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A MATHEMATICAL MODEL FOR THE STEADY ACTIVATION OF
A SKELETAL MUSCLE∗

J.-P. GABRIEL† , L. M. STUDER‡ , D. G. RÜEGG§ , AND M.-A. SCHNETZER¶

Abstract. A skeletal muscle is composed of motor units, each consisting of a motoneuron
and the muscle fibers it innervates. The input to the motor units is formed of electrical signals
coming from higher motor centers and propagated to the motoneurons along a network of nerve
fibers. Because of its complexity, this network still escapes actual direct observations. The present
model describes the steady state activation of a muscle, i.e., of its motor units. It incorporates the
network as an unknown quantity and, given the latter, predicts the input-force relation (activation
curve) of the muscle. Conversely, given a suitable activation curve, our model enables the recovery of
the network. This step is performed by using experimental data about the activation curve, and the
whole activation process of a muscle can then be theoretically investigated. In this way, this approach
provides a link between the macroscopic (activation curve) and microscopic (network) levels. From
a mathematical viewpoint, solving the preceding inverse problem is equivalent to solving an integral
equation of a new type.

1. Introduction. The activation of a muscle is a fascinating phenomenon in-
volving complex and subtle physiological processes. Muscles responsible for volun-
tary motions are called striated (or skeletal) and are composed of motor units (MUs)
consisting of a motoneuron (MN) together with the muscle fibers under its control.
Depending on the muscle, the number of MUs can vary from ten up to several thou-
sands. The MNs are located in the spinal chord and are connected to the central
nervous system (CNS) through nerve fibers (input fibers) propagating the signal (in-
put) in the form of electrical impulses called action potentials (APs).

When an AP reaches an MN through a (synaptic) contact, it modifies the electri-
cal potential of its membrane, generating a so-called excitatory postsynaptic potential
(EPSP). On a given MN, the effects of different APs are supposed to be additive.
When the membrane potential reaches a specific threshold value, the MN starts gen-
erating APs which are transmitted to the muscle fibers and induce their contractions.
As the activity of the input fibers increases, new stronger MUs are recruited (size
principle). Additionally already active MUs enhance their forces, a process called
frequency modulation [8, 9]. As soon as all MUs are recruited, frequency modulation
is the only way for a muscle to increase its force. For simplicity reasons, we consider
here only stationary isometric contractions and we assume that the total muscle force
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is given by the sum of all MU forces. The input-force relation of a muscle or its graph
is alternatively called the activation curve.

MUs are ordered according to their maximal (tetanic) contraction forces t. The
way input fibers activate MNs is extremely complex and the details of a corresponding
network are not yet understood. On the level of an MN, this network, also called
synaptic weight and denoted g(t) (or sometimes g), is the missing quantity in our
approach. Observations provide information about the shape of an activation curve.
Our model is then used to recover g from this information (inverse problem). At this
point, all aspects of the activation process of a muscle can be predicted.

For an arbitrary but fixed network, let F (t) be the muscle force as a function of
the last recruited MU. Clearly F (t) has to be an increasing function of t. It will be
seen that g(t) can be deduced directly from F (t) and it is thus sufficient to focus on
the last function. F (t) turns out to be a solution of an integral equation of the form

(1) F (t) =

∫ t

a

k(s, F (s), F (t)) ds,

and our task will be to solve (1). The presence of F (t) in the kernel of (1) has
striking consequences: on one hand this integral equation is not a classical Volterra
equation and thus belongs to an extended type; on the other hand it admits infinitely
many discontinuous solutions. Fortunately this equation has a unique continuous
solution and this property turns out to be equivalent to increasingness. Since F (t) is
increasing in t, (1) admits one and only one physiologically meaningful solution. By
using the latter, (1) can be reduced to a classical Volterra equation whose analytical
and numerical properties are well known.

Analysis shows that the activation process has the following interesting properties:
(a) Similarly to the notion of the standard normal random variable in probability

theory, there exists a standard hyperbolic muscle from which the activation
curve of any muscle can be obtained.

