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We propose a method for controllable generation of nonlocal entangled pairs using spinor atoms loaded in
an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling
the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a
triplet valence bond state with large persistency of entanglement �of the order of N�. We also study the
nonequilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the
time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled
state where short-distance antiferromagnetic correlations coexist with longer-distance ferromagnetic ones. We
present methods for detection and characterization of the various dynamically generated states. These ideas are
a step forward toward the use of atoms trapped by light as quantum-information processors and quantum
simulators.

PACS number�s�: 03.67.Bg, 05.70.Ln, 03.67.Mn, 71.10.Fd

I. INTRODUCTION

The generation and manipulation of entanglement have
been identified as important requirements for quantum tele-
portation �1�, quantum-information processing �2�, and quan-
tum communication �3�. Engineering long-ranged entangled
pairs in optical lattices can also have fundamental implica-
tions in the context of quantum magnetism. For example,
many frustrated spin states such as spin liquid states corre-
spond to coherent superpositions of spin singlet states �4�.

Recent experiments have made progress toward generat-
ing multiparticle entanglement among an ensemble of atoms
confined in optical lattices by using controlled collisions be-
tween individual neighboring atoms �5�. However, the gen-
eration of long-distance pair entanglement in systems with
short-range interaction between particles �such as optical lat-
tices� is not an easy task. In recent proposals long-distance
Einstein-Podolsky-Rosen �EPR� pairs �1� are generated by
first creating an entangled pair of quantum particles in one
location and then physically transporting one member of the
pair to another location �6�. However, decoherence during
the transport reduces the quality �fidelity� of the entangle-
ment.

Our approach is based on coherent manipulations of trip-
let or singlet pairs of ultracold atoms loaded in an array of
double-well potentials called superlattice �7–9�. These ma-
nipulations, applied to isolated double wells, were used for
the recent observation of superexchange interactions in opti-
cal lattices �10–12�. Here we generalize these approaches to
study the many-body dynamics that arises when coupling
between the double wells is allowed for. We propose various
schemes that result in controllable generation of multiparticle
entanglement. Specifically, we first discuss a protocol that
creates from a system of spinor bosonic atoms initially pre-
pared as an array of triplet �singlet� pairs on neighboring
sites, an array of long-distance triplet �singlet� pairs across
the lattice. The method consists of a simple iterative swap-

ping procedure, performed by controlling the double-well
barrier height �see Fig. 1�, which enables parallel generation
of long-distance EPR pairs.

We find that by combining the iterative swapping proce-
dure with the boundary effects always present in a finite
linear chain, one can engineer a state in which each atom
located in the right half of the superlattice is entangled with

FIG. 1. �Color online� �a� The initial state in the superlattice
corresponds to a product of triplets at adjacent sites. a is the lattice
spacing. �b� At time t=0+ the intrawell tunneling is suppressed and
the interwell tunneling is allowed. �c� At t= ts the entanglement
between adjacent pairs is redistributed between pairs of length 3.
�d� If the switching procedure is repeated, the entanglement propa-
gates to atoms separated by five wells and after n switches by 2n
+1 wells.
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an atom in the left half. This bipartition of the system into its
left-hand and right-hand parts exhibits maximal entangle-
ment entropy. Similar procedures have been proposed for
coherently transporting quantum information �13� and for
creating bosonic Cooper-like pairs �14� in optical lattices.
Additionally, we show that the parallel generation of an array
of EPR pairs can be useful for efficient implementation of
entanglement purification schemes �15�, which aim to distill
the few high-fidelity entangled pairs from the numerous low-
fidelity ones.

The swapping procedure described above is implemented
in an array of decoupled double wells. An interesting ques-
tion that naturally arises is what happens with the state if the
double wells are no longer completely decoupled, but instead
there exists a finite tunneling between them. The resulting
dynamics goes beyond the simple two-particle physics be-
hind the swapping procedure and the experiments which
control superexchange interactions �10�. The emerging state
is the consequence of many-body dynamics of a global in-
teracting Hamiltonian and does not require manipulations on
individually accessed atoms. This is a promising approach
for creating new magnetic phases without explicitly process-
ing a quantum-computer protocol. Although we believe that
the phenomena we discuss here are very general, to be spe-
cific we consider in this paper a one-dimensional chain and
focus on the coherent evolution of the product state of trip-
lets or singlets in each individual double well �Fig. 1�a��.
These are dimerized states which break translational symme-
try. This choice of initial states is motivated by the fact they
can be prepared in experiments �10�.

Our analysis shows that the time evolution of the triplet
product state leads to the formation of a magnetic state with
mixed correlations and a high degree of multiparticle en-
tanglement, where short-range antiferromagnetic and long-
range ferromagnetic correlations coexist. This state can be
experimentally probed by measuring the singlet-triplet popu-
lations �11� and density-density correlations after time of
flight �16�. We also find total �partial� restoration of the trans-
lational �rotational� symmetry, which suggests that our final
state has some type of spin liquid character. By this we mean
a state with strong intrinsic fluctuations but no broken sym-
metries �4�, what may be different from other definitions
which are based on the topological order of the quantum
state �17�.

The time evolution of the initial singlet state also leads to
the restoration of the translational symmetry and high multi-
particle entanglement but in this case we do not observe the
strongly mixed correlations. The dynamic state has purely
antiferromagnetic character, although with an unusual behav-
ior of long-range correlations.

