
Property Templates and Assertions
Supporting Runtime Failure Detection

Jochen Wuttke

University of Lugano
Faculty of Informatics

Technical Report 2008/04
Month Year

Abstract

In the context of our research program we addressed the question
whether or not requirements documents contain information about system
level properties that can be exploited to automatically create assertions for
run-time checks of these properties. In this technical report we define the
concept of property template and report details on the studies we carried
out to address this question. The results are presented in the form of
a catalog of property templates, and details from the individual studies
showing which properties occur in which projects.

1 Introduction

Good software engineering practice and thorough verification and validation
improve software quality, but do not eliminate all faults. Thus, software systems
fail also after deployment. Precise reports of failures in deployed systems have
many uses. They may help users to find ad-hoc workarounds, aid developers
in locating and fixing the faults causing the failure, and they can drive self-
adaptation mechanisms aiming at preventing similar failures in the future.

Our work focuses on self-healing mechanisms for functional software prob-
lems. Building on key ideas expressed by Kephart and Chess, most self-healing
systems rely on a variant of the “autonomic cycle” [KC03]. In their model, an
autonomic element, that is a component or a whole system, is under the control
of an autonomic manager, which monitors and analyzes the execution of the
element, and in the case of problems plans and executes changes to the systems
configuration.

In self-healing systems monitoring and analysis aim to identify failures and
locate faults. Some self-healing systems rely on execution-independent heuris-
tics instead of explicit failure detection. Examples are micro-reboot techniques
and approaches that extend classic garbage collection to deal with memory
leaks [CKF+04, GSW07]. These techniques execute repair actions periodically
and independently from the kinds of failures that may have occurred, whether
they are necessary or not. Thus, they trade precision and computation time

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20643326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for simplicity, and apply only to some classes of failures. Although execution-
independent heuristics can be useful in some contexts, explicit failure detection
techniques are an important component of many self-healing systems.

Most research on self-healing systems has addressed issues directly relating
to adaptability, and has assumed suitable failure detection mechanisms exist.
Here we explicitly address the problem of precise failure detection for self-healing
systems. Even though detection of functional failures has been explored exten-
sively in the literature on software validation and verification, in the context of
self-healing systems, we must face new challenges.

To be acceptable as a monitoring technique deployed in production systems,
automatic failure detectors (1) cannot rely on human operators to arbitrate the
validity of detected problems, (2) must have only limited performance overhead,
(3) must detect failures precisely and produces only few, if any, false alarms,
and (4) must detect failures as early as possible, to enable efficient automatic
fault localization.

Self -adaptive mechanisms are built to operate transparently for the users,
who should not be involved in the diagnosing and fixing process. Thus, failure
detection mechanisms cannot rely on partial oracles or on repeated test execu-
tions that require human operations. Self -adaptive mechanisms work in the field
where major performance degrading cannot be tolerated. Thus, the runtime
overhead that derives from on-line monitoring must not affect the performance
of the systems significantly. Executing repair actions is often computationally
expensive. False alarms that trigger adaptation mechanisms may badly affect
the performance of the system, and thus should be avoided. Fault damage often
tends to amplify and worsen if the software continues executing under the effect
of a fault, because the initial impact of faults may propagate and corrupt the
system state permanently and extensively. Thus, detecting failures as early as
possible enables diagnosing and fixing faults before major damage.

We argue that a complete and consistent set of well tailored assertions can
meet the requirements above. Encoding thoroughly analyzed system invariants
into assertions produces automated oracles, and removes human operators from
the loop. Careful choice of logic constructs in assertions can assure low overhead.
Assertions suitably placed in critical locations can detect failures precisely and
early enough to support efficient fixing.

In current practice, assertions are either added directly to the code by pro-
grammers [Ros95, Das06], or are generated from formal specifications that de-
scribe invariants of data-structures and algorithms [Mac00, RAO92]. In both
cases getting the specification right is a non-trivial issue, and thus highly error
prone [CMOP08, VM94]. Additionally when writing specifications, the devel-
opers focus on the implementation details, hence they might miss constraints
stemming from the larger context in which the code will be used. Concentrat-
ing on code-level specifications also makes it difficult to express constraints that
are not directly related to how the system is implemented, but are imposed by
domain specific limitations the system has to adhere to.

We address the problem of producing well tailored assertions by defining
a technique to map end-user requirements onto code assertions. We provide
developers with a catalog of property templates that help developers identify
constraints that are implicit in the requirement specifications, and create anno-
tated models that can be automatically transformed into code level assertions.
We do not require complete formal specifications, usually hard to write and

2



maintain, but we rely on simple model annotations used to generates proper
code assertions. It is a common notion that adaptation in autonomic systems
should be driven by the goals systems are designed to achieve, and we focus on
requirements specifications that reflect those goals [KM07].