(b) Despite the large number of parameters involved in the model, any activation
curve is totally determined by a unique number called the activation factor.

(c) Several functionals related to the activation process can be introduced and
characterized analytically, e.g., the ratio of the forces due to frequency mod-
ulation and recruitment.

All the published models of the MN pool-muscle complex (MNPMC) quantita-
tively describe the relation between the input to the MN pool and the muscle force
[17, 18, 43, 12] or the electromyogram [12]. The models are similar in their structure
but differ in the choice of the quantities given a priori. In the literature, all MNPMC
models have been reduced to the following three unknowns: (1) the synaptic weight,
(2) the MU population, and (3) the activation curve or the electromyogram. Since two
of the unknowns can be given and the third one can be deduced from the model, we
have three possible configurations: (1) and (2) are given and (3) is computed [17, 12];
(1) and (3) are given and (2) is computed [43]; and—the approach that we propose—
the MU population (2) and the activation curve (3) are given and the synaptic weight
(1) is determined. The main reason for this choice is that data at the level of the MNs
are available for both unknowns (2) and (3) but not for unknown (1). As mentioned
above, this configuration also leads to a new and interesting mathematical problem.

1.1. The model. We expose here the mathematical aspects of the model de-
veloped in [42], where a thorough discussion of the physiological hypotheses can be
found. We focus mainly on equation (1), which is the key to the present investigation.
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Since a typical skeletal muscle contains several hundred MUs, it is adequate to
represent the MU population by a density function ρ. Choosing the tetanic contraction
force t as variable, we get t ∈ [tmin, tmax] �→ ρ(t), where tmin and tmax are the tetanic
forces of the weakest and strongest MUs and the number of MUs in the pool is given
by

∫ tmax

tmin
ρ(s) ds. All our considerations hold for all integrable and almost everywhere

(a.e.) strictly positive functions ρ. We assume that tmin and tmax are given through ρ.
The global input In to the MNPMC is defined as the sum of all AP frequencies

[43]. Each fiber contacts each MN of the pool and its activity induces EPSP conduc-
tance changes in the postsynaptic membrane. The EPSPs generated by single input
fibers are smaller than 100 μV [15], the activity of these fibers is asynchronous [7],
and the voltage threshold for APs is about 12 mV [5]. These three experimental find-
ings imply that the variations of the membrane potential are smaller than 1% of the
threshold voltage and are therefore neglected in the model. The EPSP conductances
are thus represented by their time averages in the present time-independent approach.
Due to the lack of precise information and for simplicity reasons, we assume that the
EPSP conductance GEPSP of each MN is proportional to the input:

(2) GEPSP (In) = g In,

where the MN-dependent factor g is the synaptic weight. This linearity assumption
entails some restrictions on the MN connectivity [42].

The inactive (or subthreshold) MN is modeled with a single compartment and
a homogeneous, electrically isolated membrane obeying Ohm’s law. The total mem-
brane current itot is the sum of the capacitive and ionic currents:

(3) itot = C U̇ +
∑
k

Gk (U − Ek),

where U is the membrane potential, U̇ the time derivative of U , Gk the conductance
of ion k, Ek its equilibrium potential, and C the membrane capacity. Three types
of ionic conductances are distinguished: (a) a transmitter-sensitive conductance GE

k

caused by the synaptic input, (b) a voltage-dependent conductance GU
k generating

APs and EU
k its equilibrium potential, and (c) a leakage conductance GL and EL

its equilibrium potential. Clearly, we have GEPSP =
∑

k G
E
k . For lack of data

about particular MNs that are activated by synaptic input, we rely on data from
current injection experiments [24]. The capacitive current is 0 in the steady state
and since the membrane is isolated, the total current is equal to the injected current
iinj . Consequently, (3) can be rewritten iinj =

∑
k G

E
k (U −Ek) +

∑
k G

U
k (U −EU

k ) +

GL(U−EL) = GEPSP (U−
∑

k GE
k Ek

GEPSP
)+

∑
k G

U
k (U−EU

k )+GL (U−EL). Introducing
the variable V := U − EL, the reversal potential of the EPSP current EEPSP :=∑

k GE
k Ek

GEPSP
− EL, and EV

k := EU
k − EL, we then get

(4) iinj = GEPSP (V − EEPSP ) +
∑
k

GU
k (V − EV

k ) + GL V.

