rainfall volume is calculated for the rainfall duration t . The corresponding WA-

TER DEPTH is

w =
q

25
· l 5

3 ·
p

tan n, (8.4)

where n is the LOCAL SLOPE and l the CHANNEL WIDTH. According to [Tak91], we

evaluate the THEORETICAL DEBRIS THICKNESS as

d ′ = w ·
�

k · (
tan m′

tan n
− 1)− 1

�−1

. (8.5)

The relation is linear, with a coefficient taking into account the local slope n

and the FRICTION ANGLE m′ (which can be obtained from the GRANULOMETRY m).

k = Cg(δg − 1), with δg = 2.65 the relative density of the grains, and Cg ≃ 0.7

the volumetric concentration of the sediments. The effect of a water depth on

the movable debris quantity is based on the equilibrium of forces acting on a

debris cluster under different conditions. According to [Tak91], the local slope

for which debris-flow formation can take place obeys the following constraint:

Cgδg

4

3
+ Cgδg

tan m′ ≤ tan n ≤
Cgδg

1+ Cgδg

tan m′, (8.6)

For the points of the basin whose values of m and n do not satisfy the constraint

in Equation (8.6), either the cluster is not completely saturated and, if unstable

at high slope angles, produces a landslide or the process that takes place is the

ordinary solid transport ([DBA06]), and therefore we drop the relative point

from the potential source areas of this hazard without any further analysis.

The theoretical value for the movable quantity d ′ does not take into account

how much material is physically available. As the actual MOVABLE DEBRIS THICK-

NESS d cannot exceed the AVAILABLE DEBRIS THICKNESS x , the final relation is
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given by

d =min{x , d ′}. (8.7)

Many authors have dealt with the capability of local slope and upstream

contributing area to account for topographic control on erosion and deposition

potential in complex terrain and with the use of slope and contributing area

for channel network extraction, based on critical area and slope-area threshold

(e.g., [PA96]). In this study such a method was used to extract the channelized

portion of the Digital Elevation Model (DEM), where debris flow initiation can

appear, according to the following equation:

SPI =
p

A · θ , (8.8)

where SPI denotes the STREAM POWER INDEX. The threshold value of SPI has

been identified by trials, comparing the extracted network with the drainage net-

work on the map, where also many ephemeral channel in the upper part of the

basin were included in the network. That index can be used as an indicator of

the local transport capacity of a single reach along the network and, therefore, to

identify channel reach were debris material preferentially accumulates. Clearly,

the availability of an abundant debris thickness in the drainage network is a

fundamental precondition for debris initiation. Based on some previous work

of [DFM03], we developed a conceptual framework for a qualitative evaluation

of the debris availability in the river network. We assume that the debris avail-

ability is a function of the convenience capacity of the river network associated

to the SPI . Cells with SPI value exceeding the threshold for channel initiation

correspond very often to areas where bedrocks emerge and local slope is quite

high, and therefore the sediment deposition is zero or very low. On the contrary,

in cells where SPI is much less than the selected threshold level, high deposition

instead of erosion is expected and we therefore assume a high availability of de-

bris material. These principles supported by expert knowledge have been used

for an interval-valued probabilistic quantification of the node AVAILABLE DEBRIS

THICKNESS.

According to the model of the initiation mechanism considered in this study,

the soil failure is induced by surface runoff and, consequently, the maximum

discharge and the corresponding water depth must be estimated. [RIR97] in-

vestigated how the variation of the characteristics of stream channel is expressed

as a function of the discharge by a power law at a given cross section and also

along the channel network. The parameters were estimated by using a few col-

lected cross-section data, randomly distributed along the drainage network.
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8.2.3 Local Identifications

We validate the model in preliminary way by an empirical study involving six

areas of the Ticino canton. The network was initially fed with the information

about the areas reported in Table 8.1, the estimated rainfall intensity on them

for a return period of 10 years, and the geomorphological characteristics of the

watershed. The estimated rainfall intensity is the expected frequency level of

precipitations in a certain region during a future period. Using the estimated

rainfall intensity allowed us to re-create the state of information existing 10

years ago about precipitations in the areas under consideration. This is a way

to check whether the network would have been a valuable tool to prevent the

debris flows that actually happened in the six areas.

Node Cases

1 2 3 4 5 6

G Gneiss Porphyry Limestone Gneiss Gneiss Gneiss

A 0.26 0.32 0.06 0.11 0.38 2.81

M 10–100 ≤10 ≤10 100–150 ≤10 150–250

U Forest Forest Forest Vegetation Forest Bare soil

N 20.8 19.3 19.3 21.8 16.7 16.7

L 4 6 4 8 4 8

R1 0.9 0.6 0.7 0.9 0.9 0.8

R2 1.5 3.5 3.5 3.5 2.3 2.1

Table 8.1: Details about the six case studies. Note that the PERMEABILITY is

unavailable. This is a common case because of the technical difficulties in its

evaluation.