For some relevant classes of constraints, developers are relieved from the bur-
den of deriving, tuning, and inserting matching checks for these constraints. As
such, the technique improves developer productivity and software quality. Since
assertion generation and insertion are fully automated, this process also allows
efficient maintenance of constraints even when the systems structure changes,
because matching assertions can simply be re-generated and will be inserted,
even if new relevant locations have been created by the change.

In this field, fine grained failure detection is often indispensable for pre-
cise, effective, and efficient reactions to runtime problems. To enable automatic
detection and healing of functional problems, grouping faults and failures oc-
curring in software into clearly separable classes with distinct properties that
help identifying them at runtime can be useful.

Assuming the existence of such classes, we define a methodology that targets
failures, which commonly manifest at the boundaries between the components
that form the system. It employs a model-based specification language that
developers use to capture system-level properties extracted from requirements
specifications. These properties, reflecting failure classes derived from analysis of
real systems, are automatically translated into assertion-like checks and inserted
in all relevant locations of the systems code. The custom generated code not
only detects failures, but also collects data relevant to support automatic healing
actions based on the detected failures.

In this technical report we briefly discuss related work (Sec. 2) and then
outline the technique (Sec. 3). We summarize a set of studies we have conducted
to obtain clusters of properties from real software projects, and report the results
we have obtained (Secs. 4–5). We argue that our results constitute clear evidence
that useful property templates exist. The collected information is organized
on a per-project basis, and the derived properties are listed in a catalog of
requirements-level property descriptions.

2 Related Work

The idea to use specifications to derive recurring patterns also appears in the
work by Dwyer et al. [DAC99]. They study a large set of finite state specifica-
tions from the research literature and academic course-work and collect typical
properties appearing in these specifications. Cobleigh et al. build on this work
and provide tools to support developers in selecting and applying the derived
patterns in their own verification tasks [CAC06]. Our work on identification of
properties that can lead to the generation of property templates is similar, in
that it also studies software artifacts to derive patterns. However, our study uses
two complementary approaches to obtain patterns. Studying not only what the
software does wrong, but also relating it to the actual high level specification is
an additional internal validation step that is missing from previous work.

There is substantial work at the boundaries between software engineering
and programming languages, which addresses problems related to some of the
properties we have listed in our catalog. For example, Zibin et al. and Unkel

3



and Lam address questions regarding immutable objects and variables [ZPA+07,
UL08]. Zibin et al. discuss a language extension to Java that allows explicit
specification of immutability properties of objects and references, which go far
beyond the possibilities of Java’s final qualifier. Unkel and Lam introduce
the notion of stationary fields, that is fields where all write operations to the
field happen before any read operation. Thus, at read time these variable can
be treated similar to final fields. The work by Unkel and Lam introduces a
static analysis algorithm to identify such fields, but no method to specify them
beforehand, which means there is no way of dynamically checking for violations
of such a property.

Boyland and Retert address the notion of object uniqueness and how lan-
guages can enforce the semantics of unique objects [BR05]. The similarity
between these approaches and our methodology is that they address similar
properties, partially by explicitly specifying them to enable static or dynamic
checks, and partially by analyzing real system to determine which properties oc-
cur frequently. However, in all cases their analysis and specification happens at
the code level, and is thus far from the semantics of the end-user specifications,
which we use to identify the properties to monitor.

Chan et al. and Beckman et al. work on static analysis methods dealing
with concurrency problems [BBA08, CBS98]. In both cases the basic technique
uses annotations in the code to specify additional constraints on classes and
methods. Chan et al. provide annotations to explain the behavior of objects
or methods, for example reading or writing certain variables. Beckman et al.
specify constraints that declare the allowed accesses to objects, and use the
typestate system to declare usage protocols of methods. In both cases, a static
analysis method uses these annotations to detect potential or real race conditions
and deadlocks.

Work addressing self-healing, that is autonomic repairing of functional prob-
lems, usually addresses either transient failures like race conditions through con-
current execution, or resource management problems like memory exhaustion.
For example, RX by Qin et al. propose an approach based on checkpoints and
dynamic changes of the environment of the system, to fix failures due to mem-
ory leaks and buffer overflows [QTSZ05]. Goldstein et al. try to delay system
crashes due to memory exhaustion by monitoring object activity on the heap
and transparently removing unused objects from main memory [GSW07]. This
effectively delays and reduces the effects of memory leaks languages with man-
aged memory. From a direction that appears to be more inspired by traditional
fault tolerant systems, Candea et al. take the idea of software rejuvenation and
introduce micro-reboot, a technique that regularly restarts individual compo-
nents of a system, in the hope that this rejuvenation occurs before faults like
memory leaks lead to irreparable damage or system crashes [CKF+04]. Interest-
ingly, none of these techniques actually heals the problem in the sense that the
fault still exists and failures will eventually occur. This is why these techniques
can be reasonably successful without precise failure detection.

Using specifications to automatically derive oracles is one of the objec-
tives of specification- or model-based testing. However, the approaches in
that field that attempt to derive oracles usually require a complete and for-
mal specification [AH00]. Furthermore, most practical approaches require the
developer to specify constraints on the level of individual methods or classes,
which makes it hard to keep the bigger picture of system level requirements

4



in mind [BLS05, CL04]. Our property templatebased methodology explicitly
addresses this issue by providing a link from the end user requirements all the
way down to assertions in the code. The approach only requires a partial, an-
notated structural model of the parts of the system that should be augmented
with failure detectors.

There are several fully or partially automated failure detection approaches
that do not require formal specifications, but using capture and replay tech-
niques or dynamic invariant inference to build models of the system. Hangal
and Lam use dynamic invariant inference to build a model of system execu-
tions [HL02]. Since their goal is complete automation of the model building
and monitoring process, their system only issues warnings to be analyzed off
line by developers. Approaches the explicitly try to solve the oracle problem
usually rely on a separate training phase to learn the model [BGH06, LMP08].
After the learning phase this model remains fixed and serves as the oracle to
distinguish between valid and invalid executions. The approaches by Baah et al.
and Lorenzoli et al. combine Trace information with static invariants to improve
the quality of the models prediction. However, since dynamic behavior infer-
ence relies only on the implementation of a system, it is not able to incorporate
notions expressed in end-user requirements.

3 Mapping Requirements to Assertions

To support self-healing systems, failure detection techniques must have a clear
notion of what constitutes a failure, must provide means to detect failures at
runtime, and must provide enough information about the failures to allow sub-
sequent analysis to determine the cause of the failures. Even though the first
two items seem similar, they have to be treated separately: The first requires an
explicit specification of what the system should do. The second requires tech-
niques to monitor the system execution, and means to decide when an execution
violates the system specifications.

Our goal is to create high-quality runtime failure detectors for system-level
requirements. The purpose of the methodology we developed is to automate
the creation of such detectors as much as possible. To do so we have to address
two orthogonal concerns: First, we have to address the efficiency and quality
concerns associated with runtime monitoring techniques, and second, we have
to bridge the semantic gap between system goals, which are the source of the
constraints we monitor, and the implementation details of the system. Our
technique focuses on two aspects: (1) How to derive and specify system-level
constraints, and (2) how to automatically translate constraints into assertions
that meet the desired performance and precision requirements.

The central concept in our approach is the notion of property template.
A property template is a triple 〈C, T, R〉 consisting of a constraint C, used to
annotate, and thus constrain, the behavior of model constructs, a set of assertion
templates T that encode how to detect violations of the constraint C, and a set
of rules R, which describe where and how annotations may be placed in the
model, and where assertions need to be placed in the code.

Figure 1 shows how our methodology addresses the two key aspects in a
process centered around a catalog of property templates. In the first step, de-
velopers derive properties from requirements specifications, and annotate the

5



transform
Assertionsannotate

analyze

The system...

Requirements

Property
Template 
Catalog

Developer

A B
{set}

Annotated Model

int getValue() {
...
}

Code

MDA

Properties

Rules + 
Templates

Actions
Data

Figure 1: Methodology activities

system design model with constraints that reflect the properties identified at
the requirements specification level. This step is difficult to automate, because
it requires understanding and analyzing the semantics of requirements specifi-
cations, which are usually provided in natural language or informal notations
that do not lend themselves well to automatic analysis.

In the second step, a model driven assertion generator transforms the an-
notated model into assertions at the code level using the rules of the property
templates. The assertion generator uses the catalog to generate assertions and
the annotated model to identify all relevant locations of assertions in the code.

Both, the concrete implementation of assertions, as well as the rules to de-
termine where the assertions have to be placed, are domain- or even application-
dependent. Therefore, the rules provided by the property catalog are designed
to be specialized or replaced on demand.

4 Research Methodology

To answer the question if there are high-level properties in system requirements
that can be traced to typical classes of failures and faults in systems we have
to identify candidate properties in requirements on the one hand. On the other
hand we have to cluster failures and faults that occur in actual systems into
groups exhibiting similar behavior. A thorough analysis can then clarify if one
or more of these failure clusters can be mapped to one or more of the properties
identified in the requirements. A further step required to facilitate automatic
failure detection is to define failure detector templates for each class of failures,
so that tools can generate the detectors based on knowledge of where a property
associated with the failure class should hold.

We have designed our study in two steps. The first step is the analysis of
requirements, such as end-user documentation or API specifications, to identify
recurrent properties that are often used. For example, API specifications often
refer to patterns for component initialization and mutability. More complex ex-
amples that can be found in end user documentation are requirements referring
to domain specific input languages, like special regular expressions for searches.
The second step consists of understanding and clustering problem reports for
the applications and software systems we studied in the first step. Whenever

6



clusters can be mapped to one or more property, we have established an im-
portant link between the high-level requirements and the code implementing
those requirements. A further question that we will be able to answer with the
collected data is if and how the type of application influences the failure classes
occurring. It seems likely that a highly multi-treaded server application exhibits
failure patterns different from those in a computation-oriented library.

To have a consistent set of inputs for our studies we selected applications
where specifications, code, and issue reports are available. For practical reasons
we limit the scope of our study to applications developed in Java. The projects
hosted by the Apache Foundation1 provide a rich source for many types of
applications from big commercial quality servers like Tomcat, through various
frameworks, to highly optimized libraries like Lucene.

To our knowledge there does not exist any mining tool able to process bug
databases and extract sets of reports based on semantic criteria of the text
content. After a brief study of how bugs are reported, and how symptoms and
fixes are discussed, we came to the conclusion that a manual analysis of the
reports was the only way to obtain reliable information about the semantic
content of bug reports. Unfortunately, the large amount of time required for
manual analysis limits our ability to do larger studies.

4.1 Requirements Analysis

The goal of the requirements analysis during our study was twofold: (1) deter-
mine recurring patterns that imply constraints on possible implementation in
the specifications, and (2) determine in how many cases an identified pattern
or constraint directly relates to a cluster of problem identified during the fault
analysis in the second step.

It turns out that complete requirements specifications are hard to come by
for open-source projects. However, in all cases API specifications and some
end-user documentation are available. We analyzed these specifications, which
reflect black-box requirements and high-level design of the system.

Spotting patterns (not design patterns, but patterns defining less well-formed
relationships between parts of the system) and recurring constraints in API spec-
ifications and end-user documentation is difficult and relies on the judgment of
the person doing the analysis. Therefore, it is difficult to describe this pro-
cess in a way to make it easily reproducible. However, there are some general
conclusions that we believe can be drawn from the studies we did.

With respect to pattern in specifications, well designed and documented
API specifications yield results more easily, and as a consequence, it may be
easier to reproduce the results of such studies. For example the Java Servlet
and Java Server Pages API documentation directly specifies many instances
of the initialized and unique properties. On the other hand, the API doc-
umentation for Lucene is very sparse and gives barely any information about
constraints on the use of the library. In most cases end-user documentation was
less yielding than API specifications and required more in-depth study to obtain
useful results.

1http://www.apache.org

7



4.2 Failure Analysis

Because all the software systems we analyzed are still under development the
issue databases are constantly changing. To have a stable set of issues to address
throughout the time of our study we chose to study issues reported for older
versions of each software. This not only gives us a stable set of reports to analyze,
but also means that most of the issues have been resolved by the developers,
easing our task of determining root cause and fixes.

Bug reports for projects hosted by Apache are maintained either using
Bugzilla or JIRA. In both cases an issue report refers to a specific release version
of the software where the issue was first noticed and each issue has a status.
We used the version to select only small subsets of issues clearly associated with
a particular version of the code. The issue status or resolution indicates how
the developers consider the problem. In all cases we discarded issues that were
marked as invalid, non reproducible, or as issues that won’t be fixed. Our ratio-
nale for discarding these issues from our statistics is that if the developers do
not consider something a bug, then neither should we.

After filtering those non-issues out of the result sets returned by queries to
the issue databases, we studied every remaining issue in detail. Questions we
had to answer about each issue before we could assign it to a cluster, create a
new cluster, or discard the issue are:

• What are the failure symptoms? For example, does the failure crash the
system, return an illegal value, or fails to return an expected result?

• What kind of fault causes the failures? For example, is it a simple null
pointer exception, a concurrency problem due to incorrect locking, or an
incorrect algorithm to compute a result?

• Is there a clear statement in the requirements that is being violated by
this failure? For example, an API call returns null even though the
specification claims that a method never returns null.

The first two questions define the dimensions along which issue are clustered.
The third question connects the failure clusters to the results from the require-
ments analysis: an issue for which we cannot identify a clear requirement that
is violated will not help us in defining property templates. The numbers of
relevant issues reported in section 5 reflect this last filtering step.

5 Studies and Results

In this section we report detailed results of the studies we carried out. Each sub-
section presents the data for one application, and the final section summarizes
the data to derive conclusions about the number and type of property templates
we found. Table 1 lists all applications that we studied. The type gives a rough
idea of what the application is designed for.

The sections below (1) discuss the documents we used for requirements anal-
ysis, summarize the results from requirements analysis, (2) describe precisely
which queries were run against the issue repositories to retrieve the base set of
issues to study, and provide a summary of the clusters during failure analysis.
More details on the “types” of the individual clusters are provided in Section 6.

8



Application Type

Cocoon Web-Application Framework
Lucene Text-search library
Tomcat Server

Table 1: Applications studied.

The clustering details, like which issues fall into which category, can be found
in the appendix.

5.1 Cocoon

The requirements analysis for the Cocoon core component focused on the version
2.2 of the APIs of the core packages2. The study proved tedious, because the
core component is split into 16 highly interdependent sub-components, with
their source, and thus their API documentation, spread across as many different
Maven projects.

The implementation of Cocoon makes heavy use of the Factory design pat-
tern. It also has a deep inheritance hierarchy and uses many small interfaces to
spread cross-cutting behavior throughout the code. Together, these two facts
explain the high number of occurrences of the initialized property reasonably
well. Cocoon inherits the SingleThreaded and ThreadSafe marker interfaces
from the Avalon project3, which are used to explicitly place concurrency con-
straints on several core interfaces, thus the property is inherited by a large
number of implementation. Other properties occur less frequently.

Table 2 shows the accumulated occurrences of properties across all sub-
components of Cocoon Core. In general, the high numbers are due to the fact
that often constraints are attached to interfaces instead of individual classes,
and we assume that these constraints are “inherited” by implementing classes.

Property Number

Total instances 151

comparable 19
concurrency 47
immutable 22
initialized 32
language 1
resource mgmt 8
unique 22

Table 2: Properties extracted from the Cocoon API.

The bugs we analyzed during the study of Cocoon were retrieved from the
Cocoon bug database via a custom query. The Apache’s JIRA issue tracker is lo-
cated at https://issues.apache.org/jira/secure/IssueNavigator.jspa.

2http://cocoon.apache.org/2.2/core-modules/
3http://excalibur.apache.org/

9



The settings for our query are4:

Parameter Value

Project Cocoon
Issue type Bug
Components Cocoon Core
Affects Versions Released Versions
Resolution “Unresolved” or “Fixed”
Created before 2008-04-12

This query retrieves 290 reports. We analyzed only the first 100 reports
from the retrieved list (sorted by ID), and after removing reports that were clear
duplicates, we were left with 85 useful reports. The decision to not completely
analyze all reports in this study is based on the observation that most reports,
even those created several years ago, are not discussed, closed or in any other
form commented on. This led us to the conclusion that the issue reporting
system is not well utilized by the developers and thus cannot give us a realistic
view of the issues that occurred in the system.

Class Number

Total bugs 85

caching 2
concurrency 5
initialized 3
language 5
resource mgmt. 3

other 4

Table 3: Cocoon Issue Clusters

5.2 Lucene

For the study of Lucene, we picked the Search component of the Java imple-
mentation. This component is used to search a pre-generated index of files for
terms or expressions. Studying the API documentation of this part of library
turned out to be fruitless, because there is barely any documentation beyond
class- and method signatures.

For the fault analysis the query parameters below retrieve 69 issues, which
after dropping the usual duplicates, left us with 63 issues to study.

Parameter Value

Project Lucene-Java
Issue type Bug
Components Search
Affects Versions Released Versions
Resolution “Unresolved” or “Fixed”
Created before 2008-05-06

4“Released Versions” include version 2.2, which we used for the requirements analysis.

10



As the data in the summary table (Tab. 4) show the results are less clearcut
as in most other cases. A large fraction of the issues that we could track back to
some end-user requirement violation do not fall into one of the classes we have
identified so far, but occur as singletons, that is, they occur only once in the
entire analysis. This might indicate that the classes we identified so far occur
less frequently in tightly coupled applications.

Class Number

Total bugs 63

caching 1
comparable 3
concurrency 2
initialized 1
language 1

other 5

Table 4: Lucene Issue Clusters

5.3 Tomcat

We focused our requirements analysis for Tomcat on the API specifications for
Java Servlets and Java Server Pages [JSRa, JSRb]. These APIs lie at the heart
of Tomcat and define much of what it has to do as a server. In addition we
studied the end-user documentation regarding server configuration and other
aspects that are not explicitly covered by the APIs. Table 5 lists the number
of occurrences of properties identified in the API and end-user documentation
without in-depth study of the software architecture and design. Note that the
numbers here are much lower than for example for Cocoon, because we studied
only the API definitions, but now how Tomcat implements them. Thus the
multiplying effect of inheritance is not reflected in these numbers.