The current iEPSP := GEPSP (V −EEPSP ) will be called the EPSP induced current.
A subthreshold MN is inactive as long as it receives synaptic inputs without gen-

erating APs. During subthreshold depolarizations, there is a small increase of the
sodium conductance which tends to depolarize the membrane and a small increase of
the potassium conductance which tends to hyperpolarize the membrane. Since the
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two currents are in opposite directions, they tend to cancel each other (ultimately, this
could be quantitatively derived from the Hodgkin–Huxley equations [22]). Therefore,
we assume that the voltage-dependent channels are closed in subthreshold MNs, and
consequently, the voltage-dependent currents are 0. Moreover, if iinj = 0, the mem-
brane potential corresponding to the EPSP is denoted VEPSP and (4) becomes

(5) GEPSP (VEPSP − EEPSP ) + GL VEPSP = 0.

According to (2) and (5), the membrane potential as a function of the input is

(6) VEPSP (In) =
g InEEPSP

GL + g In
.

The threshold input InT is the maximum input an MN can receive in the sub-
threshold state. It evokes an EPSP equal to the firing threshold voltage VT and
therefore satisfies VEPSP (InT ) = VT . Assuming that all MNs of the pool have the
same firing threshold [42], (6) at threshold provides

(7) g̃ =
VT

(EEPSP − VT ) InT
,

where g̃ := g
GL

is called relative synaptic weight. Two quantities in (7) are MU-
dependent, namely, the relative synaptic weight and the threshold input. According
to (7), it is equally adequate to determine either one of them.

Fitting the frequency-injected current relations with a straight line with slope κ
[42, 24], the MN firing frequency ν(GEPSP , iinj) as a function of GEPSP and iinj is
given by

(8) ν(0, iinj) = κ (iinj − iT ) + νT if iinj ≥ iT and 0 otherwise,

where νT is the threshold frequency and iT the threshold current. Estimations of their
values have been determined with current injection experiments on MNs [25].

The relation between the frequency evoked by a synaptic input and the injected
current is not at all simple since iEPSP , but not iinj , depends on the membrane po-
tential. We look for an injected current iinj(GEPSP ) which evokes the same frequency
as the synaptic input, namely, ν(GEPSP , 0) = ν(0, iinj(GEPSP )).

Let us suppose that such a current exists for all values of GEPSP : iinj(GEPSP ) =
−iEPSP . Although the membrane potential of active MNs varies, we replace it by
a constant virtual potential VA which is independent of the firing frequency and is
supposed to have similar effects as the time-varying membrane potential. In this
approach, we set VA = VT and we get iinj(GEPSP ) = GEPSP (EEPSP − VT ). By
inserting (2) and (7) into the last equation, we obtain iinj(GEPSP (In)) = GL VT In

InT
.

Since In = InT at threshold, the injected threshold current is iT = GL VT .
The frequency-force relation of an MU during maintained contractions is built

by fitting data obtained by injecting long-lasting currents of different intensities into
MNs [26]. The MU force is given by

(9) f(ν) = t (1 − c exp(−γ (ν − νT ))),

where t is the MU tetanic contraction force, νT is its threshold frequency, and γ
controls the shape of the curve. The number c determines the fraction of the tetanic
force at recruitment according to f(νT ) = t (1 − c). Since MUs are parameterized
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by their tetanic contraction forces t, the threshold input InT (t) is the smallest value
necessary to recruit the MU with tetanic force t. Equation (8), iT = GL VT , and (9)
lead to the following representation of the MU transfer function:

(10) f(t, In) := t

(
1 − c exp

(
−α

In− InT (t)

InT (t)

))
if In > InT (t) and 0 otherwise,

where α := γ κGL VT .
In muscles with parallel fibers, the total muscle force is the sum of the contraction

forces of its MUs, and thus its activation curve is F(In) =
∫ tmax

tmin
ρ(s) f(s, In) ds.