Thickness Cases

1 2 3 4 5 6

low 0.011 [0.084,0.087] 0.083 0.196 0.087 0.005

medium 0.048 [0.263,0.273] 0.275 0.388 0.139 0.013

high 0.941 [0.639,0.652] 0.642 0.416 0.774 0.982

Table 8.2: Posterior probabilities for MOVABLE DEBRIS THICKNESS. The probabili-

ties are displayed by intervals in case 2.
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The results of the analysis are in Table 8.2. We use the probabilities of defined

debris thickness to be transported downstream as an integral indicator of the

hazard level.

In cases 1 and 6 the evidences are the most extreme out of the six cases

and indicate a high debris flow hazard level, corresponding to an unstable de-

bris thickness greater than 50 cm. In case 6 the relatively high upstream area

(2.81 km2), large channel depth, and the land cover (bare soil, low infiltration

capacity) explain the results. In case 1 the slope of the source area (20.8◦) plays

probably the key role. In cases 2 and 3 the model presents a non-negligible

probability of medium movable debris thickness. Intermediate results were ob-

tained for case 5 due to the gentler bed slope (16.7◦) as compared with the

other cases. In case 4 the hazard probability is more uniformly distributed, and

can plausibly be explained with the very small watershed area and the regional

climate, which is characterized by low small rainfall intensity as compared with

other regions.

We simulated also the historical events, by instantiating (as opposed to using

the estimated rainfall intensity) the actual measured rainfall depth, its duration

and the antecedent soil moisture conditions. Also in this setup the network

produced high probabilities of significant movable thickness.

As more general comment, it is interesting to observe that in almost all cases

the posterior probabilities are nearly precise. This depends on the strength of

the evidence given as input to the network about the cases, and by the fact that

the flow process can partially be (and actually is) modeled functionally.

Now we want to model the evidence in even more realistic way with respect to

the grain size of debris material. Indeed, granulometry is typically known only

partially, and this limits the real application of physical theories, also considered

that granulometry is very important to determine the hazard.

We model the fact than the observer may not be able to distinguish different

granulometries by the conservative inference rule described in Section 4.4. To this

end, we add a new node to the net, say OM , that becomes parent of M . OM rep-

resents the observation of M . There are five possible granulometries, m1 to m5.

We define the possibility space for OM as the power set of M = {m1, . . . , m5},
with elements oM ′ , M ′ ⊆ M . The observation of granulometry is set to oM ′
when the elements ofM ′ cannot be distinguished. P(m|oM ′) is defined as fol-

lows: it is set to zero for all states m ∈M so that m /∈M ′; and for all the others

it is vacuous, i.e. the interval [0, 1] (the intervals defined this way must then

be made reachable). This expresses the fact that we know that m ∈ M ′, and

nothing else.

Let us focus on case 6 for which the observation of grain size is actually uncer-

tain. From the historical event report, we can exclude that node M was in state
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m1 or m2. We cannot exclude that m4 was the actual state (m4 is the evidence

used in the preceding experiments), but this cannot definitely be established.

We take the conservative position of letting the states m3, m4 and m5 be all plau-

sible evidences by setting OM = o{m3,m4,m5}. The interval probabilities become

[0.002, 0.008], [0.010, 0.043], and [0.949, 0.988], for debris low thicknesses,

medium, and high, respectively. We conclude that the probability of the latter

event is very high, in robust way with respect to the partial observation of grain

size.

8.2.4 Spatially-Distributed Identifications

The case study we present in this section refers to the Acquarossa Creek in the

Blenio Valley, an area located in the North-Eastern part of the Ticino Canton,

Southern Switzerland. This area was selected because of the potential hazard

caused by debris flows to communication lines and villages. That creek is a small

tributary of the Brenno river, characterized by a high altitude range (from 530m

up to 2580m a.s.l.) of the Simano Peak. Debris torrents are usually triggered

by intense rainfall, following a period of abundant precipitation. Eight historical

debris flow events were recorded in that area during the last 150 years. Most

of them caused high damages to infrastructures on the alluvial fan, transporting

several thousand cubic meters of material. For instance, during the last event

in August 2003, a volume of about 15′000m3 were estimated on the alluvial

fan, and a similar pattern was observed in 1983 and 1987. That represents

a relatively high frequency of debris flow events. Accordingly, the triggering

factors appear to be already effective in many parts of the basin with storm

events of low and medium return period.