Property Number

Total instances 14

comparable 1
concurrency 1
immutable 3
initialized 4
language 2
unique 3

Table 5: Properties extracted from Tomcat requirements

The bugs that entered our study for Tomcat were retrieved via a custom
query to the Apache Bugzilla issue tracker. We selected only “Tomcat6” as
a product, all components except “Documentation” and“Examples”, all status
flags except “NEEDINFO” and “VERIFIED”, with resolutions either none or
“FIXED”, and severities above “enhancement”. Since we conducted the study

11



in two steps, we had to exclude eventual new issues recorded in between by
allowing only change dates before 2008-04-23. Running a query set up like this,
we retrieved 140 reports, out of which we then dropped 30 as being documen-
tation and example related, and one as clear duplicate that was copied from
earlier versions of Tomcat. The table below summarizes the clustering for these
remaining issues.

Class Number

Total bugs 109

concurrency 4
immutable 2
initialized 6
language 3

other 1

Table 6: Tomat Issue Clusters

5.4 Summary

The results obtained in our study have several implications: first, they corrobo-
rate our hypothesis that a reasonable number of problems occurring in software
can be classified according to our scheme. Table 7 summarizes the results. It
lists the total number of code bugs analyzed for each application, and how many
have been found to match our criteria of violating end-user requirements. It also
gives a brief overview of how many distinct classes the identified failures fall into,
and which proportion of the identified failures falls into these classes (coverage
column). If the coverage is less than 100% this indicates that there are some
failures that we consider relevant to our study, but that we could not place in
one of the classes described at the beginning of this section.

The results for the three different types of applications we analyzed vary
enough to hypothesize that the application type has an effect on the number
and distribution of property templates that occur. In particular the Lucene
study may indicate that tightly couple components, like they are typical within
one library or application, may not exhibit as many clear cut cases as other
application types. This possibility encourages us to further explore this connec-
tion, since it would also corroborate our hypothesis that the types of failures
captured by property templates are typical integration failures, which should
be comparatively rare within a tightly coupled library. However, we need more
data and further studies to be able to draw statistically valid conclusions.

6 Property Templates

The goal of our research program is to create high-quality runtime failure detec-
tors for system-level requirements. For this purpose we developed a methodol-
ogy to automate the creation of such detectors as much as possible. To achieve
good quality for the detectors and full automation, we have to address two or-
thogonal concerns: First, we have to bridge the semantic gap between system

12



Application Bugs Classes Coverage
total relevant

Tomcat 109 15 4 94 %
Cocoon 85 22 5 86 %
Lucene 63 13 5 61 %

Table 7: Results of the failure analysis for the three selected applications. Total
bugs reports the number of code bugs, relevant bugs are those that have a clear
connection to a requirement in the user or API specification, Classes reports
the number of different classes into which more than one of the relevant bugs
fall, and Coverage is the percentage of relevant bugs that fall into one of the
classes.

goals, which are the source of the constraints we want to monitor, and the im-
plementation details of the system. Second, we have to address the efficiency
and quality concerns associated with runtime monitoring techniques. This re-
port only discusses results obtained towards the first goal, the second is left for
future research.

The central concept in our approach is the notion of property template. A
property template is a triple (C, T, R) consisting of a constraint C, used to
annotate, and thus constrain, the behavior of model constructs, an assertion
template T that encodes how to detect violations of the constraint C, and a
set of rules R, which describe where and how annotations may be placed in the
model, and where assertions need to be placed in the code.

The following paragraphs list the properties we have identified through our
studies. The rules of the property template have to be derived with the goals
of efficiency and precision of detection in mind, and thus are left for future
research.

Property: caching
Description: Cached entities must follow a correct caching protocol

for storage, retrieval, and expiration.

Property: concurrency
Description Groups concurrency related problems like deadlocks and

data corruption through insufficient locking.

Property: language <L>
Description: Covers problems with string parsing and formatting ac-

cording to some grammar or regular expression defining
language L.

Property: comparable <C>
Description: Annotated element must provide a customized compar-

ison operation matching interface C.

Property: immutable
Description: Instances of annotated classes may not change their vis-

ible state after creation or an explicit locking operation.

13



Property: initialized
Description: initialized implies that a reference is not null and

the entity specific initialization has been completed.

Property: resource mgmt
Description: Covers all sorts of resource management and exhaustion

problems.

Property: unique
Description: A constrained entity must be unique within its context.

If the constrained entity is a relation, tuples in the re-
lation must be unique.

7 Summary and Future Work

We introduce and define the notion of property template. Property templates
are the unifying concept that links system level requirements specifications to
constraints on the systems implementation that can be checked automatically
at runtime. In this technical report we present the data obtained through our
studies and a preliminary analysis, which supports our hypothesis that property
templates exist.

The data from the requirements analysis shows that there are a number of
easily identifiable pattern relating to constraints on the implementation. The
data from the failure analysis shows that a substantial fraction of reported faults
falls into clearly identifiable clusters with distinct properties. We report a set
of requirements properties that are connected to failure clusters. These prop-
erty templates lend themselves to the derivation of assertions for runtime failure
detection, due to their strong connection between requirements and implemen-
tation.

There are indications that the type of application has an influence of what
classes occur, and how many faults in total fall in these classes. These obser-
vations provide a foundation for further explorations into techniques to push
forward runtime failure detection.

The results reported here are promising, but are not based on a wide enough
range of applications to allow generalization of the conclusions. Furthermore,
the diversity of professionalism in documenting requirements and handling fail-
ure report in each project makes it difficult to generalize from the data we have.
For future work, we will extend our study by analyzing more applications to
corroborate the evidence we already have with respect to property templates.
Having studied many more applications will also allow us to draw more precise
conclusions on the effect of application types on the evident property templates.

We are currently defining an engineering methodology centered around the
property templates we identified through our studies. The goal is to provide a
complete technique, starting from requirements analysis by developers, through
model annotation, to automatic generation of failure detectors. Property tem-
plates provide the integrating link between these steps. They tell developers
what properties are known to often occur in their applications and how to iden-
tify them. The model annotation and code generation frameworks then use the
assertion templates from the catalog to generate assertions tailored to the de-
ployment platform of the application. Sufficient flexibility of the methodology

14



is provided by the standard extension mechanisms built into the Model Driven
Architecture.

To evaluate how useful the identified property templates are, we have to
experiment with applications and know faults, determine how easily the prop-
erties can be identified and specified based on the applications specifications,
and then asses how well the generated assertions capture failures at runtime.

References

[AH00] Sergio Antoy and Richard Hamlet. Automatically checking an im-
plementation against its formal specification. IEEE Transactions on
Software Engineering, 26(1):55–69, 2000.

[BBA08] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying
correct usage of atomic blocks with typestate. In Proceedings of
OOPSLA 2008, 2008. To appear.

[BGH06] George K. Baah, Alexander Gray, and Mary Jean Harrold. On-line
anomaly detection of deployed software: a statistical machine learn-
ing approach. In Proc. 3rd Int. WS on Software Quality Assurance,
SOQUA ’06, pages 70–77. ACM, 2006.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The
Spec# programming system: An overview. In Proc. Int. WS Con-
struction and Analysis of Safe, Secure, and Interoperable Systems,
CASSIS 2005, volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer, 2005.

[BR05] John Tang Boyland and William Retert. Connecting effects and
uniqueness with adoption. SIGPLAN Not., 40(1):283–295, 2005.

[CAC06] Rachel L. Cobleigh, George S. Avrunin, and Lori A. Clarke. User
guidance for creating precise and accessible property specifications.
In Proc. 14th Int. Symp. on Foundations of SW Eng., SIGSOFT
’06/FSE-14, pages 208–218, 2006.

[CBS98] Edwin C. Chan, John T. Boyland, and William L. Scherlis.
Promises: Limited specifications for analysis and manipulation. In
Proc. Int. Conf. on SW Eng., ICSE’98, 1998.

[CKF+04] George Candea, Shinishi Kawamoto, Yuichi Fujiki, Greg Friedman,
and Armando Fox. Microreboot - a technique for cheap recovery. In
Proc. 6th Symp. on OS Design and Impl., 2004.

[CL04] Yoonsik Cheon and Gary T. Leavens. The JML and JUnit way of
unit testing and its implementation. Technical Report TR #04-02,
Department of Computer Science – Iowa State University, 2004.

[CMOP08] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, and Alexander
Pretschner. Finding faults: Manual testing vs. random testing+
vs. user reports. Technical Report 595, Department of Computer
Science, ETH Zurich, Switzerland, 2008.

15



[DAC99] Matthew B. Dwyer, Geoerge S. Avrunin, and James C. Corbett.
Patterns in property specifications for finite-state verification. In
Proc. Int. Conf. on SW Eng., ICSE, pages 411–420, 1999.

[Das06] Manuvir Das. Formal specifications on industrial-strength code –
from myth to reality. In Proc. 18th Int. Conf. Computer Aided
Verification, CAV, 2006. Invited Talk.

[GSW07] Maayan Goldstein, Onn Shehory, and Yaron Weinsberg. Can self-
healing software cope with loitering? In Proc. 4th Int. WS on SW
Quality Assurance, SoQUA’07, pages 1–8, 2007.

[HL02] Sudheendra Hangal and Monica S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proc. 24th Int. Conf.
on SW Eng., ICSE ’02, pages 291–301. ACM, 2002.