Figure 1 depicts the different steps leading from In to F(In).

In
Input

↓
GEPSP (In) = gIn
EPSP conductance

↓
VEPSP (In) =

gInEEPSP

GL + g In
membrane potential

↓
ν(GEPSP , 0) = κ

(
GLVT In

InT
− iT

)
+ νT

firing frequency

↓
f(t, In) = t (1 − c exp( In−InT (t)

InT (t) ))I{In>InT (t)}
MU force

↓
F(In) =

∫ tmax

tmin
ρ(s)f(s, In) ds.

muscle force

Fig. 1. Steps for the construction of the activation curve F(In).

According to the size principle [21], MUs are recruited according to their tetanic
contraction force during muscle activation; i.e., weaker MUs are recruited before
stronger MUs. Therefore, the threshold input InT (t) activates all MUs with tetanic
forces smaller than or equal to t. Replacing In by InT (t), we obtain

(11) F(InT (t)) =

∫ t

tmin

ρ(s) f(s, InT (t)) ds.

Human subjects who superimposed ballistic contractions on background activities of
different levels [38] provided information to determine the unknown function InT (t).
The data suggest that the force generated by two inputs In1 and In2 is the sum of the
forces induced by the single inputs. If In0 denotes the minimal input necessary to re-
cruit the smallest MU of the pool, we get the functional equation F(In0+In1+In2) =
F(In0 + In1) + F(In0 + In2). Its unique nonnegative solution with F(In0) = 0 is
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(see [1]) F(In) = k (In − In0). This is the equation of a straight line with slope k.
After recruitment, the activation curve is strictly concave. Since no additional force
due to newly recruited MUs is available, it is an integral of strictly concave functions
given in (10). Consequently, the affine (“linear” in [42]) relation can hold exclusively
during recruitment. In a forthcoming paper, we will show that the possible activation
curves are not limited to affine functions.

It should also be noted that the value of In corresponding to the end of recruit-
ment is not specified a priori. This is a “free boundary” which will be determined by
the model.

One could wonder whether a muscle response, which is not exactly additive,
can be reasonably approximated by an additive function or not. The following re-
sults [29] shed some light on this question: a function f : R → R is called ε-additive
if |f(x + y) − f(x) − f(y)| ≤ ε for all x, y ∈ R. It can be seen that, if g is additive,
any function f fulfilling |f(x) − g(x)| ≤ ε for all x ∈ R is 3ε-additive. Conversely,
it can be proved that, for any ε-additive function f , there exists a unique additive

function g : R → R such that |f(x) − g(x)| ≤ ε, given by g(x) = limn→∞
f(nx)

n . As a
consequence, if a muscle response F is only ε-additive, then there exists an additive
function g contained in a band of width 2ε around F . Moreover, if F is either bounded
above or measurable, then g is continuous.

Replacing In by InT (t) as above, we get, for t ∈ [tmin, tmax], F(InT (t)) =
k (InT (t) − In0), and with (10) and (11),

(12) F(InT (t)) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F(InT (t)) −F(InT (s))

F(InT (s)) + Δ

))
ds,

where h(t) = t ρ(t) is the force density function of the muscle and Δ = k In0.
Equation (12) contains the parameters α, c, Δ, and h [42]. Experimental obser-

vations suggest that α [24, 26, 2] and c [27] are MU-independent, and, in the present
approach, we assume muscle independence. On the basis of experimental data, α was
set to 1.14 and c to 0.9 [42], but the forthcoming general discussion is valid for all
α > 0, 0 < c < 1, and Δ > 0. A muscle is thus specified by Δ and h. In0 cannot be
measured experimentally, and in [42] it was assumed to be the same for all muscles.
This assumption is however not required here.