The paper is organized as follows: After introducing in
Sec. II the formalism and numerical techniques we use for
our analysis, in Sec. III we describe the basic Hamiltonian
and its possible implementation in the context of recent ex-
periments using optical superlattices. In Sec. IV we present
the swapping procedure which we refer to as a single switch
dynamics and in Sec. V we discuss the idea of iterative rep-
etition of the switch as a means to generate long-distance
entangled pairs. We also study possible ways to experimen-
tally detect such long-range correlations. In Sec. VI we relax

the isolated double-well constraint and allow for a finite cou-
pling between the double wells. Specifically, we concentrate
our analysis on the many-body dynamics that emerges when
both the intrawell and interwell couplings are equal and
study the coherent dynamics starting from both an initially
prepared triplet product state and an initially prepared singlet
product state. Finally, we present our conclusions in Sec.
VII.

II. FORMALISM

The focus of this paper is twofold. On the one hand we
study experimentally relevant observables which can be used
to detect and characterize the dynamics of cold atoms. On
the other hand, we analyze properties of entanglement in the
system. The propagation and redistribution of entanglement
are not only important from the quantum-information per-
spective, but can also help to understand the quasiparticle
dynamics as demonstrated recently �18�. Such properties are
best discussed in terms of the entanglement entropy which
corresponds to the von Neumann entropy of the reduced den-
sity matrix with respect to a bipartition into two subsystems
�19�. The entanglement entropy is defined as S=
−tr�� log2����, where the reduced density matrix �
=tr���t�����t�� is the trace over the states of either of the two
subsystems. For the one-dimensional systems with open
boundary conditions, we will study the entanglement entropy
Sl of a block of size l located at the edge of the chain. In the
case of an infinite system we define S�

even �S�
odd� as the en-

tropy of subsystems formed by partitioning the chain at an
even �odd� bond. While any product state �a state that can be
represented as a tensor product of two pure subsystem states�
has zero entanglement entropy, maximally entanglement
states at one-half bipartition have entanglement entropy of
S=N.

We use both numerical and analytic techniques to study
the quantum dynamics. For the numerical treatment we adopt
the time-evolving block decimation algorithm �TEBD� for
finite �20,21� and periodic infinite systems �22�, which uses a
matrix-product state representation and a Suzuki-Trotter de-
composition of the evolution operator. It retains only states
with the lowest weights in the reduced density matrix, keep-
ing the number of states � �the dimension of the matrices�
finite. Consequently, the wave function of weakly entangled
states can be handled efficiently, with the computation times
of the order of O��3N�.

During the time evolution � must be increased in order to
reproduce the growing entanglement in the system. The ac-
curacy of the method is estimated by varying both � and the
Suzuki-Trotter slicing �23�. For short and intermediate times
the TEBD algorithm allows us to get very precise results, but
at the moment when the entanglement entropy exceeds
log2���, the matrix-product representation becomes no
longer accurate. To deal with the evolution over long periods
of time �t→��, we use exact diagonalization �24� tech-
niques. Even though these techniques can only deal with
systems with small number of lattice sites �up to 24 sites�
and suffer from recurrence effects, they are relevant for re-
alistic setups in one-dimensional �1D� experiments �25�.

2

ht
tp

://
do

c.
re

ro
.c

h



III. SETUP AND PROCEDURES

A. Effective Hamiltonian

We consider a system of 2N ultracold bosonic atoms with
two relevant hyperfine states, which we denote as ↑ and ↓,
confined within a double-well superlattice with the filling
factor of 1. The latter can be experimentally implemented by
superimposing two independent lattices one with 2 times the
period of the other �9,10�.

In the deep barrier regime, the vibrational energy of each
well, ��0, is the largest energy scale in the system and one
can restrict the dynamics to the lowest vibrational states.
When restricted to the lowest band, there are three relevant
energy scales: The intrawell hopping amplitude tin, the inter-
well hopping amplitude tout and the on-site interaction energy
U. In the limit of large U� tin , tout we are focusing on, the
system is in the Mott insulating regime and the only popu-
lated states are the singly occupied ones. The spin dynamics
is described by the following effective Hamiltonian, which
takes into account the coupling between the different singly
occupied states by virtual particle-hole excitations
�10,26,27�:

Heff = − J1	
j

S2j · S2j+1 − J2	
j

S2j+1 · S2j+2, �1�

with J1=4tin
2 /U and J2=4tout

2 /U. Since experimentally tin and
tout can be controlled independently �11� by adjusting the
intensities of the laser beams that generate the superlattice,
we will assume that both J1 and J2 can, in general, be time-
dependent functions J1�t� , J2�t�. Additionally, we note that
even though for bosons the sign of the coupling constants is
normally positive �ferromagnetic interactions�, experimen-
tally it is also possible to change the sign to be negative �10�.

B. Initial state

The starting point of our analysis is a system initially
prepared in an array of triplet pairs on the neighboring sites
of a double-well superlattice,

���t = 0�� = 

j

�t2j,2j+1
z � , �2�

�tj,j+1
z � =

1
�2

��↑� j�↓� j+1 + �↓� j�↑� j+1� . �3�

This state has been recently realized in the laboratory �10�. In
this experiment, after first preparing a Mott insulator with
two bosonic atoms per double well, the atoms were trans-
ferred into a triplet state configuration by using spin-
changing collisions �28�.

For the following, it is convenient to characterize the ini-
tial state as a triplet valence bond state of length 1. Although
this state is a ground state of the system of independent
wells, it is not an eigenstate of a system of coupled wells.
Therefore, changing the couplings J1,2 at t	0 leads to a
complicated correlated dynamics. The specific time evolu-
tion depends significantly on the ratio of the couplings J1 and
J2.

