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We propose a simple mechanism for generating scale-free networks with degree exponent γ = 3, where the
new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree
distribution based on our model obeys a power-law form, which is in agreement with the recently empirical
evidences. In addition, our model displays the small-world effect and the hierarchical structure.
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In the past few years, the study of complex
networks has drawn many interests from natural
and social scientists.[1−7] Previously empirical ev-
idences have shown that small-world effect[8] and
scale-free property[9] widely exist in many natural
and social networks, such as the World Wide Web
(WWW),[10,11] email communication networks,[12,13]

food webs,[14] scientific and technological collabo-
ration networks,[15−19] sexual relations,[20] opinion
networks,[21] and so on. Small-world effect reflects
that networks have a small average distance and a
high clustering coefficient. A typical small world net-
work model was proposed by Watts and Strogatz.[22]

Scale-free property indicates that the degree distribu-
tion obeys a power law P (k) ∼ k−γ , where k is the de-
gree and P (k) is the probability density. A pioneering
model which generates power-law degree distribution
was presented by Barabási and Albert (BA).[9]

Very recently, Xiao et al.[23] have investigated the
distributions of clique-degree, which are the extension
of degree and can be used to measure the density of
cliques in networks. The word clique in the graph
theory equals the term complete subgraph.[24] That
is to say, the s order clique (s-clique for short) rep-
resents a fully connected subgraph with s nodes and
s(s − 1)/2 edges. The s-clique degree of a node i,
denoted by ks

i , is defined as the number of different s-
cliques containing i. Obviously a two-clique is an edge
and k2

i equals the degree ki. An illustration of the
clique-degree of node i is shown in Fig. 1. It has been
found that many real-world networks exhibit power-
law clique-degree distributions.[23]

The BA model is constructed as follows: starting
from m0 nodes, every time step a new node with m
edges is added and each edge of the new node is at-
tached to an existing node i with the probability pro-
portional to the degree of the ith node. This mech-
anism results in power-law degree distribution with
exponent γ = 3. Note that the new node can obtain
the global information of existing nodes’ degrees in the
BA model. While in many real-world networks such
as social networks and the WWW, no one knows exact
information of global structure. On the other hand,
m edges of the new node are connected to the existing
nodes independently in the BA model, and there is no
relation among m edges. While in the social network,
people are more likely to know a new friend through
those friends they have already known. Analogously
in the WWW, people can find out new web pages by
using the hyperlinks of those web pages they have al-
ready known. Based on the above considerations, in
this Letter we propose a growing network model which
introduces the mechanism of the step-by-step random
walk.

Fig. 1. Illustration of the clique degree of node i (black
dot): k2

i = 6, k3
i = 4, k4

i = 1, k5
i = 0.
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Our model can be constructed as follow: (1) Initial
condition: the model starts with m0 fully connected
nodes. (2) Growth: a new node with m (≤ m0) edges
is added at every time step. (3) Step-by-step random
walk: a random node is chosen as the starting point
of the random walk, at the same time this node is
marked. At each step of the walk, the walker moves
to a randomly chosen neighbour (not yet marked) of
the currently marked node, and the newly chosen node
is also marked. After m − 1 (m ≥ 2) steps, there are
m marked nodes, and the new node is connected to
the m marked nodes by undirected links.

We need to point out that this step-by-step ran-
dom walk is self-avoiding, and the walker is not al-
lowed to trace its steps backwards. Note that m edges
of the new node are interdependent, each edge (except
the first one) is connected to a randomly chosen neigh-
bour of the prior neighbour. When m = 2, our model
degenerates to the model proposed by Dorogovtsev et
al.[25] In all our following simulations, we set m = m0.

We firstly investigate the degree distribution of our
model. As shown in Fig. 2, the degree distributions
exhibit a power-law behaviour, and the power-law ex-
ponents are about 3 for different m. It is interesting to
note that if m edges of the new node are connected to
randomly chosen nodes independently, the degree dis-
tribution will be exponential.[9] While the mechanism
of the step-by-step random walk can induce the emer-
gence of scale free structure as the linear preferential
attachment does.