2. The integral equation.

2.1. General considerations. Equation (12) is an integral equation for the
unknown function F(InT (t)). By introducing the notation F (t) = F(InT (t)), (12)
takes the form

(13) F (t) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))
ds, t ∈ [tmin, tmax].

With our assumptions about ρ, the preceding integral has to be understood in the
Lebesgue sense and, for obvious physiological reasons, we look for nonnegative solu-
tions.

Equation (13) is not of Volterra type because its kernel

k(s, F (s), F (t)) := h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))

involves F (t) and not only s, t, and F (s). If (13) has a nonnegative locally bounded
solution F (t), t ∈ [tmin, tmax], for α > 0, 0 < c < 1, and Δ > 0, it may admit discon-
tinuous solutions. Indeed, as a consequence of the dominated convergence theorem, for
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every sequence (tn)n∈N, tn ∈ [tmin, tmax], with limn→∞ tn = t and limn→∞ F (tn) = γ,

we have limn→∞
∫ tn
tmin

k(s, F (s), F (tn)) ds =
∫ t

tmin
k(s, F (s), γ) ds. Thus (13) admits

a locally bounded solution discontinuous at t∗ ∈ [tmin, tmax] if and only if the set

At∗ = {x ∈ R; x =
∫ t∗

tmin
k(s, F (s), x) ds} contains an element β �= F (t∗). Indeed, if

the preceding property holds, the function F ∗(t) taking the values β at t = t∗ and
F (t) elsewhere is obviously a discontinuous solution of (13), and the converse is clear.
It can be seen, for example, numerically, that At contains two elements for t large
enough.

2.2. The hyperbolic muscle. The presence of F (t) in the kernel of (13) rules
out most of the arguments of the classical theory of integral equations. It is not clear
whether this equation admits a solution or not, and this point is important because,
in our model, (13) governs the activation of a muscle.

Since ρ is strictly positive a.e., the function H(t) =
∫ t

tmin
h(s) ds, t ∈ [tmin, tmax],

is strictly increasing and hence invertible. Let us note that H(t) is the force of the
muscle when all MUs up to level t produce their tetanic force and H(tmax) = Fmax.

By introducing K(a, b) = 1 − c exp(−α b−a
a+Δ ), a, b ∈ R+ = [0,+∞), (13) can be

written F (v) =
∫ v

tmin
K(F (u), F (v))h(u) du. Since H is strictly increasing and ab-

solutely continuous, the change of variable u = H−1(s) leads to F (v) =
∫H(v)

H(tmin)

K(F (H−1(s)), F (v)) ds for v ∈ [tmin, tmax]. Without risk of confusion we write
H(v) = t and because H(tmin) = 0, H(tmax) = Fmax, we obtain F (H−1(t)) =∫ t

0
K(F (H−1(s)), F (H−1(t))) ds for t ∈ [0, Fmax]. By defining Y (t) := F (H−1(t))

and T = Fmax, we get

(14) Y (t) =

∫ t

0

(
1 − c exp

(
−α

Y (t) − Y (s)

Y (s) + Δ

))
ds, t ∈ [0, T ].

Since (14) describes the activation of a muscle whose MU density is the hyperbola
ρ(t) = 1

t (t > 0), it is natural to call it hyperbolic. Clearly, such a muscle has no
physiological reality since any interval (0, T ] contains infinitely many of its MUs. This
theoretical muscle is nevertheless interesting. By playing with the notation, we get

(15) F (t) = Y (H(t)), t ∈ [tmin, tmax],

and we see that the force of an arbitrary muscle can be deduced from that of a
hyperbolic one. It is therefore enough to study (14).

