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Abstract. We investigate a network model based on an infinite regular square lattice embedded in the
Euclidean plane where the node connection probability is given by the geometrical distance of nodes.
We show that the degree distribution in the basic model is sharply peaked around its mean value. Since
the model was originally developed to mimic the social network of acquaintances, to broaden the degree
distribution we propose its generalization. We show that when heterogeneity is introduced to the model, it
is possible to obtain fat tails of the degree distribution. Meanwhile, the small-world phenomenon present in
the basic model is not affected. To support our claims, both analytical and numerical results are obtained.
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1 Introduction

Networks are powerful tools for representation of many
diverse systems arising in physics, biology, and sociology.
Progress in this field is rapid; good reviews of our current
knowledge are presented in [1–3]. In this work we investi-
gate a network which is embedded in an Euclidean space
where the probability that two nodes are connected by a
link depends on their mutual distance. A similar model
was first proposed by Kleinberg in [4]. Later, a model
based on a regular underlying lattice was proposed and
some numerical results were obtained [5]; very recently,
this work has been generalized by introducing hidden vari-
ables [6]. In [7,8], similar models with wiring costs de-
pending on distances are studied; in [9–13], the interplay
between geographical distance and node degree is investi-
gated.

Models mentioned above have one feature in common:
resulting networks consist of many short links and long
distance connections are less numerous. Notice that this
corresponds to the picture widely accepted by sociologists
investigating networks of acquaintances [14,15]. Their key
phrase “Strength of weak ties” has a straightforward in-
terpretation here: the probability of connecting two nodes
must decrease with the distance slow enough to enable
multiple long links. Then the resulting network resem-
bles the structure observed in the human society. Our
present understanding of this phenomenon agrees with
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early mathematical insights presented in [16] where im-
portance of multiple edge length scales was discussed. No-
tice that also the classical model of Watts and Strogatz
with two types of links [17] follows a similar pattern.

In this paper we deal with the network model based
on the distance dependent connectivity which was inves-
tigated in [18] and is similar to [5]. This model was de-
veloped to mimic the acquaintance network in a human
society. It allows us to estimate the typical degree of sep-
aration between distant vertices in the network – the re-
sults show that with a proper choice of the dependence
between the linking probability and the nodes distance,
the network exhibits the small-world phenomenon.

However, in the original work the degree distribution
P (k) was not a matter of interest. In this paper we show
that it can be approximated by a Gaussian distribution.
This result is not surprising because the model relies on
the edges whose presence is mutually independent in the
same way as it is in the classical random graph of Erdös
and Rényi. Moreover, we show that the distribution of
P (k) is rather narrow. By contrast, when we investigate
the number of persons’s acquaintances in a real society,
the distribution decays slowly. This observation and the
lack of diversity in the original model were our main
motivations for the presented work. The basic “homoge-
neous” model is generalized by introducing hidden vari-
ables which is a common approach in various network
models [19,20], a similar attempt was recently presented
in [6]. We investigate the tail behavior of the degree distri-
bution and show that the resulting network exhibits the
small-world phenomenon.
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2 The basic model

We assume that nodes of the graph form an infinite square
lattice in the Euclidean plane with the side length of the el-
ementary square equal to 1. When modeling a society, each
node represents one person and thus in this way we assume
a homogeneous distribution of population. The probabil-
ity that two vertices with the distance d are connected
by an edge we label as Q(d). Notice that this is the point
where we introduce homogeneity to the network: the prob-
ability Q(d) is the same for every pair of nodes separated
by the distance d. The degree k of a node is defined as the
number of edges connected to this node. Consequently,
the average node degree z : = 〈k〉 is given by the linking
probability Q(di) summing over all nodes i. When Q(d)
changes slowly on the scale of 1, the summation can be
replaced by an integration and thus

z =
∑

i

Q(di) ≈
∫

Q(r) dr =
∫ ∞

0

Q(r)2πr dr. (1)

Notice that with z given, equation (1) represents a nor-
malization condition for Q(d).