Fig. 2. Degree distributions of our model. Network size
N = 5 × 104, each data is gained by averaging over 20
independent runs. The power-law exponents γ of four
curves are γm=2 = 3.04 ± 0.05, γm=4 = 2.98 ± 0.04,
γm=8 = 2.93 ± 0.03, γm=16 = 2.91 ± 0.02.

From Fig. 3, one can observe that distributions
of clique-degree on our model also exhibit a power-
law form. Those higher-order (s ≥ 3) power-law
clique-degree distributions are extensively existent in
many real-world networks,[23] which could not be re-
produced by the preferential attachment.[9] Therefore,
the evolving mechanism proposed in this study may

be helpful for further explorations on the clique-degree
distribution.

Fig. 3. Clique-degree distributions with the clique size
s = 3, 4, 5, where ks denotes the s-clique degree and n(ks)
is the number of nodes with s-clique degree ks. We set
N = 5×104 and m = 8. Each data is gained by averaging
over 20 independent runs. The power-law exponents γ of
three curves are γs=3 = 2.32 ± 0.04, γs=4 = 2.40 ± 0.04,
γs=5 = 2.52 ± 0.05.

Fig. 4. Clustering coefficient as a function of m for our
model and the BA model. The size of network is fixed
as N = 104. Each data is gained by averaging over 20
independent runs.

We next check if the current model exhibits small-
world effect. One of the important measures to judge
small-world effect is the clustering coefficient. The
clustering coefficient for node i is defined as

C(i) =
2E(i)

ki(ki − 1)
, (1)

where E(i) is the number of edges among node i’s
neighbours, and ki is the degree of node i. The clus-
tering coefficient C of the whole network is defined as
the average of C(i) over all nodes, i.e.

C =
1
N

N∑

i=1

C(i). (2)
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As shown in Fig. 4, the clustering coefficient of our
model is much larger than that of the BA model.

Another important measure to judge the small-
world effect is the average distance, which is defined
as the mean distance over all pairs of nodes. From
Fig. 5, one can see that the average distance approxi-
mately has a logarithmic dependence of network size:
L ∼ log N . This means that the average distance in-
creases very slowly with the increasing network size.
From Figs. 4 and 5, it can be concluded that our
model has the small-world effect.

Fig. 5. Relationship between the average distance L and
the network size N in a linear-log plot. Each data is gained
by averaging over 20 independent runs.

Fig. 6. Clustering coefficient as a function of the vertex
degree for different m, network size N = 5 × 104. Each
data is gained by averaging over 20 independent runs.
The power-law exponents γ of four curves are γm=2 = 1,
γm=4 = 0.92, γm=8 = 0.87, γm=16 = 0.75.

In addition, many real-world networks including
Internet, World Wide Web, the actor collaboration
network, as well as some well-known models like
the Holme–Kim model [26] and random Apollonian
network[27]random Apollonian network are character-
ized by the existence of hierarchical structure,[28,29]

which can usually be detected by the negatively
power-law correlation between the clustering coeffi-
cient and the degree. It is known that the BA network

does not possess hierarchical structure and the cluster-
ing coefficient C(i) of node i is independent of its de-
gree ki.[28] From Fig. 6, we find a power-law clustering-
degree correlation in our model, i.e. C(k) ∼ k−γ , and
the power-law exponent decreases with the increasing
m.

In summary, we have proposed a growing network
model based on the mechanism of the step-by-step
random walk, which generates a power-law clique-
degree distribution without utilizing any knowledge
of node degree. The high clustering coefficient and
small average distance show that our model has the
small-world effect. In addition, our model possess hi-
erarchical structure: C(k) ∼ k−γ , in agreement with
the observations of many real networks. The evolv-
ing mechanism, highlighted in this study, is inspired
from the real growing processes of social networks and
WWW, and can reproduce many statistical proper-
ties shared by various kinds of real networks. There-
fore, we believe this model will shed some light in the
in-depth understanding of structural evolution of real
networks.
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