2.3. Existence and unicity of a physiological solution. Straightforward
computations provide the following theorem.

Theorem 1. Let 0 < c < 1, α > 0, Δ > 0, and a, b ∈ R+ �→ K(a, b) =
1 − c exp(−α b−a

a+Δ ).
(a) K(a, b) together with the partial derivatives Ka(a, b), Kb(a, b), and Kbb(a, b)

are continuous and bounded.
(b) Ka(a, b) < 0, Kb(a, b) > 0, Kbb(a, b) < 0, and K(a, b) is thus a concave

function in the variable b.
We first prove the existence and unicity of a nonnegative solution of (14) for small

values of T . For 0 < T < ∞, the set ET = {f : [0, T ] �→ R; f is measurable and
bounded}, equipped with the metric d(f, g) := supt∈[0,T ] |f(t) − g(t)|, is a complete

metric space. Since uniform convergence preserves nonnegativity, E+
T = {f ∈ ET ; f ≥

0} is a closed subset of ET and hence also a complete metric space. Clearly, a
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solution of (14) is a fixed point of the operator AT f(t) =
∫ t

0
K(f(s), f(t)) ds, t ∈

[0, T ], f ∈ E+
T , which maps E+

T into itself. According to Theorem 1, the mean value
theorem can be applied to K(a, b) and provides, for any f, g ∈ E+

T : d(AT f,AT g) ≤
2T M d(f, g), where M := supa,b∈R+

(|Ka(a, b)|, |Kb(a, b)|). We conclude that AT

admits a unique fixed point for T < 1
2M since it is a contraction, and we prove the

following theorem.
Theorem 2. For T < 1

2M , (14) admits a unique nonnegative solution in E+
T .

Physiologically, a solution Y (t) of (14) represents the force developed by a hy-
perbolic muscle, all of whose MUs, up to level t, are recruited. Therefore, Y has
to be a nondecreasing function with Y (0) = 0, and any such solution will be called
physiological. Since 0 < 1 − c ≤ K(a, b) ≤ 1 for 0 ≤ a ≤ b, we get 0 ≤ Y (t) ≤ t for
t ∈ [0, T ], and Y is an element of ST := {f ∈ ET ; f is nondecreasing, 0 ≤ f(t) ≤ t,
t ∈ [0, T ]}. Clearly, ST ⊂ E+

T and every element f of ST satisfies f(0) = 0.
We now prove the existence of a physiological solution of (14) for an arbitrary

T > 0 and start by recalling the following.
Theorem of Schauder (see [41]). Any nonempty compact and convex subset

of a normed space has the fixed point property; i.e., every continuous mapping of such
a subset into itself has at least one fixed point.

Theorem of Helly (see [6]). Let (fn)n∈N be a sequence of uniformly bounded,
nondecreasing, and right continuous functions defined over an interval in R. Then
there exist a subsequence (fnk

)k∈N and a nondecreasing right continuous function f
such that limk→∞ fnk

(t) = f(t), for all continuity points t of f .
Theorem 3. Every sequence in ST contains a subsequence converging in the

mean of order 1 to an element of ST . Furthermore, ST is nonempty and convex.
Proof. For any sequence (fn)n∈N in ST , the functions t ∈ [0, T ] �−→ f+

n (t) =
limh↓0 fn(t + h) are also in ST and right continuous. According to Helly’s theorem,
there exist a subsequence (nk)k∈N and a nondecreasing right continuous function f+

such that fnk
(t) converges to f+(t), as k → ∞, for every continuity point t of f+ in

[0, T ]. Since f+ is in ST and the exceptional set is at most countable, the convergence
takes place a.e. and hence in measure. Furthermore, the sequence, being uniformly
bounded by T , is uniformly integrable, and we conclude to its convergence in the
mean of order 1. Because nonemptyness and convexity of ST are obvious, the proof
is complete.

Since Schauder’s theorem requires a normed space, we introduce E∗
T = ET (mod

a.e.) equipped with the L1 norm. Let us recall that an element of E∗
T is an equivalence

class of functions which are equal a.e. to a representative. Hence, S∗
T is the subset of

E∗
T such that each equivalence class contains an element of ST . S∗

T is nonempty and
convex. Since every sequence in S∗

T has a corresponding sequence of representatives
in ST , S∗

T is also a compact subset of the normed space E∗
T as a consequence of the

first part of Theorem 3.
Let f∗ be the equivalence class in S∗

T of an element f ∈ ST . Since f = f ′ (a.e.)
for elements in ST implies that AT f = AT f

′ (a.e.), we can define A∗
T over S∗

T with
A∗

T f
∗ = (AT f)∗ because it is independent of the representative.
Theorem 4. A∗

T is a continuous mapping of S∗
T into itself.

Proof. Let f be a nondecreasing representative of f∗ in ST . Since 0 < 1 − c ≤
K(a, b) ≤ 1 for 0 ≤ a ≤ b, we get 0 ≤ AT f(t) ≤ t for t ∈ [0, T ]. Furthermore, K(a, b)
is nonnegative and increasing in the second variable for a, b ≥ 0, and consequently,

for 0 ≤ t ≤ t′ ≤ T , we have AT f(t) =
∫ t

0
K(f(s), f(t)) ds ≤ ∫ t′

0
K(f(s), f(t′)) ds =

8
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AT f(t′). Therefore, AT f is an element of ST and A∗
T f

∗ belongs to S∗
T since a.e. equal-

ities are preserved by AT . To prove the continuity assertion, let us consider a sequence
(f∗

n)n∈N in S∗
T which converges to f̃∗ in L1. Since S∗

T is closed as a compact subset of

a Hausdorff space, we conclude that f̃∗ belongs to S∗
T . Furthermore, convergence in

L1 entails convergence in measure, and, for any σ-finite measure, the latter is equiva-
lent to the statement “every subsequence contains a subsequence converging a.e.” By
using this property and the boundedness and continuity of K(., .), we get the desired
result via the dominated convergence theorem.

Theorem 5. For every T > 0, (14) admits a physiological solution.
Proof. Schauder’s theorem provides the existence of a fixed point f∗ of A∗

T in S∗
T .

For any nondecreasing representative f of the latter, we have AT f = f (a.e.) in [0, T ].
The exceptional set E having measure 0, its complementary Ec is dense in [0, T ], and
for every t ∈ Ec, one can define f−(t) as the left-hand limit of f over Ec since f
is nondecreasing and bounded. The function f̃(t) := lims↑t f(s) is nonnegative and
nondecreasing. By using the boundedness and continuity of K(., .) and the dominated
convergence theorem, one can show that f̃ satisfies AT f̃(t) = f̃(t) for every t in [0, T ],
and the proof is complete.

We prove that increasingness and continuity are equivalent properties for solutions
of (14).

Lemma 6. Let f : [a, b] �→ R be continuous and f(a) = f(b). For every δ > 0,
there exist a ≤ t < t′ ≤ b with 0 < t′ − t < δ and f(t) = f(t′).

Proof. The property clearly holds if f is constant. Otherwise, replacing f by
−f if necessary, we can assume that f admits a maximum M �= f(a) at t∗ in the
open interval (a, b). Choosing λ < M sufficiently close to M , the intermediate value
theorem for continuous functions implies the existence of a < t < t∗ < t′ < b, such
that f(t) = f(t′) = λ and t, t′ are as close as we want to t∗. Let us note that if
f is not constant, it is even possible to choose t and t′ so that f(s) �= f(a) for all
s ∈ [t, t′].

Theorem 7. A continuous solution of (14) starting at 0 is strictly increasing.
Proof. We first show that strict positivity of a continuous solution Y of (14) over

an interval J ⊂ (0, T ] entails its injectivity. Assuming the contrary, one can find
a < b in J with Y (a) = Y (b). According to the preceding lemma, there exist t < t′

in J , as close as we want, with Y (t) = Y (t′) = λ > 0 and, from (14), we deduce

0 = Y (t′) − Y (t) =
∫ t′

t
K(Y (s), λ) ds. Since K(λ, λ) > 0 and K is continuous over

R
2
+, K(Y (s), λ) > 0 over [t, t′] for t, t′ sufficiently close to each other. Therefore, the

preceding integral is positive and we get a contradiction.
To prove the theorem, we observe that the form of the kernel K implies the

existence of a neighborhood of (0, 0) in R
2 over which K(., .) > 0. