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The Schwarz reflection principle in one complex variable can be stated as follows.
Let M and M ′ be two real analytic curves in � and f a holomorphic function
defined on one side of M� extending continuously through M� and mapping M into
M ′� Then f has a holomorphic extension across M� In this paper, we extend this
classical theorem to higher complex dimensions for a class of hypersurfaces of
infinite type.
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Introduction

Let M be a (germ of a) Levi non-flat real analytic hypersurface at p in �n� After a
holomorphic change of coordinates, we may assume that p = 0 and that there exists
a sufficiently small open neighborhood � of 0 in �n such that M is given by an
equation of the following form

Imw = �Rew�m��z� z̄�Rew�� �z� w� ∈ �n−1 ×�� (0.1)

where � is a real valued convergent power series in z� z̄�Rew� such that

��z� 0�Rew� ≡ ��0� z̄�Rew� ≡ 0� ��z� z̄� 0� �≡ 0� m ∈ �� (0.2)

Such a choice of coordinates is called normal coordinates. (See [1] for the existence
of such coordinates). In this paper, we shall assume that M is of infinite type (i.e.,
not of finite type in the sense of Bloom and Graham [6]) at 0� which is equivalent to
saying that M contains a (germ of a) holomorphic hypersurface S ⊂ M through 0�
Note that M is of infinite type at 0 if and only if m > 0� It is shown in [17] that the
integer m is a holomorphic invariant for normal coordinates. We have the following
definition.

Address correspondence to Francine Meylan, Institut de Mathématiques, Université de
Fribourg, 1700 Perolles, Fribourg, Switzerland; E-mail: francine.meylan@unifr.ch

1

ht
tp

://
do

c.
re

ro
.c

h
Published in "Communications in Partial Differential Equations 
33(9): 1638 - 1653 , 2008" which should be cited to refer to this work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20643254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Definition 0.1. Let M be of infinite type at 0 given by (0.1) and (0.2). We say that
M is m-nondegenerate at 0 if

det
(

�2�

�zj�z̄k
�z� z̄� 0�

)
�≡ 0� (0.3)

Note that if M is m-nondegenerate at 0, then l�M� = 1� where l�M� is the Levi
type of M in the sense of [3]. We shall see (Proposition 1.2) that the above definition
is independent of the choice of normal coordinates. It should be noted here that
normal coordinates are not unique.

The main result of this paper is the following.

Theorem 0.2. Let M and M ′ be (germ of) real analytic hypersurfaces of infinite type at
0 in �n given by (0.1) and (0.2). Suppose that M (respectively M ′) is m-nondegenerate
at 0 (respectively m′-nondegenerate at 0). Let D ⊂ �n be a domain with M in its
boundary. Let f 	 M → M ′ be a continuous mapping which is the restriction of a certain
continuous mapping over D� holomorphic in D� with f�0� = 0� Assume that f� as a map
from M into M ′� is finite to one. Then f extends holomorphically to a neighborhood
of 0�

Observe that in the case where n = 2� M is m-nondegenerate at 0 if and only
if M is of infinite type at 0 and Levi non-flat. The following example shows that
Theorem 0.2 fails if M and M ′ are Levi flat.

Example 0.3. Let

M = 
�z� w� ∈ �2 	 Imw = 0��

M ′ = 
�z′� w′� ∈ �2 	 Imw′ = 0��

Consider

f�z� w� = �z+ h�z� w�� w��

where h is a holomorphic function defined in the upper half plane in �� smooth up
to the boundary, but which does not extend holomorphically across 0� with h�0� =
h′�0� = 0� Then one can check that f is a local diffeomorphism near 0� which maps
M into M ′� Obviously f does not extend holomorphically at 0�

The following example given in [15] shows that Theorem 0.2 may fail if we do
not assume that f is finite to one as a map from M into M ′�

Example 0.4 [15]. Let

Mk = 
�z� w� ∈ �2 	 Imw = �Rew�2�w�2k2+k�z�2k��
M ′

k = 
�z′� w′� ∈ �2 	 Imw′ = �Rew′�2�z′�2k��

Consider

fk�z� w� =
(
zwk+ 1

2 � w
)
�
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where k is even. M and M ′ satisfy the assumptions of Theorem 0.2. One can check
that fk is of class Ck� 12 � extends holomorphically to one side, maps Mk into M ′

k� but
is not of class Ck+1� Notice that fk� as a map from Mk to M ′

k is not finite to one.
We would like to mention that the map f given in the above example is

l-tangentially finite in the sense of [17]. This condition is however sufficient to
guarantee the holomorphic extendibility in the case where the map is assumed to be
infinitely smooth, as shown in [17].

Finally, Theorem 0.2 also fails if f does not extend to any side of M as it is
shown by the following example given in [9].

Example 0.5 ([9]). Let

M = 
�z� w� ∈ �2 	 Imw = �Rew��z�2��
M ′

k = 
�z′� w′� ∈ �2 	 Imw′ = �Rew′�hk�z
′� z̄′���

where hk is defined as follows. Define the finite sequences 
ak� and 
bk� by

Re �wk� = �Rew�k +
k−1∑
j=0

aj�Rew�j�Imw�k−j� Im �wk� =
k−1∑
j=0

bj�Rew�j�Imw�k−j�

and put

hk =
∑k−1

j=0 bj�z�2�k−j�

1+∑k−1
j=0 aj�z�2�k−j�

�

Consider

fk�z� w� = �z� gk�z� w���

where gk�z� w� = −wk for Rew ≤ 0� and gk�z� w� = wk for Rew > 0�
The reader can check that fk is a finite to one CR map of class Ck−1� sending M

into M ′
k� which does not extend holomorphically to any neighborhood of 0� Notice

that fk is not the boundary value of any holomorphic map on M�

As in [15], we obtain the following result.

Theorem 0.6. Let M� M ′� and f satisfy the assumptions of Theorem 0.2. Then f =
�f1� � � � � fn−1� g� extends as a locally proper holomorphic mapping from a neighborhood
of 0� Moreover there is an integer l > 0 such that g�z� w� = wlg∗�z� w� with g∗�0� �= 0�

We would like to mention that, under the assumptions of Theorem 0.6, it does
not mean that f “preserves” the sides, as it is shown by the following example given
in [15].

Example 0.7 ([15]). Let

M = 
�z� w� ∈ �2 	 Imw = �Rew��z�2��
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M ′ =
{
�z′� w′� ∈ �2 	 Imw′ = 2�Rew′�

�z′�2
1− �z′�4

}
�

Consider

f�z� w� = �z� w2��

One can check that f maps M into M ′� Notice that f does not preserve the sides
(l = 2).

In the complex plane the analogue of Theorem 0.2 is the Schwarz reflection
principle, and there is no condition on the degeneracy of M� M ′� or f at 0� in
contrast to higher dimensions as shown in Examples 0.3 and 0.4. We recall that
the first reflection principles in higher dimensions were due to Lewy [16] and
Pinchuk [18], and refer the interested reader to the book [1] and the survey article
[14] for a precise account of the history. It should be noted that many results
regarding the reflection principle require the map to be sufficiently smooth. In this
paper, we only assume the map to be continuous. Theorem 0.2 is a generalization to
higher dimensions of the results established in �2 for a continuous map by Ebenfelt
and Huang [9]. It can also be seen as a generalization of the results given in the
paper of Huang et al. [15]; indeed, if the map f in Theorem 0.2 is assumed to be
C1� then Theorem 0.2 follows from the main theorem in [15].

We follow the same method as in [9] to prove Theorem 0.2.
In contrast to the �2 case, if M is m-nondegenerate at 0� it does not imply

that we can find a point p on the holomorphic hypersurface S ⊂ M such that
there exists a neighborhood U of p with M strictly pseudoconvex at any point
in U\S� Therefore, in order to use the Pinchuk–Tsyganov theorem regarding the
extendibility of CR continuous maps between strictly pseudoconvex domains [19],
we first need to show that, under the assumptions of Theorem 0.2, pseudoconvex
points are sent to pseudoconvex points (see Propositions 3.1 and 4.1).

We would like to mention that in the �2 case, using the work of Huang [12],
Ebenfelt and Huang in [9] obtain Theorem 0.2, not only for hypersurfaces of infinite
type, but more generally for Levi non-flat hypersurfaces.

1. A Holomorphic Invariant

In this section, we prove that Definition 0.1 is independent of the choice of normal
coordinates.

Remark 1.1. If M is of infinite type at 0 and given in normal coordinates by (0.1)
and (0.2), then M contains (in the sense of germs) the holomorphic hypersurface S

given by

S = 
�z� 0� ∈ �n−1 ×��� (1.1)

Proposition 1.2. Definition 0.1 is independent of the choice of normal coordinates.
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Proof. Let M ′ be a real analytic hypersurface of infinite type at 0� also given in
normal coordinates by

Imw′ = �Rew′�m
′
��z′� z̄′�Rew′�� �z′� w′� ∈ �n−1 ×�� (1.2)

Let H 	 M → M ′ be a biholomorphism between M and M ′� Write H = �F�G�� where
F = �F1� � � � � Fn−1�� Since m is a holomorphic invariant, we have m = m′� The proof
of Proposition 2.11 in [17] shows that there exist a convergent power series h�z� z̄�
with h�0� �= 0 such that

h�z� z̄���z� z̄� 0� ≡ ��F�z� 0�� F�z̄� 0�� 0�� (1.3)

First assume that

det
(

�2�

�zj�z̄k
�0� 0� 0�

)
�= 0� (1.4)

Using again the fact that we work in normal coordinates and that h�0� �= 0, we
conclude that Definition 0.1 is independent of the choice of normal coordinates. For
the general case, we need the following lemmas.

Lemma 1.3. Let M be a non Levi-flat real analytic hypersurface at 0 in �n given in
normal coordinates by (0.1) and (0.2). Assume that M is of infinite type at 0� Let S
be given by (1.1). Then the Taylor expansion of Imw − �Rew�m��z� z̄�Rew� at a point
�z0� 0� ∈ S ∩M is given by

Imw − �Rew�m
�z− z0� z̄− z̄0�Rew�� (1.5)

where 
�z− z0� z̄− z̄0�Rew� is a real valued convergent power series in z− z0�
z̄− z̄0�Rew� with 
�z− z0� z̄− z̄0� 0� �≡ 0�

The easy proof of Lemma 1.3 is left to the reader.

Lemma 1.4. Let M be a non Levi-flat real analytic hypersurface at 0 in �n given
in normal coordinates by (0.1) and (0.2). Assume that M is of infinite type at 0 and
m-nondegenerate. Let S be given by (1.1). Then there exists a proper real analytic set
S0 ⊂ S such that for every p ∈ S\S0 there exist normal coordinates �z� w� vanishing at
p� in which M can be defined, near p = �0� 0�� by

Imw = �Rew�m��z� z̄�Rew�� �z� w� ∈ �n−1 ×�� (1.6)

where � is a real valued convergent power series in z� z̄�Rew� such that

det
(

�2�

�zj�z̄k
�0� 0� 0�

)
�= 0� (1.7)

Proof. After a linear holomorphic change of coordinates, we may assume, using
Lemma 1.3, that M is given near 0 by

Im w̃ = �Re w̃�m�̃�z̃� ¯̃z�Re w̃�� �z̃� w̃� ∈ �n−1 ×�� (1.8)
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where �̃ is a real valued convergent power series in z̃� ¯̃z�Re w̃� with �̃�0� = 0� and

det
(

�2�̃

�z̃j� ¯̃zk
�0� 0� 0�

)
�= 0� (1.9)

Following the proof of Theorem 4.2.6 in [1], we may find normal coordinates �z� w�
satisfying z̃ = z� w̃ = w + h�z� w�� with h holomorphic near the origin, h�0� = 0 and
dh�0� = 0� One can check that in these coordinates, M has the required properties.
This proves the lemma. �

We return to the proof of Proposition 1.2. After moving to a point p ∈ M
arbitrarily close to 0, we can assume, following the proof of Lemma 1.4, that M and
M ′ are given in normal coordinates near 0� such that (1.4) holds for M� The proof
of the proposition then follows from the arguments at the beginning of the proof.

2. A CR Extension Result

In this section, we prove a CR extension theorem for m-nondegenerate
hypersurfaces which are strictly pseudoconvex at any point in a neighborhood of 0
outside S�

Proposition 2.1. Let M be given by (0.1) and (0.2) with m > 0� ��z� z̄�Rew� =
�z1�2 +

∑n−1
j=2 cj�zj�2 + O�3�, cj ∈ �� and let h 	 M → � be a continuous CR function.

Then there exist positive numbers � and � such that h extends holomorphically to the
open set

U++
��� = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �� 0 < Rew < �� 0 < 
 < ��Rew�m��

(2.1)

Proof. Let

M = 
�z� w� ∈ � � Imw = �Rew�m��z� z̄�Rew�� �z� w� ∈ �n−1 ×��� (2.2)

and

M̃ = 
�z� w� ∈ � � Imw = ��z� z̄�Rew�� �z� w� ∈ �n−1 ×��� (2.3)

Let

�̃+ = 
�z� w� ∈ � � Imw > ��z� z̄�Rew��� (2.4)

We put w = s + it� Following the proof of Lewy’s CR extension Theorem for
hypersurfaces given in Section 15.2 of [5], we see that there exists an open set
V ∈ �n−1� with V ⊃ 
�z2� � � � � zn−1� s� ∈ �n−1 	 �z2� < �0� � � � � �zn−1� < �0� �s� < �0� for
some �0 > 0� such that if �z2� � � � � zn−1� s + it� ∈ V� then the complex line

Lz2�����zn�s+it = 
��� z2� � � � � zn� s + it�� � ∈ �� (2.5)

intersects �̃+ in a simply connected open subset of Lz2�����zn�s+it which we call
Az2�����zn�s+it whose boundary lies in M� Note that, by the Riemann mapping theorem,
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the Az2�����zn�s+it are analytic discs attached to M whose union clearly contains an open
subset U of �̃+ whose boundary contains a neighborhood of 0 in M� Let � 	 �n −→
�n be given by ��z� s + it� = �z� s + i�sm�t�� The map � sends M̃ to M� and the open
set ��U ∩ 
s > 0�� is filled by the simply connected open sets Az2�����zn�s+ismt whose
boundary lies in M ∩ 
s > 0�� Again, by the Riemann mapping theorem, we get the
holomorphic extension in the open set given by (2.1) by standard arguments. (See
the proof of Lewy’s CR extension Theorem for hypersurfaces [5]). This achieves the
proof of Proposition 2.1. �

Remark 2.2. Following the proof of Proposition 2.1, we obtain open sets U
�±±�
���

defined in the same way as U++
��� � in which f extends holomorphically in the cases

where ��z� z̄�Rew� = ±�z1�2 +
∑n−1

j=2 cj�zj�2 + O�3�, cj ∈ ��

Using Proposition 2.1 and Remark 2.2, we obtain the following corollary.

Corollary 2.3. Let M be given by (0.1) and (0.2) with m > 0� ��z� z̄�Rew� = �z1�2 −
�z2�2 +

∑n−1
j=3 cj�zj�2 + O�3�, cj ∈ �� and let h 	 M → � be a continuous CR function.

Then there exist positive numbers � and � such that h extends holomorphically to the
open set

U��� = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �� �Rew� < �� �
� < ��Rew�m�� (2.6)

Remark 2.4. We would like to mention that if M is given by an equation of the
form

Imw = �Rew�m��z� z̄�Rew�� �z� w� ∈ �n−1 ×�� (2.7)

where ��z� z̄�Rew� = �z1�2 +
∑n−1

j=2 cj�zj�2 + O�3�, cj ∈ �� and � is of class C3� then
Proposition 2.1 still holds, using the same arguments.

3. Image of a Pseudoconvex Point

In this section, we show that if f 	 M → M ′ is a continuous map which is the
boundary value of a holomorphic map defined on one side of M� then pseudoconvex
points are sent to pseudoconvex points provided f is finite to one.

Proposition 3.1. Let M and M ′ be real analytic hypersurfaces in �n� and D ⊂ �n be a
pseudoconvex domain with M in its boundary. Let f 	 M → M ′ be a continuous mapping
which is the restriction of a certain continuous mapping over D� holomorphic in D�

Assume that f� as a map from M into M ′� is finite to one. Then for any p ∈ M� M ′ is
pseudoconvex at f�p�� and Jac f �≡ 0 over D�

Before giving the proof of Proposition 3.1, we recall the following propositions
of [2].

Proposition 3.2 ([2]). Let M be a connected smooth hypersurface with M ⊂ ��� where
� is an open bounded domain in �n� and let H be a holomorphic mapping in ��
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continuous up to the boundary, JacH �≡ 0� with H�M� contained in another smooth
hypersurface M ′� Suppose 0 ∈ M� H�0� = 0� and

H−1�0� ∩ �� ⊂ M�

Then there is a subdomain �1 ⊂ � satisfying

(1) 0 ∈ ��1� and there exists a sequence 
zj� ⊂ �1 such that zj → 0 and H�zj� stays
strictly on one side of M ′�

(2) there exists U� a neighborhood of 0 in M ′� with H��1� ⊃ U�
(3) H 	 �1 −→ H��1� is a proper map.

Proposition 3.3 ([2]). Let � and �′ be two bounded domains in �n and H a proper
holomorphic mapping from � to �′� Suppose that p0 and p′

0 are boundary points of �
and �′, respectively, and that there is a sequence 
zj�



j=1 ⊂ � converging to p0 such

that limj H�zj� = p′
0� Suppose that any holomorphic function in �′ is bounded on the

sequence 
H�zj��


j=1� Then p0 is in the holomorphic hull of ��

Proof of Proposition 3.1. Assume that p = 0 and f�0� = 0� By shrinking M if
necessary, we may assume that f−1�0� ∩M = 
0�� Suppose that there exists E ⊂
D� irreducible component of f−1�0� ∩D which accumulates at 0� We claim that
E has 0 dimension. Suppose by contradiction that dimE > 0� By a theorem of
Remmert and Stein [7], E ∪ 
0� is analytic near 0� Since D is pseudoconvex, using
a theorem in [8], we may find a defining function � for M near 0 such that −�−���

is plurisubharmonic and −�−��� < 0 in D� Using the maximum principle [7], we
reach a contradiction. The claim is then proved. In particular, this shows that if an
irreducible component A of f−1�q� ∩D, q ∈ M ′� has strictly positive dimension, then

A ∩M = ∅� (3.1)

We claim that, shrinking D if necessary, f� as a map from D to f�D�� is
locally finite to one. Suppose not. Then there exist pj ∈ D� with pj → 0� such that
dim f−1�f�pj�� > 0� By (3.1), we can find �jk ∈ �Bk ∩ f−1�f�pj�� ∩D� where Bk is
the ball centered at 0 of radius k, 0 < k < R� for some R > 0� Let �k ∈ �Bk be
an accumulation point of the sequence �jk� Since f��jk� = f�pj�� we conclude that
f��k� = 0� for every k� Using the first part of the proof and the fact that f is finite
to one from M into M ′, we get a contradiction. The map f is then locally finite to
one, and therefore

Jac f �≡ 0� (3.2)

By the above, shrinking D if necessary, we may assume that

f−1�0� ∩ �D = 
0�� (3.3)

Using (3.2), (3.3) and Proposition 3.2, we conclude that there exist two domains �
and �′ = f��� such that 0 is a boundary point for � and �′� �′ stays on one side
of M ′� ��′ contains an open piece of M ′ at 0� and f is a proper map from � to �′�
Suppose now that M ′ is not pseudoconvex at 0� Then, by Proposition 3.3, we obtain
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that 0 is in the holomorphic hull of �� and therefore M is not pseudoconvex at 0�
This achieves the proof of Proposition 3.1. �

4. A Key Lemma

In this section, following [9], we prove a lemma which establishes that the derivative
of the map f 	 M → M ′ along certain vector fields is continuous. This will allow us
to apply certain vector fields to the equation expressing the fact that f sends M into
M ′� (See (6.2) and (6.4)).

Proposition 4.1. Let M and M ′ be real analytic hypersurfaces of infinite type at 0 in
�n� satisfying (1.6) and (1.7). Let D ⊂ �n be a domain with M in its boundary. Let
f 	 M → M ′ be a continuous mapping which is the restriction of a certain continuous
mapping over D� holomorphic in D� with f�0� = 0� Assume that f� as a map from M

into M ′� is finite to one. Then there exist positive numbers �̃ and �̃ such that f extends
to a bounded holomorphic function in the open set

U�̃��̃ = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �̃� �Rew� < �̃� �
� < �̃��Rew��m�� (4.1)

Before proving Proposition 4.1, we recall some known facts and notations.
There exist two open neighborhoods of 0� �1 and �2� with �1 ⊂ �2 ⊂ ��

such that for every p = �p′� pn� ∈ �1� the Segre variety Qp of M associated to p is
defined by

Qp =
{
�z� w� ∈ �2

∣∣∣∣ w − pn

2i
=

(
w + pn

2

)m

�

(
z� p′�

w + pn

2

)}
� (4.2)

It is shown in [10] that one can choose two sufficiently small balls P and P̃ centered
at 0 such that the following holds

(i) P ⊂⊂ P̃ ⊂ ��

(ii) There is a side-reversing (with respect to M) diffeomorphic map from P into its
image which is contained in P̃� called the conjugate map R� such that R�p� ∈
Qp� for each p ∈ P� More precisely, that means that R�M = id, R�p� and p stay
on different sides of M for p �∈ M�

Remark 4.2. The same notions are defined for M ′� that is, �′� Q′
q� P

′ and P̃ ′� R′�

We have the following lemma whose easy proof is left to the reader.

Lemma 4.3. Let M be a real analytic hypersurface of infinite type at 0� satisfying (1.6)
and (1.7). Then

Qp1
= Qp2

⇐⇒ p1 = p2� (4.3)

provided P is small enough and p1� p2 ∈ P\S�
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Proof of Proposition 4.1. Assume first that
(

�2�̃

�z̃j� ¯̃zk �0� 0� 0�
)

has eigenvalues of
opposite signs. Using Corollary 2.3, we conclude that f is the restriction of a
holomorphic mapping on the open set

U��� = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �� �Rew� < �� �
� < ���Rew��m�

for some choice of � and �� Following the proof of Proposition 2.1, we have, by the
maximum principle, that the sup of f over U��� is reached on U��� ∩M� This gives
the desired conclusion.

Suppose now that
(

�2�̃

�z̃j� ¯̃zk �0� 0� 0�
)
has eigenvalues of same signs. We claim that

f�M\S� ∩ S′ = ∅� (4.4)

Assume not. By Lemma 2.2 in [15], we conclude that the normal component of
the map f is identically 0. This is a contradiction with Proposition 3.1. Using
again Proposition 3.1 and a theorem of Pinchuk and Tsyganov [19], we conclude
that f extends holomorphically to a small neighborhood of M\S� Without loss of
generality, we assume that M satisfies the assumptions of Proposition 2.1. We set

U+−
��� = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �� 0 < Rew < ��−��Rew�m < 
 < 0��

(4.5)

We will always assume that P̃ and P ′ are arranged such that

f�P̃ ∩ U++
��� � ∪ R′�f�P̃ ∩ U++

��� �� ⊂⊂ P ′� (4.6)

We define for �̃ � �� �̃ � �

V = {
�p� q� ∈ (

U+−
�̃��̃

∩ P
)× P ′ � f�Qc

p� ⊂ Q′
q

}
� (4.7)

where Qc
p is the connected component of Qp ∩ U+

�̃��̃
containig R�p�� Let Ṽ be the

irreducible component of V which contains the graph of f� and let � be the natural
projection from Ṽ to U+−

�̃��̃
∩ P� We need the following lemma whose proof is an

adjustment of Lemma 3.1 in [12] to higher dimensions. For the convenience of the
reader, we will give its proof. �

Lemma 4.4. Let Ṽ and � as above. Then � is surjective.

Proof. Suppose that � is not surjective. We observe that � 	 Ṽ −→ U+−
�̃��̃

∩ P is

an open mapping. Let p ∈ U+−
�̃��̃

∩ P ∩M� As in [12], we may then find a curve

� 	 �0� 1� −→ U+−
�̃��̃

∩ P satisfying the following properties: ���0� 1�� ⊂ ��Ṽ �� p =
limt→0+ ��t� and ��1� �∈ ��Ṽ �� Lifting � and using the fact that � 	 Ṽ −→ U+−

�̃��̃
∩ P

is locally proper, we can find a unique lift of � to �̃ 	 �0� 1� −→ �n ×�n with the
following properties: �̃��0� 1�� ⊂ Ṽ � �̃�0� = �p� f�p��� We put �̃�t� = ���t�� q�t�� for
t ∈ �0� 1�� By definition of Ṽ � we have f�Qc

��t�� ⊂ Q′
q�t� for t ∈ �0� 1�� By a theorem

of Baouendi and Rothschild [4], we know that the local holomorphic extension of f
near p is locally proper near p� It follows, using Lemma 2.1(f) in [13], that for each
small t� R′�q�t�� ∈ f�Qc

��t���
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We claim that

R′�q�t�� ∈ f�Qc
��t�� for t ∈ �0� 1�� (4.8)

Assuming the claim, we obtain that for each t� there exists u�t� ∈ Qc
��t� with

f�u�t�� = R′�q�t���

Using (4.6), we obtain that


q�t�� t ∈ �0� 1�� ⊂⊂ P ′�

That means that all the limit points of q�t� as t → 1− stay in P ′� Let q�1� be one
of these limit points. We then have f�Qc

��1�� ⊂ Q′
q�1�� which is a contradiction. To

complete the proof of the lemma, we need to prove the claim (4.8). As in Lemma 3.1
in [12], we let � = max

 ∈ �0� 1� � for t ∈ �0� 
�� R′�q�t�� ∈ f�Qc

��t���� We have 0 <
� ≤ 1� Suppose � < 1� Then there exists u�t� ∈ Qc

��t�� with f�u�t�� = R′�q�t��� for each
t ∈ �0� 
�� Let u��� = limtj→�− u�t�� We have u��� ∈ Qc

������ By definition, we have

f�Qc
����� ⊂ Q′

q���� (4.9)

We also get

f�u���� = R′�q����� (4.10)

Assume first that u��� ∈ M� As f�u���� = R′�q���� ∈ M ′� we have q��� ∈ M ′� Using
(4.9) and applying Lemma 2.1(f) in [13], we then obtain a contradiction since f is
locally finite.

Suppose now that u��� �∈ M� Since � < 1� there exists a sequence tj → �+ such
that

R′�q�tj�� �∈ f�Qc
��tj �

�� (4.11)

Let B��u���� be the ball centered at u��� with radius �� Following the proof of the
last part of Lemma 3.1 in [12] and using (4.11), for tj close to � and � sufficiently
small, we may find a biholomorphic map �tj

� depending continuously on tj� from
the unit disk to Qc

��tj �
∩ B��u����� such that the map f � �tj

− R′�q�tj�� never vanishes
on the unit disk. Noticing that the Hurwitz theorem is still valid in higher dimension
in the case where f is locally finite, we may then conclude that f � �� − R′�q����
never vanishes on the unit disk. This contradicts (4.10). This achieves the proof of
the claim, and therefore the proof of the lemma. �

We now return to the proof of Proposition 4.1. Using (the proof of)
Propositions 2.1, 3.1, (4.4), the maximum principle and the Hopf Lemma, we
observe that if p ∈ U+−

�̃��̃
∩ P� then f�Qc

p� ∩M ′ = ∅� In particular, this shows that
if �p� q� ∈ V� then q �∈ S� Hence, using Lemmas 4.3 and 4.4, we may define the
following holomorphic map.

f̃ 	 �U+−
�̃��̃

∩ P� −→ P ′

p −→ �′ � �−1�p�
(4.12)
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where �′ is the natural projection from Ṽ to P ′� This map f̃ gives the desired
holomorphic extension of f in �U−

�̃��̃
∩ P�� Following the proof of Lemma 4.4, we

notice that there exists u ∈ Qc
p such that

R′�f̃ �p�� = f�u�� (4.13)

Therefore, using (4.13), (the proof of) Proposition 2.1, and the maximum principle,
we conclude that f̃ is bounded in �U+−

�̃��̃
∩ P� by the sup of f on M� This completes

the proof of Proposition 4.1. �

We write w = s + it and denote by Lj , j = 1� � � � � n− 1� the antiholomorphic
vector fields tangent to M given by

Lj =
�

�z̄j
− 2i

sm�z̄j

1+ i�sm��s

�

�w̄
� (4.14)

Note that they form a basis of the CR vector fields on M� By the theorem of
Pinchuk and Tsyganov [19], we know that Ljf , j = 1� � � � � n� is real analytic outside
S� We have the following extension lemma for Ljf , j = 1� � � � � n�

Lemma 4.5. Let M and M ′ be real analytic hypersurfaces of infinite type at 0 in
�n� satisfying (1.6) and (1.7). Let f 	 M → M ′ be a continuous mapping which is the
restriction of a certain continuous mapping over D� holomorphic in D� with f�0� = 0�
Assume that f� as a map from M into M ′� is finite to one. Then Ljf , j = 1� � � � � n�
extends continuously to a neighborhood of 0 in M�

Proof. Let

U�̃��̃ = 
�z� w + i
� ∈ � � �z� w� ∈ M� �z� < �̃� �Rew� < �̃� �
� < �̃��Rew��m� (4.15)

given by Proposition 4.1. For fixed �z� w� ∈ M\S� we define Hk to be the
holomorphic function in �, ��� < �̃�Rew�m� given by Hk��� = fk�z� w + ��, k =
1� � � � � n� where fk are the components of f� Using the Cauchy estimates for Hk���
at � = 0 and Proposition 4.1, we get∣∣∣∣�fk�w

�z� w�

∣∣∣∣ ≤ C

�Rew�m � (4.16)

where C > 0 is a constant depending only on ��
Define the family of functions in �� parametrized by �z� w� ∈ M� by


Kk�z�w���� = fk�z+ �� w�� k = 1� � � � � n�� (4.17)

We observe that 
Kk�z�w�� forms a family of holomorphic functions in �� for ���
small enough. Using the Cauchy estimates and Taylor’s expansion, we observe that
Kk�z�w���� converges to fk��� 0� uniformly on compact sets as �z� w� → 0� for k =
1� � � � � n� We therefore obtain that

lim
�z�w�→0

�fk
�zj

�z� w� = �fk
�zj

�0� 0� k = 1� � � � � n� j = 1� � � � � n− 1� (4.18)
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Let Lj defined by (4.14). Using (1.6), (4.16) and (4.18), we obtain that

lim
�z�w�→0

Ljfk�z� w� =
�fk
�zj

�0� 0� k = 1� � � � � n� j = 1� � � � � n− 1� (4.19)

Using Lemma 1.4, for any point p ∈ S close enough to 0� we can choose normal
coordinates vanishing at p satisfying (1.6) and (1.7). In these new coordinates,
(4.19) will be valid. Going back to the coordinates we started with, we get that
lim�z�w�→p Ljfk�z� w�, k = 1� � � � � n, j = 1� � � � � n− 1� exists, for every p ∈ S close to 0�
Using (4.19) and the fact that the normal coordinates depend smoothly on the point
p� we obtain that Ljf , j = 1� � � � � n− 1� extends continuously to a neighborhood of
0 in M� This achieves the proof of the lemma. �

5. Regularity Property of the Transversal Component

Let M and M ′ be real analytic hypersurfaces of infinite type at 0 in �n given by
(0.1) and (0.2). Let D ⊂ �n be a domain with M in its boundary. Let f 	 M → M ′

be a continuous mapping which is the restriction of a certain continuous mapping
over D� holomorphic in D� with f�0� = 0� Assume that f� as a map from M into
M ′� is finite to one. We write f = �f ∗� g� = �f ∗

1 � � � � � f
∗
n−1� g�� Recall that g is denoted

the transversal component of f� Using Proposition 4.1, we see that g cannot be
identically 0� Let S be defined by (1.1) and let T ⊂ M be a totally real submanifold of
real dimension n passing through 0 such that T ∩ S is totally real of real dimension
n− 1 near 0� We may assume, without loss of generality, that T = �n near 0� Notice
that in these new coordinates, M is in general not given in normal coordinates;
nevertheless, we still call g the transversal component.

For � > 0 we define, as in [15], the following wedges with edge T

� ±
� = 
�z� w� � ±Imw > ���Im z1� + · · · + �Im zn−1���� (5.1)

For the rest of the section, we fix � such that � +
� (respectively � −

� ) lies “above”
(respectively “below”) M in the sense of germs at the origin. Again, without loss of
generality, we may assume that � +

� ⊂ D in the sense of germs at the origin. Let

� = ��1� � � � � �n� ∈ �n� �′ = ��′
1� � � � � �

′
n−1� ∈ �n−1� (5.2)

For � > 0� we define

�� = 
� ∈ � � ��� < ��� �+
� = 
� ∈ � � Im � > 0�� (5.3)

For �n > ����1� + · · · + ��n−1� and for � sufficiently small, we define ����′ by

� −→ ��1�+ �′
1� � � � � �n−1�+ �′

n−1� �n��� (5.4)

We observe that ����′��
+
� � ⊂ D.

The following proposition is proved in [9] in the case n = 2� but its proof is
totally similar for the general case n ≥ 2� using (5.2), (5.3), and (5.4). We then refer
the reader to Proposition 3.1 and Lemma 3.2 in [9] for the details of the proof.
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Proposition 5.1. Assume that M� M ′ and f satisfy the above. Then there exist a point
p = ��′� 0� ∈ S ∩ T near 0� and an integer N > 0 such that the transversal component
g satisfies

�g�z̄� w̄�� ≥ �Imw�N � (5.5)

for �z� w� ∈ ��
− ∩ O�p�� where O�p� is a small neighborhood of p�

6. Proof of Theorem 0.2

In this section we give the proof of Theorem 0.2, using Lemma 4.5 and
Proposition 5.1. Another ingredient of the proof is the following propagation
theorem due to Hanges and Treves [11], which was also used in [9, 15].

Theorem 6.1. Let M be as in Theorem 0.2. Let h be a CR function over M� If for
a certain p ∈ S� h extends holomorphically to a neighborhood of p� then h extends
holomorphically to a neighborhood of S�

Proof of Theorem 0.2. Since f� as a map from M to M ′ is finite to one, we conclude,
using Proposition 4.1 and Lemma 2.2 in [15], that f is a local biholomorphic
map from S to S′ away from a thin set. Using Lemma 1.4, we may then assume
that M and M ′ satisfy the assumptions of Proposition 4.1 so that f ∗ is a local
biholomorphism at 0. We may also assume that (5.5) holds at p = 0� Let M ′ be given
by (1.2). Since f�M� ⊂ M ′� we get that

Im g�z� w� = Re g�z� w�m
′
��f ∗�z� w�� f ∗�z� w��Re g�z� w�� (6.1)

for �z� w� ∈ M� Applying the implicit function theorem, we obtain the following
functional equation

g�z� w� = g�z� w�+ g�z� w�m
′
H�f ∗�z� w�� f ∗�z� w�� g�z� w�� (6.2)

for �z� w� ∈ M� Since M ′ is given in normal coordinates, it is easy to see that

det
(

�2H

�zj�z̄k
�0� 0� 0�

)
�= 0� (6.3)

Applying Lj defined by (4.14) (via the parametrization) to (6.2), we obtain

Ljg�z� w� = g�z� w�m
′
n−1∑
k=1

Hz̄′k
�f ∗�z� w�� f ∗�z� w�� g�z� w��Ljf

∗
k �z� w�� (6.4)

Using Cramer’s rule, we obtain that

det�Ljf
∗
k �z� w��g�z� w�

m′
Hz̄′k

�f ∗�z� w�� f ∗�z� w�� g�z� w�� = hk� (6.5)
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where hk extends holomorphically to � −
� and continuously up to T� Using (4.19)

(which still holds after the change of coordinates for M given in Section 5, and using
the fact that f ∗ is a local biholomorphism at 0� we conclude that

g�z� w�m
′
Hz̄′k

�f ∗�z� w�� f ∗�z� w�� g�z� w�� = hk

det�Ljf
∗
k �z� w��

� (6.6)

Taking the conjugate of the equation defined by (6.2), and using (6.6), we obtain the
following equation

�1+ g�z� w�m
′−1H�f ∗�z� w��� f ∗�z� w�� g�z� w���m

′
Hz̄′k

�f ∗�z� w�� f ∗�z� w�� g�z� w��

= hk

det�Ljf
∗
k �z� w��g�z� w�

m′ � (6.7)

We see, using the Cauchy estimates, that Ljfk�z� w�, k = 1� � � � � n extends as a
holomorphic function of slow growth in the wedge � −

� in the sense of germs at
the origin. Using Lemma 4.5, we conclude that Ljfk�z� w�, k = 1� � � � � n extends
holomorphically to � −

� and continuously up to T� Therefore, using Proposition 5.1,
we obtain that the right hand side of (6.7) extends holomorphically to � −

� and
continuously up to T�

Put

Rk =
hk

det�Ljf
∗
k �z� w��g�z� w�

m′ � k = 1� � � � � n− 1� (6.8)

Using (6.3) as well as the implicit function theorem, we get, after taking the
conjugate of (6.2) again

f ∗�z� w� = Y�f ∗�z� w�� g�z� w�� R�� (6.9)

where Y is some holomorphic vector-valued function of its arguments, R =
�R1� � � � � Rn−1�� and �z� w� ∈ T� By the above discussion, using (6.9), we obtain that
f ∗ extends holomorphically to � −

� and continuously up to T� Therefore, taking
again the complex conjugate of (6.2), we obtain that g extends holomorphically to
� −

� and continuously up to T� Using the classical edge of the wedge theorem, we
get that f extends holomorphically to an open neighborhood of 0. By Theorem 6.1,
f extends holomorphically to a neighborhood of S� This achieves the proof of
Theorem 0.2. �

Proof of Theorem 0.6. By Theorem 0.2, we obtain in particular that f is a C1

mapping; therefore, we may apply the corollary of [15] to conclude. This achieves
the proof of Theorem 0.6. �
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