For a node with the degree k, the clustering coeffi-
cient C is defined as the ratio C : = n/

(
k
2

)
where n is

the number of edges between the neighbours of the given
node. Notice that 0 ≤ C ≤ 1. For a particular node
X and a given function Q(d), the average value of n is
〈n〉 = 1

2

∑
i�=j Q(dXi)Q(dij)Q(djX ). Here the factor 1

2 cor-
responds to the fact that by a plain summation over all
i �= j a doublecounting occurs (i ↔ j). Consequently, the
average clustering coefficient of the network can be ap-
proximated as

〈C〉 ≈ 1
z(z − 1)

∫∫
i,j

Q(dXi)Q(dij)Q(djX) dridrj . (2)

Here we again assumed that Q(d) changes slowly on the
scale of 1.

In [18], Q(d) was assumed to have the form

Q(d) =
1

1 + bdα
(3)

with α > 2 to allow a proper normalization according to
equation (1). This choice was motivated by the following
observations of human society:

1. when two persons live close to each other, they prob-
ably know each other. Thus we require Q(0) = 1;

2. the greater is the distance between two persons, the
smaller is the probability that they know each other.
Thus Q(d) should be a decreasing function of d;

3. we define the average number of distant people that
every person knows as Nd ≡ ∫ ∞

R
Q(r)2πr dr where R

is large and fixed. We demand Nd sufficiently high to
reflect the observation that many people have distant
friends (e.g. living on the opposite Earth hemisphere).

For example, Q(d) = exp[−bd] satisfies (i) and (ii) but if
we choose R that covers half of human population (πR2 ≈

3 × 109) and z ≈ 200 (which is a reasonable value to
model real acquaintances), we obtain Nd ≈ 10−11 which
is effectively zero. Consequently, equation (3) represents
a simple choice of Q(d) which for α in the range 2.5–
3.5 complies with the requirements written above. Yet,
we do not claim that these three observations allow us to
guess the precise form of Q(d). We merely suppose that
our choice is able to capture basic features of the human
acquaintances network. More detailed discussion on the
nature of Q(d) can be found in [18].

In addition to the clustering coefficient defined above,
another important characteristics of random networks is
the degree of separation (or equally the shortest path
length). It is defined as the minimal number of vertices
along the shortest path between two given nodes. Denot-
ing the geometrical distance of these two nodes as l, in
the original paper it was shown that for Q(d) given by
equation (3), the typical degree of separation of distant
nodes is

D̃(l) ≈ − lnQ(l)
ln z

. (4)

Since in two dimensions, the typical distance l scales with
the network size S as

√
S. Consequently, for the distance

dependence given by equation (3), the typical topological
distance of two nodes in the network scales as D̃ ∼ ln S.
For the human acquaintances network is S = 6 × 109 and
hence l ≈ 80 000; when α lies in the range 2.5–3.5, and z
in the range 50–500, we obtain D̃ in the range 3–10. In
addition, by numerical integration of equation (2), for the
described parameters the mean clustering coefficient lies
in the range 0.05–0.30. We can conclude that the given
network exhibits the small-world phenomenon.

3 The degree distribution

Let’s choose one node of the network, we label it as X .
The plane can be divided into thin concentric rings cen-
tered at X . If the ring radius is r and its width is w, it
covers approximately N = 2πrw vertices. Meanwhile, all
vertices in one ring have approximately the same distance
from X . Therefore they also have approximately the same
probability Q(r) : = p to be connected with X . Since links
are drawn independently, the number of neighbours of X
in the ring with radius r, n(r), is a random quantity with
the binomial distribution whose mean is Np and the vari-
ance is Np(1 − p) = 2πrwQ(r)[1 − Q(r)].

The degree k of node X is obtained by summing n(r)
over all rings. The central limit theorem applies here and
thus k is normally distributed and its variance σ2

k is the
sum of variances of all contributions n(r). Replacing the
summation over all rings by the integration we obtain

σ2
k ≈

∫ ∞

0

2πrQ(r)
[
1 − Q(r)

]
dr = 2z/n. (5)

To confirm this result numerically, in Table 1 the quan-
tity nσ2

k/z is shown for various values of z and n. As can
be seen, the numerical results are well approximated by
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Table 1. Numerical estimates of nσ2
k/z for various values of

α and z on the square lattice with the dimensions 1000× 1000
(4000 × 4000 for α = 2.5), the variance σ2

k is obtained from
10 000 realisations of the model.

z = 50 z = 150 z = 500
α = 2.5 1.96 1.94 1.88
α = 3.0 1.97 2.03 1.93
α = 3.5 2.00 2.05 2.00

the analytical prediction nσ2
k/z = 2 for a wide range of

parameters.
We can conclude that the node degree k has approxi-

mately the Gaussian distribution with the mean z and the
variance 2z/n. For values of z resembling a real society (z
of the order of hundreds) it follows that σk � z and thus
the degree distribution is sharply peaked around its mean
value (narrowness of the degree distribution is clearly visi-
ble in Fig. 1). This is in a clear contradiction with the em-
pirical studies [21–24] which suggest power-law behavior.
The resulting social network is strongly homogeneous – it
lacks nodes exceeding others in degree by orders of mag-
nitude. In the following section we investigate how this
basic model can be modified to produce a heterogeneous
network and exhibit a broad degree distribution.

4 Heterogeneous network model

The probability distribution Q(d) given by equation (3),
fundamental for this model, has two natural parameters: b
and α. Heterogeneity can be introduced to the network by
assigning random values of these parameters to each node
(with the constraints b > 0, α > 2). To keep the acquain-
tance relation symmetric we symmetrize the probability
Qij(d) that persons i and j with the distance d know each
other by the relation

Qij(d; bi, αi, bj, αj) : =
Q(d; bi, αi) + Q(d; bj, αj)

2
. (6)

To simplify our calculations we assume that α is fixed in
the network and only b is a random quantity drawn from
the distribution �(b). The parameter b we call the node
solitariness (as b grows, the number of acquaintances is
decreasing and their average distance is getting smaller).
The average degree of a vertex with the solitariness b is
now

z(b) =
∫ ∞

0

Q(r; b) + Q(r; b′)
2

2πr�(b′) dr db′

=
∫ ∞

0

Q(r; b)πr dr +
〈z(b)〉

2
=

π2b−2/α

α sin(2π/α)
+

z

2
.

(7)

Here we again replaced the summation by an integration;
〈z(b)〉 is the average connectivity in the network which we
already labeled as z. As the solitariness b of a vertex goes
to zero, z(b) goes to infinity. By contrast, as b increases to
infinity, z(b) has a lower bound which is equal to z/2.

Fig. 1. The cumulative degree distribution P (k) plotted in
a logarithmic scale. The thick lines have slopes 1.95, 2.35, and
2.70 respectively (values predicted by equation (9) are 1.88,
2.25, and 2.63 respectively). The probability distributions were
obtained by 20 realisations of the model on the lattice with
dimensions 600×600 for α = 3 and z = 100. For a comparison,
the degree distribution of the basic homogeneous model is also
shown.

According to our previous discussions, we would like
to generalize the model to exhibit a wide connectivity dis-
tribution. To achieve this, high-degree nodes with small
values of b must be present. However, the value b = 0
is pathological for it makes the probability distribution
Q(d; b) flat and creates a node with an infinite degree (if
the network itself is infinite). Thus for the distribution
�(b) we require �(0) = 0. The simplest possible choice is
�(b) = Kbβ for b ∈ (0; B], β > 0. Values of K and B are
fixed by the condition 〈z(b)〉 = z and by the normalization
of �(b), leading to

B =

[
(α + αβ − 2)z sin(2π/α)

(1 + β)2π2

]−α/2

,

K = (1 + β)B−(1+β).

(8)

Since high degrees are due to small values of b, the results
derived below hold for all �(b) which can be approximated
by �(b) ∼ bγ for b small. Thanks to the constraint �(0) = 0
and the Taylor expansion, this is already a quite general
class of functions. However, in this paper we focus on the
power-law �(b) which allows us to investigate the model
analytically.

First we show that the chosen form of �(b) leads to the
desired fat distribution of connectivities. For the distribu-
tion of z(b) : = k we have

g(k) = �(b)
/∣∣∣∣dk

db

∣∣∣∣ =
2K

α
b1+β+2/α.

Consequently, using equation (7) and assuming k  z we
obtain

g(k) ∼ k
−(1+α/2+αβ/2)

.

We already know that when b is given, the probability dis-
tribution of the vertex degree is sharply peaked. Therefore
we can approximate the distribution f(k) which we are
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searching for by the distribution g(k) of the mean degree.
Then we obtain

f(k) ∼ k−(αβ+α+2)/2, P (k) ∼ k−(αβ+α)/2. (9)

Here P (k) is the cumulative probability distribution of the
vertex degree. We see, that for the chosen �(b), the degree
distribution has a power-law tail. In Figure 1, this analyt-
ical result is compared with a numerical simulation of the
model for z = 100 and α = 3. The power-law character
of P (k) is clearly visible for k � 300 and the approximate
values of the power-law exponents confirm equation (9).

Now we show that the modified network model still ex-
hibits the small world phenomenon. The probability that
two vertices with a fixed distance l have the degree of sep-
aration D we label as P (D). We can examine this quantity
by techniques similar to those presented in [18]. There it
was shown that in the resulting homogeneous network, the
first approximation of P (D) has the form

P (D)HO ≈ (D + 1)zDQ(l). (10)

The derivation of a similar result P (D)HE for the het-
erogeneous network model proposed here can be found
in Appendix A; it is well defined only when αβ > 2. In
Figure 2, the resulting ratio ξ(D) := P (D)HE/P (D)HO is
shown as a function of β. Notice that in the limit β → ∞
all ratios ξ(D) approach to 1. This is because as β in-
creases, a higher weight is given to values of b close to
the upper bound B. In particular, in the limit β → ∞
all nodes share the same value of solitariness, B. Thus we
can say that the proposed generalization is in the limit
β → ∞ equivalent to the original model. One can notice
that ξ(D) > 1 for all D. This means that in the proposed
heterogeneous network the probability to find a path of a
certain length is higher than in the homogeneous network.
In other words, hubs (nodes with a high degree) present
in the heterogeneous network facilitate formation of short
paths. Therefore, for the typical degrees of separation the
inequality D̃HE < D̃HO holds. On the other hand, since
the ratios P (D + 1)/P (D) (which are of order of z) are
much larger then the ratios ξ(D) shown in Figure 2, we
can also say that the introduction of heterogeneity to the
network does not change the typical degree of separation
substantially and D̃HE ≈ D̃HO.

The average clustering coefficient 〈C〉 cannot be
treated analytically and therefore in Figure 2 we present
only numerical results. They confirm the expected fact
that 〈C〉 is little sensitive to changes of the model pa-
rameters and thus it is almost as high as in the original
model. One can also notice that with increasing β, 〈C〉
approaches to the value 0.161 valid for the original model
(this value is taken from [18], in Figure 2 it is shown as
a dashed line). This limit behavior is similar to the limit
behavior of ξ(D). Since we observe both a small typical
degree of separation and a high average clustering coeffi-
cient, the heterogeneous network exhibits the small world
phenomenon.

Fig. 2. Changes of the the main network properties with β for
z = 300 and α = 3. In the upper figure, the ratio ξ(D) : =
P (D)HE/P (D)HO is drawn according to equations (10) and
(11). The course of 〈C〉 in the lower figure has been obtained
by a numerical simulation of the model with averaging over
1000 realizations; the dashed line presents the limiting value
of the clustering coefficient in the limit β → ∞.

5 Conclusion

In this paper we investigated a network model where links
are drawn according to nodes distances. Building on the
basic model [18], we proposed a generalization aiming to
introduce heterogeneity to the network and also fat tails
to the degree distribution. First, a hidden random param-
eter b is assigned randomly to each vertex of the network.
Then between a pair of nodes, a link is drawn with the
probability depending on the hidden parameter values of
these two nodes. As a result we obtain highly heteroge-
neous network which exhibits a power-law distribution
P (k) over a large range of connectivities. With respect to
the social interpretation of the model, one can say that it
produces a social network where highly sociable party go-
ers are present along with loners. The proportion of highly
connected nodes can be adjusted by the distribution, from
which the hidden parameter b is drawn – in this work we
focused on the simple distribution �(b) = Kbβ. We also
showed that for the resulting network, the typical degree
of separation is small and the average clustering coefficient
is high; both are approximately equal to the corresponding
values for the homogeneous network with same z and α.
Thus we conclude the small world phenomenon is present
in the networks produced by the proposed model.
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Appendix A: Calculation of P(D)
in the heterogeneous network

To obtain an approximate expression for P (D), the treat-
ment is similar to the treatment of the homogeneous net-
work model in [18]. As we will see, differences and compli-
cations arise from the additional averaging over possible
values of the solitariness b with �(b).

We pick two nodes with a large geometrical distance
l, let’s label them X and Y . As an illustrative example
we examine the probability P (2). That is, we examine
paths between X and Y that have two intermediate ver-
tices (Fig. A.1, left). Notice that D = 2 requires that
links X2, 1Y , and XY are not present. Since probabilities
of these links are small, to obtain a first approximation of
P (D) we neglect that such shortcuts may occur. Conse-
quently, the diagram for P (2) is simplified (Fig. A.1, right)
to the existence of edges X1, 12, and 2Y .

Another simplification comes from the form of Q(d)
given by equation (3). It is easy to check that when l is
large, for d � l holds Q(l− d)Q(d)  Q(l/2)Q(l/2). This
means that among all paths X12Y , the fundamental con-
tribution comes from those which contain only one long
link. Moreover, for d � l we have also Q(l−d) ≈ Q(l) and
therefore the probability of the long link can be approx-
imated by Q(l). As a result we can further simplify the
right diagram in Figures A.1 to A.2 where the only three
diagrams substantially contributing to P (2) are shown
(three different possibilities appear because there are three
ways to choose the long link in the path X12Y ; since prob-
ability of the long link is always approximately equal to
Q(l), the link is drawn between X and Y ).

In the basic network model, the contribution of the left
most diagram in Figure A.2 to P (2) is

P1 =
∫∫

1,2

Q(dX1)Q(d12)Q(l) drX1dr12 = Q(l)z2.

Since the remaining two diagrams give the same result,
together we have P (2) ≈ 3z2Q(l) which agrees with
equation (10). In the modified model of a heterogeneous
network, Q(d) is generalized to Q(d; b) and the connec-
tion probability is symmetrized by [Q(d; b1)+Q(d; b2)]/2.
Then for the left most diagram shown in Figure A.2
we encounter the complex expression [Q(dX1; bX) +
Q(dX1; b1)]×[Q(d12; b1)+Q(d12; b2)]×[Q(l; b2)+Q(l; bY )].
Moreover, in addition to the integration over rX1, r12,
we also have to integrate over bX , bY , b1, b2. Then we en-

Fig. A.1. The exact diagram for P (2) (left) and the approxi-
mate one utilizing the properties of Q(d) (right).

Fig. A.2. Three diagrams contributing substantially to P (2).

counter the following integrals

∫ B

0

k(b)�(b) db : = z,

∫ B

0

Q(l; b)�(b) db ≈ β + 1
β

Q(l; B) : = K1Q(l; B)

∫ B

0

∫
1

Q(r1; b)Q(l; b)�(b) db dr1 ≈
α + αβ − 2

αβ − 2
zQ(l; B) : = K2zQ(l; B),

∫ B

0

∫∫
1,2

Q(r1; b)Q(r2; b)�(b) db dr1 dr2 ≈

(α + αβ − 2)2

α(1 + β)(α + αβ − 4)
z2 : = K3z

2.

The third integral converges when αβ > 2, the fourth
when α+αβ > 4 (since α > 2, this is a weaker restriction).

Using the steps and notation introduced above we fi-
nally obtain the approximate result

P (D)HE ≈ L(D)
2D

Q(l; B)zD (11)

where

L(0) = K1,

L(1) = 3K1 + K2,

L(2) = 6K1 + 4K2 + 2K1K3,

L(3) = 10K1 + 10K2 + 10K1K3 + 2K2K3,

L(4) = 15K1 + 20K2 + 30K1K3 + 12K2K3 + 3K1K
2
3 , . . .

For D > 4 we obtain even more complicated expressions.
Nevertheless, since the typical degree of separation is small
in the discussed model, this is not a crucial complication
and the solution is tractable. We can notice that in the
limit β → ∞ we have K1, K2, K3 → 1 and therefore
P (D)HE = P (D)HO as expected.
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