C. Switching procedures

We consider and characterize in details three specific
cases:

�1� Single switch, J1�t	0�=0, J2�t	0�=J.
�2� Periodic switch, J1��2n+1�ts	 t	2nts�=0, J2��2n

+1�ts	 t	2nts�=J while J1��2n+2�ts	 t	 �2n+1�ts�
=J , J2��2n+2�ts	 t	 �2n+1�ts�=0 with n=0,1 ,2 , . . . and
switching time ts specified below.

�3� Homogeneous switch, J1�t	0�=J2�t	0�=J.
The Hamiltonian in the first two cases consists of decou-

pled double wells and allows a simple analytical treatment
�Secs. IV and V�. The homogeneous switch involves the
complicated many-body dynamics of the Heisenberg chain
and will be analyzed using numerical tools �Sec. VI�.

It is convenient to introduce the bond operators �29�
which create singlet and triplet pairs at different bonds,

ŝ j,j+1
† �0� = �sj,j+1� =

1
�2

��↑� j�↓� j+1 − �↓� j�↑� j+1� ,

t̂ j,j+1
z† �0� = �tj,j+1

z � ,

t̂ j,j+1
x† �0� = �tj,j+1

x � =
1
�2

��↑� j�↑� j+1 − �↓� j�↓� j+1� ,

t̂ j,j+1
y† �0� = �tj,j+1

y � =
i

�2
��↑� j�↑� j+1 + �↓� j�↓� j+1� �4�

��0� denotes the state with no atoms�. These operators satisfy
bosonic commutation relations and the constraint

	

=x,y,z

t̂ j,j+1

† t̂ j,j+1


 + ŝ j,j+1
† ŝ j,j+1 = 1, �5�

which follows from the completeness of the Hilbert space of
states of an individual double well. We start our analysis by
studying the single switch dynamics.

IV. SINGLE SWITCH

In the case J1=0 and J2=J, the evolution operator U�t�
=e−itH/� can be written analytically. It is given by

Uodd�t� = eiAt

j
�cos
 Jt

2�
�1 + i sin
 Jt

2�
�P2j+1,2j+2� , �6�

where P2j+1,2j+2= �1 /2�+2S2j+1 ·S2j+2 is the SWAP operator
�interchanges the spins� at sites 2j+1,2j+2 and A is an ir-
relevant phase factor equal to −J�N+2� / �4��. From Eq. �6� it
is clear that the evolution is periodic with the period

T = 2ts,

Jts � �� . �7�

At times t= �2n+1�ts, the evolution operator reduces to a
product of the SWAP operators which, upon acting on the
initial state, distribute the entanglement from atoms at sites
�2j ,2j+1� to atoms at �2j+1,2j+4�, leading to the forma-
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tion of a quantum state with valence bond length equal to 3
�see Fig. 1�,

��t=ts
��1� = 


j

�t2j+1,2j+4
z � . �8�

The effect of this redistribution on the entanglement entropy
is shown in Fig. 2. We observe that while for odd bipartitions
the entanglement entropy oscillates between 0 and 2, for
even bipartitions S�

even remains constantly 1. This is consis-
tent with the fact that for any state which can be represented
as a single valence bond state the entanglement entropy is
equal to the number of EPR pairs shared by the subsystems
�30� �in our case this number is 0 and 2 at nts for the odd
bipartitions and 1 for the even�. The oscillation follows
closely, but not exactly, the curve

S�
odd�t� � 2�1 − cos4
 Jt

2�
�� . �9�

The singlet and triplet populations at adjacent sites are
quantities that can be experimentally probed via singlet-
triplet spectroscopic measurements and Stern-Gerlach tech-
niques �11�. In terms of bond operators �see Eq. �4�� these
quantities are defined as

teven
x,y,z�t� =

1

N
	

j

���t��t̂2j,2j+1
x,y,z† t̂2j,2j+1

x,y,x ���t�� ,

seven�t� =
1

N
	

j

���t��ŝ2j,2j+1
† ŝ2j,2j+1���t�� ,

todd
x,y,z�t� =

1

N
	

j

���t��t̂2j+1,2j+2
x,y,z† t̂2j+1,2j+2

x,y,x ���t�� ,

sodd�t� =
1

N
	

j

���t��ŝ2j+1,2j+2
† ŝ2j+1,2j+2���t�� .

Using the evolution operator �6�, the singlet-triplet popu-
lations can be shown to evolve as

teven
z �t� =

1

4
�1 + 3 cos4
 Jt

2�
�� ,

teven
x,y �t� = seven�t� =

1

4
�1 − cos4
 Jt

2�
�� ,

todd
x,y,z�t� = sodd�t� =

1

4
. �10�

The coherence of the singlet-triplet oscillations can help to
characterize the quality of the dynamical evolution. These
measurements, however, are only local and do not give any
indication of the distance between the entangled atoms gen-
erated at t= �2n+1�ts. The latter, on the other hand, can be
probed by measuring density-density correlations of the ex-
panding cloud or noise correlations �16�,

G„Q�r�,Q��r��… =

	
���

�n̂Q�r�
� n̂Q��r��

�� �

	
���

�n̂Q�r�
� ��n̂Q��r��

�� �
− 1, �11�

where n̂Q�r�
� is the atom number operator for the component �

at position r after time of flight. G(Q�r� ,Q��r��) is directly
related to the momentum-momentum correlations of the
atomic cloud at the release time, tR. Deep in the Mott insu-
lator regime G(Q�r� ,Q��r��) can be rewritten in terms of
spin operators as

G�q,tR� = ���tR��
1

2N2	
i�j

eiqa�i−j�
1

4
+ Si · S j����tR��

=
1

2

q,0 + ��q,tR� , �12�

where q=Q−Q� and a is the lattice spacing �Fig. 1�. While
the first term in Eq. �12� reproduces the interference peaks at
reciprocal lattice vectors characteristic of the Mott insulator
state �due to the bunching of the bosons�, the second term
��q , tR� provides additional information about the spin order
in the system. For example, if the system is released exactly
at times tR=nts when it is in a valence bond state of length l
�here l=1,3�, ��q , tR� will exhibit spatial oscillations with
periodicity dictated by the distance between the entangled
atoms �see Fig. 3�

��q,tR = nts� =
1

4N
�1 + cos�qal�� . �13�

We note that the factor N in the denominator originates from
the short-range character of the interactions and therefore the
entanglement is only shared between pairs. It limits the ap-
plicability of noise correlations as a suitable experimental
probe in systems with a large number of atoms. However, the
1 /N factor should not be a problem in current 1D systems
with approximately 20 atoms per tube �25�.
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FIG. 2. �Color online� Entanglement entropy for the single
switch and for the periodic switch �numerical result, TEBD�, ts

=�� /J. We used an infinite lattice for the former and one with
2N=10 for the latter and calculated the entanglement entropy for
one-half of the chain. While for the single switch the period is 2ts,
for the periodic switch the initial state is recovered after t=2Nts.
The single switch is well described by expression �9�.
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V. PERIODIC SWITCH

A. Generic case

We now consider the iterative sequence of switching off
and on the couplings J1 , J2 every ts. One might think that if
at time ts one reverses the couplings from J1=0 , J2=J to
J1=J , J2=0, the dynamics will just return the state into its
original form, i.e., from Eq. �8� to Eq. �2�; however, this does
not happen. On the contrary, as a result of the evolution
under the SWAP operators, atoms separated by four lattice
sites become now connected by triplet valence bonds and so,
at the time t=2ts, the state evolves into a valence bond state
with l=5 �Fig. 1�,

��t=2ts
��2� = 


j

�t2j,2j+5
z � . �14�

The successive repetition of the switching procedure leads to
the propagation of the entanglement across the lattice and
after n switches, performed at times kts �k=1, . . . ,n�, one
obtains entangled pairs with length 2n+1.

In the experimentally relevant case of an open chain, the
sequential incrementation of the length of the entangled pairs
is stopped when one member of the pair reaches the bound-
ary of the lattice. The pair is then reflected and continues
moving through the lattice with its length remaining un-
changed. Consequently, when after N−1 switches the pair
initially located at the center of the lattice reaches the bound-
ary, a particular state that has the maximal possible length of
entangled pairs is formed. While for an odd number of
double wells it corresponds to a state with an EPR pair con-
necting the edges of the chain,

��t=ts�N−1�� = �t0,2N−1
z � 


j=1

�N−1�/2

�t2j−1,2N−2j−1
z ��t2j,2N−2j

z � ,

for even N the maximal length of entangled pairs is l=2N
−1,

��t=ts�N−1�� = 

j=0

�N−2�/2

�t2j,2N−2j−2
z ��t2j+1,2N−2j−1

z � .

Since the entanglement entropy of the state partitioned into
its left and right half is simply given by the number of EPR
pairs connecting the two parts �30�, the state ��t=ts�N−1�� has
maximal entanglement entropy SN=N. This growth of the
entanglement for the case 2N=10 is depicted in Fig. 2.

B. Implementation of remote entanglement protocol

As we have seen, by applying the iterative swapping pro-
cedure to an open chain it is possible to engineer a state
which has maximally separated entangled atoms and largest
bipartite entanglement. Such a state can have relevant appli-
cation in lattice-based quantum-information proposals due to
its large persistency of entanglement because in this case N
qubits must be measured to disentangle the state. The persis-
tency of entanglement quantifies the robustness of the en-
tanglement to noise. We remark that in this respect a cat state
�macroscopic quantum super-position state e.g.,
1
�2

��↑↑ ¯ ↑↑�+ �↓↓ ¯ ↓↓��� is fragile as even a single local
measurement is sufficient to reduce it to a product state. The
state we are engineering has persistency of entanglement as
large as that of a cluster state, which is one of the key pre-
requisites for using it as a one-way quantum computer re-
source �31�.

Moreover, the ��t=ts�N−1�� state is an eigenstate of the Nth
switching operator, ��t=�N−1�ts

�= ��t=Nts
� and thus after 2N

switches the state will be rolled back to the initial nearest-
neighbor triplet-product state. This property can be useful for
experimentally probing the state and quantifying the fidelity
of the procedure. For example, by measuring the quality of
the triplet product state after 2N switches one can get infor-
mation about errors that occurred during the swapping pro-
cess.

We also note that even though we focused on the case of
an initial array of triplet pairs, similar considerations hold if
instead of triplets one starts with singlets or changes the sign
of the coupling constants �as it would be in the case of fer-
mions�.

In addition, our swapping procedure can also be used for
transporting a particular state of an atom without directly
moving the particles: If we initially prepare all the atoms in
the same state, say ↓, except for the atom at site i which we
prepare in state ↑, after n periodic switches the state ↑ will be
transferred to the atom located at site i+n.

The long-range entanglement produced by the switching
procedure can be experimentally probed by noise-correlation
measurements. Although for finite lattices the expected ideal
pattern of well-defined peaks at t=nts �see Eq. �12�� changes
to one with less regular structure due to the distribution of
different valence bond lengths, Fig. 4 shows that it still con-
tains relevant information such as the formation of well-
defined peaks at q=0 and q=� /a when the distance between
entangled atoms becomes maximal.

C. Nonideal conditions

Up to this point we have assumed that Eq. �1� accurately
describes the many-body dynamics. However, defects such

FIG. 3. �Color online� The noise correlations for two periods in
the single switch, ts=�� /J. Numerical TEBD simulation for the
infinite lattice.
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as holes or doubly occupied sites will make this assumption
invalid.

We should emphasize that there is one particular condi-
tion which makes the entanglement generation possible de-
spite the presence of holes. Namely, this occurs when the
single-particle tunneling time is engineered to be commen-
surate with ts. However, if this condition is not satisfied, in
general the holes will hinder the generation of long-distance
entangled pairs and they should be suppressed, for example,
by implementing additional filtering schemes such as the one
proposed in Ref. �32�.

Additionally, even though Eq. �1� was derived by taking
into account only virtual particle-hole excitations, real
particle-hole excitations will certainly take place during the
dynamical evolution. They would lead to oscillations on top
of the effective Hamiltonian dynamics with amplitude J /U
and periodicity �h /U. Therefore, in order to efficiently av-
erage them out one must work in the strongly correlated
regime, i.e., with the condition tin,out�U, though this implies
smaller time scales for the dynamical evolution. In typical
experiments, working in a parameter regime where particle-
hole excitation effects are negligible requires a superex-
change coupling J /h of the order of 1 kHz �ts�1 ms� and

thus for a system with approximately 20 lattice sites, it will
take about 10 ms to generate entanglement between the at-
oms at the edges of the cloud.

Another aspect of our procedure is that the long-distance
entangled pairs are generated by switching the interactions at
specific moments of time. In practice however one always
expects switching time uncertainties 
t and therefore the in-
terval between consecutive steps will not be exactly ts but
ts+
t. Such inaccuracies will accumulate and will degrade
the quality of the final state exponentially with the number of
lattice sites and the number of switches made during the
process. Defining the fidelity of a state as F
= ���t=nts

��t=nts
ideal��2, where ��t=nts

ideal� and ��t=nts
� are the ideal and

actual states generated after n iterations, one can estimate the
degradation of fidelity using Eq. �6�,

F � F0
1 −
n�
t�2N

4
� , �15�

where F0= ����t=0��
 j�t2j,2j+1
z ��2 is the fidelity of the initial

state.

D. Entanglement purification

To overcome all the limitations mentioned above one can
combine our periodic switching scheme with entanglement
purification protocols. Starting from a large ensemble of gen-
erated low-fidelity entangled pairs, these protocols distill a
smaller subensemble which has sufficiently high fidelity. En-
tanglement purification can be implemented in a spin-
dependent two-dimensional �2D� superlattice as follows: Af-
ter creating an array of 1D independent chains along the x
direction by suppressing tunneling along the ydirection, one
can use our procedure to generate many parallel long-
distance entangled pairs within the 1D chains, i.e., an atom at
the site �i , j� will be entangled with one at �i+ l , j�. Then
tunneling along the x direction should be inhibited and the
following iterative procedures be applied.

�1� Lower the intrawell barriers along the y direction of a
spin-dependent superlattice, allowing only one of the species
to tunnel �33�. This will introduce Ising-type interactions
	jJ�Si,2j

z Si,2j+1
z between atoms at adjacent sites along y axis

and therefore will couple entangled pairs at �i ,2j�− �i
+ l ,2j� with pairs at �i ,2j+1�− �i+ l ,2j+1�, respectively.

�2� Combine the Ising interaction with single-particle ro-
tations, realized with the help of external magnetic fields, to
implement the controlled-NOT �CNOT� gate required for the
purification schemes described in Ref. �19�.

�3� Measure the spins at the �i ,2j� and �i+ l ,2j� wells. If
they turn out to be parallel, keep the corresponding pair at
�i ,2j+1� and �i+ l ,2j+1�, otherwise discard it.

�4� Release the measured atoms and merge the �i ,2j� and
�i ,2j+1� wells into a single one. Repetition of the above
protocol will distill from the low-fidelity pairs the ones with
higher fidelity.

Let us now briefly discuss the experimental realizability
of such purification protocols. To date, one of the main prob-
lems is the experimental implementation of step �3� due to
the difficulty of measuring individual states at adjacent lat-
tice sites. These atoms are separated by a distance of the

FIG. 4. �Color online� The noise correlations during the periodic
switch, ts=�� /J. �a� TEBD simulation in the limit N→�. The fact
that all of the entangled pairs are of the same length is reflected in
the periodic pattern. �b� Exact diagonalization on an open chain,
2N=14. The superposition of the triplet valence bonds with differ-
ent lengths in the intermediate state around t / ts=N−1 leads to a
very weakly structured signal.
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order of an optical wavelength and therefore diffraction fun-
damentally limits individual addressability. One advantage of
our scheme is that the atoms in a pair that should be mea-
sured are in general separated by many lattice sites, but nev-
ertheless when the measurement is performed on one of the
pairs, nearest-neighbor atoms are still affected. One possibil-
ity to overcome this problem has been proposed recently in
Ref. �34� where the use of nonlinear atomic response has
been suggested for coherent optical far-field manipulation of
quantum systems with resolution of up to a few nanometers.
The implementation of the proposals of this kind in the con-
trolled lattice environment may allow proof-of-principle ex-
perimental demonstration of quantum purification ideas.

VI. HOMOGENEOUS SWITCH

An interesting question which arises from the dynamics of
the periodic switch is what happens with the quantum state if
the double wells are no longer decoupled completely, but
instead there exists a finite tunneling between them. One
expects that in this case the propagation of valence bond
states will be suppressed after some period of evolution. To
address this question, in this section we consider the case of
a homogeneous switch J1 /J2=1 �case �3� in our classifica-
tion�, which formally can be considered as a particular case
of quench dynamics: We prepare the system in a ground state
of one Hamiltonian—a triplet �singlet� product state—and
then suddenly change the quantum Hamiltonian to a new
one—the isotropic ferromagnetic Heisenberg Hamiltonian—
which determines the subsequent evolution.

In contrast to the periodic switch evolution, whose gen-
eral characteristics are independent of the singlet or triplet
nature of the starting state, the dynamics of the homogeneous
switch is strongly affected by the symmetries of the initial
state. Consequently, we consider the cases when the initial
state is in a triplet �singlet� configuration separately. How-
ever, before starting the discussion we first provide a general
overview of the dynamics of quantum quenched systems.

A. Quantum quench: General discussion

The time evolution of a quantum state after a quantum
quench has recently attracted a lot of theoretical �18,35,36�
and experimental �25,37–39� interest, in part due to the pos-
sibility of varying in real time the parameters of the optical
lattice. For example, low-dimensional systems prepared in a
gapless state and subsequently quenched into an insulator
state have been experimentally studied, addressing questions
such as relaxation to thermal states and collapse and revival
effects. The dynamics of exactly solvable models, e.g., an
Ising chain �40–42�, have also been the topic of investigation
due to the fact that these systems satisfy many conservation
laws which lead to nontrivial equilibration phenomena. Such
behavior has been attempted to be explained in terms of a
generalized Gibbs ensemble �43�. From the numerical side,
recent advances in time-dependent density matrix renormal-
ization group �DMRG� and TEBD methods �20,21,44� have
allowed us to study the quantum dynamics in bosonic and
fermionic 1D systems �45–47�. The numerical simulations

seem to support the absence of thermalization, however,
these methods are restricted to small and intermediate time
scales. The case of the quench from the gapped phase into
the critical regime has been studied using conformal field
theory by Calabrese and Cardy �18,35�. Numerical calcula-
tions �47,48� support their results. The quench dynamics be-
tween gapped states can also be attacked using methods of
exact solutions �49� and also demonstrate interesting dynam-
ics associated with the absence of thermalization. On the
other hand, more conventional approaches based on pertur-
bative methods �50� and diagrammatic expansions �51,52�
inevitably show dynamics associated with the thermalization
scenario.

In the present work we adopt a numerical approach to
deal with the quantum quench dynamics and postpone the
analytical treatment for future presentations.

B. Initially prepared triplet state

Let us first consider the case of the homogeneous switch
dynamics when the initial state is a product of triplet states
�Eq. �2��. In order to gain a general understanding of this
system, we note that while the initial state has broken rota-
tional and translational symmetries, the Hamiltonian at t
	0 �ferromagnetic Heisenberg� possesses both of these sym-
metries. Although its low-energy excitations are dominated
by the spin-wave Goldstone modes corresponding to the bro-
ken continuous �rotational� symmetry, the quantum dynamics
involves a bunch of highly excited modes which know noth-
ing about the spontaneous breakdown of the continuous sym-
metry. We therefore face a dynamical competition between
the initial state with broken symmetries associated with the
initial condition on the one hand, and the whole spectrum
reflecting both of these symmetries on the other. As a result
of this competition we expect the emergence of a complex
magnetic state and the growth of the entanglement entropy.

As we have pointed out, for the correct description of
quantum dynamics it is not sufficient to rely on a low-energy
effective theory because the details of the spectrum can play
a significant role. On the other hand, if we start with a state
which involves many excited states, the characteristic fea-
tures of the dispersion relation of the low-energy modes can
be not so important. Also, quantities studied below are in-
variant under time-inversion symmetry and therefore the dy-
namics of our problem should have the same common fea-
tures as that of the antiferromagnetic Heisenberg model. As a
result, some common mechanisms should define the generic
features of the quantum dynamics of these models. It has
been pointed out recently �18,35� that this generic behavior
can be understood in terms of classically moving quasiparti-
cles �18,36�, whose transport correlations are bounded by the
light cone �horizon effect�. We interpret our results on the
basis of these ideas.

1. Entanglement

We first focus on the evolution of the entanglement. The
spatially anisotropic and weakly entangled initial state
evolves into a highly entangled state with restored transla-
tional symmetry. This behavior is signaled by the growth of
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the entanglement entropy and the rapid decay of the oscilla-
tions between even and odd bipartitions. In Fig. 5 we plot the
entanglement entropy of blocks of different sizes in a finite
lattice. The plot shows that for short times, after the recovery
of translational invariance, the finite-block entanglement en-
tropy exhibits linear growth. A saturation to a value close to
the maximal Sl= l occurs for longer times. This is in agree-
ment with results obtained with the use of conformal field
theory �18� that predict a saturation value proportional to l.
The growth of the entanglement limits the applicability of
the numerical method �TEBD�, as reasonable matrix dimen-
sions �e.g., �=1000� are only valid for weakly entangled
systems �Sl� log2����10�. Consequently, it is impossible to
verify the exact behavior of the entropy for large blocks.
However, since in the intermediate time regime the dynami-
cally evolved state in finite lattices does not show signifi-
cantly lower entanglement compared to an infinite system, to
study this regime one can make simulations directly in the

infinitely extended periodic system, where the translational
symmetry can be exploited. This allows us to reduce the
computational cost by a factor of N compared to the finite-
lattice simulations �22�.

We study the crossover that takes place from the linear-
growth regime where Sl=S� �S� stands for S�

even, S�
odd, for

even and odd l, respectively�, to a saturation toward a con-
stant value. It is probed by the quantity �see Fig. 5�

�Sl = S� − Sl. �16�

This crossover is a direct manifestation of the horizon effect.
In the case of conformal invariance, where relativistic disper-
sion relation �k=v�k� is assumed, the distance between en-
tangled atoms is always smaller than 2vt. The entanglement
grows linearly as long as the horizon is smaller than the size
of the block. For the open chain considered here, with the
block situated at one of the edges, the horizon must be 2
times as large as the block length �48�. This allows us to
define a crossover time t�= l /v when Sl�t	 t�� becomes a
constant �18�. Figure 5 shows that using the spin-wave ve-
locity of the Heisenberg ferromagnet, vs=J� /2�, the cross-
over indeed takes place around t�= l /vs. However, comparing
results of Fig. 5 with the results of the quantum quench in the
XXZ chain �48�, we find that the crossover in our case is
much slower than in this system. The reason for this is that in
a one-dimensional lattice model the sharp crossover is
smeared out by lattice effects �which explain why Sl�S�

even for t� l /vs� and, more importantly, by the nonlinear
dispersion relation. Due to the latter, particles moving slower
than vs must be taken into account, which results in a slower
saturation of Sl�t� to a constant value at t	 t�.

While long-range effects at the horizon are determined by
the fast spin waves and the results from conformal field
theory are applicable, the slow quasiparticles will be of great
importance for understanding the effects related to short-
range phenomena.

2. Singlet-triplet population

To study further the dynamical relaxation and the recov-
ery of broken symmetries, we plot in Fig. 6 the singlet-triplet
population at adjacent sites �j , j+1�. The data are obtained
by using an unbiased exact diagonalization technique �Lanc-
zos algorithm �24�� on an open chain with 2N=22 sites. Af-
ter a certain time interval trelax one expects that the quenched
initial values decay into a quasistationary regime, which is
destroyed at t	 trec=4N /2vs due to quantum recurrence,
when the edges of the expanding light cone begin to interfere
�36�. From Fig. 6 we determine that vstrelax�5; the value
vstrec=22 corresponds to a conservative lower bound of the
recurrence time. In the quasistationary regime only oscilla-
tions around an average value are observed. These oscilla-
tions can be associated with the finite bandwidth of quasipar-
ticle energies �35�. We define average values for an arbitrary
operator O in the quasistationary state as follows:

�O�qs =
1

trec − trelax
�

trelax

trec

dt�O�t�� . �17�

Comparing the x ,y ,z-triplet populations, we see a tendency
of relaxation toward proximate values,
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FIG. 5. �Color online� The entanglement entropy for the homo-
geneous switch, vs=J� /2�. �a� TEBD simulation for 2N=36 with
open boundary conditions. Sl approaches the line l. �b� The cross-
over from linear growth to saturation. Inset: Deviation of the finite-
block entanglement entropy from the infinite value. The crossover
is well characterized by the saturation time defined by the spin-
wave velocity, t�= l
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�teven
z �qs = 0.334,

�todd
z �qs = 0.343,

�teven
x,y �qs = 0.267,

�todd
x,y �qs = 0.272.

The relaxation of the singlet-triplet occupation numbers at
even and odd bonds toward the same quasistationary values
indicates the restoration of the translational symmetry, also
suggested by the entropy calculations. The difference be-
tween tz and tx,y of about 0.06 implies that the rotational
symmetry is not completely restored. This difference is
stable for various lattice sizes and choices of trelax �which by
definition allows a certain freedom in its choice�. This is a
direct indication of missing thermalization in the quasista-
tionary regime. The dynamic state does not fully reflect the
symmetries of the Hamiltonian.

3. Structure factor

In Fig. 7 we plot the time-dependent structure factor
��q , t�, which is experimentally accessible by measuring the
noise correlations �12�. Alongside the persisting peak at q
=0, the figure shows the formation of a smooth peak at q
�� /3a for all times t	 t�, which signals the development of
an unusual type of magnetic state. We checked that for small
lattices �2N=20� the peak is stable for vst�100. The height
of the peak N��q , t� is independent of the lattice size or the
type of boundary condition, thus revealing the short-range
nature of spatial correlations in the system.

In order to explicitly study the relaxation of the correla-
tion functions and to understand the origin of the incommen-
surate peak in the noise correlations, we plot in Fig. 8 the
real-space correlation function

0 5 10 15 20 25 30 35 40vst

0.2

0.4

0.6

0.8

1
oc
cu
pa
tio
nn
um
be
r

tzeven
tzodd
tx,yeven
tx,yoddsevensodd

trelax trec

FIG. 6. �Color online� The experimentally measurable triplet
�tx,y,z, see text� and singlet �s� occupations at adjacent lattice sites,
vs=J� /2�. Exact diagonalization for 2N=22 sites. The equilibra-
tion of tz and tx,y is not complete. The oscillations of even and odd
bond correlations around the same value signal the recovery of the
translational symmetry.

FIG. 7. �Color online� The noise correlations for the infinite
lattice, TEBD simulation, vs=J� /2�. A broad peak at qa /��1 /2
appears at vst�1, which shifts toward qa /��1 /3 with the time
evolution.
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FIG. 8. �Color online� Simulation of correlation functions for
the infinite lattice using TEBD, vs=J� /2�. �a� Evolution of real-
space correlation functions at fixed distances: The plot shows the
tendency of longer-distance correlations to restore translational in-
variance. �b� Antiferromagnetic correlations at distance l=2, and
rapidly decaying ferromagnetic correlations for larger distances.
The straight line marks the horizon of quasiparticles moving with
spin-wave velocity vs. The plot resolves magnitudes larger than
10−7.
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G+−�l,t� = 	
�i−j�=l

Re�Si
+�t�Sj

−�t�� �18�

and the quantity

Q+−�l,t� = 	
�i−j�=l

�− 1�iRe�Si
+�t�Sj

−�t�� , �19�

which indicates that the translational symmetry is recovered
for long-range correlations. The most interesting effect we
observe in the correlation functions is the suppression of the
ferromagnetic �positive� nearest-neighbor correlations and
the development of weak antiferromagnetic �negative� corre-
lations for next-nearest-neighbor sites. This is the origin of
the incommensurate peak in the noise correlations �Fig. 7�.
The large-distance properties of the correlation function do
not contradict the predictions of conformal field theory �35�.
For instance, the correlations are ferromagnetic and change
from their initial values only when the horizon of quasipar-
ticle pairs l�t�=2vst passes, although in this case we find that
the horizon is not absolutely sharp. It is important to notice
that, although the horizon moves with constant speed, the
intensity of the correlations decays fast with larger distances
and the correlation length remains finite.

The observed mixed correlations can be interpreted as an
implication of energy conservation. At time t=0 the whole
correlation energy is stored in the short-ranged triplets; at t
	0 the action of the evolution operator leads to the forma-
tion of longer-distance singlets between spatially separated
sites. This singlet component persists for longer times and
leads to the appearance of the antiferromagnetic component
in the spin-spin correlation function. Therefore, the local re-
distribution of correlation energy, revealed in the partial an-
tiferromagnetic correlation, is one possible explanation for
the emergence of mixed correlations.

C. Initially prepared singlet state

In this section we study the case of the homogeneous
switch �with dynamical evolution determined by the Heisen-
berg chain, J1=J2=J	0, Eq. �2��, but instead of starting
from a triplet product state, we now start from a singlet prod-
uct state,

���t = 0�� = 

j

�s2j,2j+1� . �20�

For bosonic systems this state can be experimentally realized
by time evolution of the initial triplet product state in the
presence of a magnetic field gradient �11�. This initial state
also corresponds to the decoupled double-well ground state
of the respective fermionic system, though in this case the
evolving Hamiltonian is the antiferromagnetic Heisenberg
model instead of the ferromagnetic one. However, since the
dynamical evolution is independent of the overall sign of the
Hamiltonian, the results discussed in this section will also
hold for the fermionic system.

Unlike the case of initially prepared triplet state, here the
spherical symmetry is not broken, and the populations of the
x, y, and z components of the triplets are equal. From Fig. 9
we extract that

�teven
x,y,z�qs = �todd

x,y,z�qs = 0.125,

�seven�qs = �sodd�qs = 0.625. �21�

These values are a direct consequence of the energy conser-
vation, 1

2N �H�t��=0.375. In Fig. 10 we study the spatial cor-
relations. Figure 10�a� shows a rapidly developed broad an-
tiferromagnetic peak in the noise correlations and weak
incommensurate peaks at small wave vectors. These are due
to large-distance spinon correlations, depicted in Fig. 10�b�.
The fact that the correlations remain negative after the
spinon horizon passes �Fig. 10�c�� can be interpreted as a
memory effect of the initial singlet state. Figure 10�c� shows,
by investigating the quantity Q+−�l , t� �see Eq. �19��, that the
translational symmetry is recovered in the long-range corre-
lation functions, as is the case also for the short-range singlet
and triplet correlations.

In general, the prepared singlet product state, due to its
initial spherical symmetry, does not exhibit the strong mixing
of antiferromagnetic and ferromagnetic correlations, as the
triplet state does. Although the observed spinon correlations
are interesting from the theoretical point of view, their weak
effect on the noise correlations is barely measurable experi-
mentally. We also note that the spinon correlations may dis-
appear on large time scales which are inaccessible numeri-
cally.

VII. CONCLUSION

In this paper we proposed a protocol which creates, from
a system of two-component atoms initially prepared in an
array of triplet �singlet� pairs on neighboring sites, an array
of long-distance triplet �singlet� pairs across the lattice. The
method allows parallel generation of many entangled pairs,
and can have relevant applications for the implementation of
quantum purification protocols in optical lattices. We also
find that by applying the iterative swapping procedure in an
open chain one can engineer a state in which any atom lo-
cated in the right half of the superlattice is entangled with an
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FIG. 9. �Color online� The singlet and triplet populations for the
initial singlet product state in the infinite lattice, TEBD simulation,
vs=J� /2�. The translational symmetry is recovered.
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atom in the left half. This state has maximally separated
entangled atoms and persistency of entanglement as large as
that of a cluster state, which makes it suitable for being used
as a component of a one-way quantum computer �31�.

We also studied the evolution of an initial triplet �singlet�
product state under a Heisenberg Hamiltonian. Analyzing
various observables we showed that while the long-range
properties of the evolving state are in agreement with those
predicted by conformal field theory, the nonuniversal short-
range properties �e.g., the development of a magnetic state
with mixed correlations�, are not captured by such theoretical
treatments �41� and must be analyzed more carefully. They
might be a manifestation of a special type of thermalization
�in the sense of generalized Gibbs ensemble �43��, observed
in integrable systems.

The analysis presented in this paper demonstrates that the
coherent evolution of an initial state, which itself can be
easily prepared—in our case it is just an array of triplet �sin-
glet� states on neighboring sites—is a feasible way to gener-

ate complex magnetic states with cold atoms. The dynamical
generation method is not constrained by the difficulty of ac-
tual �physical� engineering of exotic Hamiltonians or by the
low temperatures required to reach their ground states. On
the other hand, without a careful analysis it is difficult to
predict a priori the properties of the nonequilibrium state
into which the system evolves as a result of coherent quan-
tum dynamics.
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