In order to gather evidential information about the geomorphological char-

acteristics of the basin, a highly precise DEM based on airborne laser scanning

produced by the Swiss Federal Office of Topography has been employed. That

offers a spatial resolution of 4 meters, which is comparable with the typical

channel width; that defines a drainage network of 6310 cells. Most of the mor-

phological data used for our identification analysis (slope, flow-direction and

flow-accumulation) were derived from this dataset, and the SPI was calculated

as in Equation (8.8).

Finally, regarding the observation of the granulometry, a field survey was

conducted. The river bed and lateral debris levees were analyzed in order to de-

termine the grain-size distribution of the debris material. A significant difference

was observed for the grain-size distributions obtained from several samples. We

have therefore decided to split the basin into two sub-regions of “uniform” gran-

ulometry, and describe the outcome of the sampling by a soft evidence modeled
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Figure 8.2: Acquarossa Creek Basin.

as a new unconditional credal sets for the corresponding node in the credal net-

work.

In order to avoid unnecessary computations, for each point of the basin, we

have preliminarily checked whether or not the observed slope and the values of

the friction angle compatible with the soft observation of the granulometry were

compatible with the constraint in Equation (8.6). This deterministic pre-analysis

detects 170 pixels where only ordinary sediment transport is possible and 135

pixels that are already unstable without complete soil saturation. For the remain-

ing 6005 pixels, we have computed the posterior lower and upper probabilities

for the movable debris thickness corresponding to observed geomorphological

factors and rainfall intensity for a return period of 10, 30 and 100 years. These

computations have been exactly performed by exhaustive approaches based on

the iteration of standard algorithms for Bayesian networks as our credal network

is equivalent to about 500 Bayesian networks. The network is thus expected to

predict the probability of a debris flow event with the defined frequency level at

each point of the drainage network. In this way, we aim at verifying whether the

network would have been a valuable tool to predict considerable events of de-

bris flows, which actually happened in the areas under consideration, and, more

important, to identify the points where the debris flow is most likely to occur in

the future. Figure 8.3 reports the results of the inference process for respectively

10 and 100 years return period rainfall event.

We observe that the debris flow is more likely to initiate on the main chan-

nel, even in the lower part of the basin. This fits with the historical observations
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for this basin and also for other watersheds in the same region. Regarding the

role of the return period in our tests, we observe an increase of the number of

dangerous points, that spread upstream along the drainage network: for higher

return periods even a small upstream area is sufficient to produce a peak runoff

that can trigger a debris flow. All these remarks, which refer to results obtained

by an almost automatic procedure, are considered acceptable by an expert do-

main.

Figure 8.3: Spatially distributed identifications for the basin in Figure 8.2 and

rainfall return periods of 10 (left) and 100 (right) years. The points for which

the credal network predicts the lower class of risk are depicted in gray, while

black refers to points where higher levels of risk cannot be excluded.

8.3 Human versus Artificial Expert

In order to evaluate the quality of the numerical tests reported in Section 8.2.3

and Section 8.2.4, we have asked a comment on these result to Andrea Salvetti,

the expert of geomorphological natural hazards which has collaborated with

us during the development of the model presented in this chapter. As a first

general comment, all the estimates provided by our credal networks are fitting

the previsions of our expert. It seems therefore possible to regard our model as a

real artificial expert system able to replace, or at least support, “human” experts

in the risk analysis of debris flows.
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Regarding the historical cases in Section 8.2.3, it should be also pointed out

that the posterior probability intervals returned by our credal network are nearly

precise. This seems to be related to the fact that our model embeds a number of

deterministic relations, which reduce the imprecision of the inferences when a

sufficient number of factors is observed. Despite the substantial agreement with

the expert estimates, the human conclusions for the same cases are much more

qualitative. As a possible comment on this issue, let us point out the relative

toughness of human reasoning in managing on the same time probabilistic and

deterministic knowledge in single process, while, on the other side, a probabilis-

tic model can naturally embed deterministic relations by simply regarding them

as degenerate mass functions specifications.

Similar considerations can be done for the area-distributed simulations of

Section 8.2.4. Considering that the this kind of analysis requires the independent

computation of the level of risk in hundreds of cells in the basin, it should be

pointed out that a human expert would be able to perform a similar analysis

in a considerably long time, while the credal network can return a risk map

like those in Figure 8.3 in few seconds. Accordingly, the artificial expert system

should be regarded not only as a replacement (or support) for the human expert,

but also as a sort of “super-expert” for which we can obtain an arbitrary number

of replica, performing in a parallel way the same analysis of a human expert, but

in a considerably shorter time.

8.4 Summary and Outlooks

We have presented a model for determining the hazard of debris flows based on

credal networks. The model unifies human expertise and quantitative knowl-

edge in a coherent framework. This overcomes a major limitation of preceding

approaches, and is a basis to obtain credible predictions, as shown by the ex-

periments. Credible predictions are also favored by the soft-modeling made

available by imprecise probability through credal sets.

The model was developed for the Ticino canton in Switzerland, but extension

to other areas is possible by re-estimating the probabilistic information inferred

from data, which has local nature. The identification procedure can be exten-

sively applied to whole basins, and unnecessary computations are avoided for

areas where the geomorphological conditions are not compatible with debris

flow initiation. As a spatially distributed case study, we tested our model for a

debris flow prone watershed in Southern Switzerland. The model detects the

areas inside the basin more prone to debris flow initiation and also shows that

different rainfall return periods produce different hazard patterns. That makes

it possible to determine the return period of the critical rainfall that triggers de-
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bris flow as a result of channel-bed failure in a specific point along the drainage

network.
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Chapter 9

Conclusions and Future Research

9.1 Main Results

We have in this thesis presented a number of graphical transformations provid-

ing equivalent representations for different probabilistic graphical models. The

notion of equivalent representation is probably the actual focus of the entire thesis

and has led to two different kinds of results. First, our equivalent representations

offer alternative and sometimes more general and expressive languages of spec-

ification, leading to unified views of models previously considered different and

irreconcilable. Second, and even more important, the connection established by

these relations can be used to solve (and evaluate the complexity of) inference

problems, which might not be so easy to do in their original formulations.

Therefore, in order to summarize the findings of this thesis, let us first re-

port the equivalence relations we have established in the area of probabilistic

graphical models.

• The notion of decision-theoretic specification of a credal network (Sec-

tion 4.1), which defines a new class of probabilistic graphical models in-

cluding both non-separately and separately specified credal networks, al-

lowing for a unified representation of these two classes of models.

• An equivalence relation between credal networks specified in the decision-

theoretic framework and separately specified credal networks defined over

a wider domain (Section 4.2).

• The notion of exact binarization of a credal network, providing an equiva-

lent representation of a credal network of any kind as a separately specified

credal network defined only over binary variables (Section 5.2.1).
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• The equivalence between Bayesian and credal networks with respect to a

specific updating problem with incomplete observations (Section 3.1.2).

• The equivalence between a Bayesian network and a valuation algebra,

which is a more abstract class of models, with respect to a specific clas-

sification problem, still involving missing observations (Section 6.5).

All these results can be regarded as important advances into the field of graphical

models, offering a deeper and more general view of existing classes of models

and their relations with other and even new classes. Further, these results have

been also employed for the development of the following inference algorithms.

• A procedure that extends any algorithm designed for separately specified

credal networks to credal networks of any kind (e.g., Section 4.3).

• The GL2U algorithm, which represents a state-of-the-art algorithm for gen-

eral credal networks purely based on message propagation (Section 5.2.2).

We have also presented two applications of credal networks to real problems

(Chapters 7 and 8). These are among the very first examples of real application

of these mathematical models. Moreover, besides their intrinsic importance in

solving the problems for which they have been designed, we regard these two

networks as prototypical examples of applications based on credal networks,

able to offer useful guidelines to other researchers aiming to develop similar

applications.

9.2 Future Research Directions

Finally, let us point out some future research directions that are relevant for the

work presented in this thesis.

Let us start from the theoretical issues. We point the reader to Sections 4.5,

5.3, and 6.7, where the possible developments of the specified results provided

in the relative chapters are detailed. Here, let us consider this point from a more

general perspective. The main directions opened by the findings proposed in

this thesis are the following three.

• By means of the notion of decision-theoretic specification of a credal net-

work we have developed a first connection between credal networks and

decision graphs. A further development in this direction could be achieved

with important results in terms of cross-fertilization for both these fields.
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• The GL2U algorithm we have developed has been already presented as

a state-of-the-art algorithm for approximate updating of large credal net-

works. Nevertheless, it seems possible to improve the performance of the

algorithm, and also obtain a theoretical characterization of the accuracy

and the convergence of the algorithm.

• We have modeled, by means of specific graphical transformations, the ob-

servation mechanism characterizing a specific updating problem, where

the outcome of the observation is incomplete. This idea might be devel-

oped in order to describe other examples of uncertain observations. That

would represent an important generalization to imprecise probabilities of

the standard approaches to soft evidence modeling (e.g., Jeffrey’s updat-

ing and virtual evidence method).

Concerning implementation issues, we intend to develop new software tools

allowing an increasing number of users to work with credal networks. Most of

the ideas outlined in this thesis could lead to the implementation of software

tools of this kind.

First, the notion of decision-theoretic specification offers a new and general

language for credal networks that could be implemented as an XML standard

for the explicit specification of a credal network. Furthermore, the implementa-

tion of GL2U could represent the first step towards the development of a general

framework for making inferences on credal networks. The development of a

graphical interface simplifying the interaction with a credal network would be

another important achievement, either for the applications presented in Chap-

ter 7 and 8, and for any other application based on credal networks.
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