[JSRa] Java Servlet 2.5 Specification. http://jcp.org/aboutJava/
communityprocess/mrel/jsr154/index.html. JSR 154.

[JSRb] Java Server Pages 2.1 Specification. http://jcp.org/aboutJava/
communityprocess/final/jsr245/index.html. JSR 245.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural
challenge. In Proceedings of Future of Software Engineering, FOSE
2007, 2007.

[LMP08] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic
generation of software behavioral models. In Proc. 30th Int. Conf.
on SW Eng., ICSE ’08, pages 501–510. ACM, 2008.

[Mac00] Patŕıcia D. L. Machado. Testing from Structured Algebraic Specifi-
cations: The Oracle Problem. PhD thesis, University of Edinburgh,
2000.

[QTSZ05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan
Zhou. Rx: Treating bugs as allergies — a safe method to survive
software failures. In Proc. 20th Symp. on OS Principles, SOSP’05,
pages 235–248, 2005.

[RAO92] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley.
Specification-based test oracles for reactive systems. In Proc. 14th
Int. Conf. on SW Eng., ICSE ’92, pages 105–118, 1992.

[Ros95] David S. Rosenblum. A practical approach to programming with
assertions. IEEE Transactions on Software Engineering, 21(1):19–
31, 1995.

[UL08] Christopher Unkel and Monica S. Lam. Automatic inference of
stationary fields: a generalization of java’s final fields. In Proc.
35th Symp. on Principles of Prog. Lang., POPL ’08, pages 183–
195. ACM, 2008.

16



[VM94] Jeffrey M. Voas and Keith W. Miller. Putting assertions in their
place. In Proceedings of the 5th International Symposium on Soft-
ware Reliability Engineering, pages 152–157, 1994.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun,
and Michael D. Ernst. Object and reference immutability using java
generics. In Proc. 6th European SW Eng. Conf. and the Symp. on
the Foundations of SW Eng., ESEC-FSE ’07, pages 75–84. ACM,
2007.

17



Appendix

Cocoon Details

Property Classes, Interfaces

comparable (I) o.a.c.caching.CacheableProcessingComponent
concurrency (I) o.a.c.components.modules.output.OutputModule,

o.a.c.modules.input.*,
o.a.c.components.source.impl.DelayedRefreshSourceWrapper,
o.a.c.components.treeprocessor.SimpleSelectorProcessingNode,
o.a.c.core.container.spring.PoolableFactoryBean

immutable (I) o.a.c.caching.CacheableProcessingComponent,
o.a.c.util.location.LocationImpl,
o.a.c.components.pipeline.PipelineComponentInfo,
o.a.c.components.source.impl.MultiSourceValidity

initialized (I)(trans) o.a.c.components.xslt.XSLTProcessor,
o.a.c.components.xslt.XSLTProcessorImpl,
o.a.c.components.xslt.TraxProcessor,
o.a.c.generation.*, (A) o.a.c.serialization.AbstractTextSerializer,
(A) o.a.c.components.pipeline.AbstractProcessingPipeline,
o.a.c.thread.impl.DefaultThreadPool

language o.a.c.components.modules.input.DateMetaInputModule
resource mgmt (I) o.a.c.components.treeprocessor.TreeBuilder,

(A) o.a.c.components.treeprocessor.SimpleSelectorProcessingNode
unique (I) o.a.c.caching.CacheableProcessingComponent,

o.a.c.sitemap.SitemapModelComponent,
o.a.c.sitemap.SitemapOutputComponent,
o.a.c.sitemap.DefaultContentAggregator

Table 8: Classes or interfaces of each identified property in the Cocoon API.
o.a.c refers to the common top-level pacakge org.apache.cocoon. (I) marks
interfaces, and (A) marks abstract classes.

Tomcat Details

18



Property Classes, Documentation section

comparable javax.el.Expression
concurrency javax.el.ExpressionFactory
immutable javax.servlet.jsp.PageContext,

javax.el.Expression
initialized javax.servlet.Filter, javax.servlet.Servlet,

javax.el.ELResolver, JSP.11.2.1
language javax.servlet.jsp.PageContext, SRV.2.6.5
unique javax.servlet.http.Cookie,

javax.servlet.jsp.JspApplicationContext,
javax.servlet.jsp.tagext.JspIdConsumer

Table 9: Classes and documentation sections of each identified property. JSP
refers to the Java Server Pages specification, SRV to the Java Servlet specifica-
tion.

Property Issues

concurrency 42753, 42803, 42840, 43846
immutable 42361, 42409
initialized 39355, 40012, 40820, 41797, 42077, 42934
language 41521, 42683, 43338

Table 10: Mapping between properties and bug report numbers for Tomcat.

19


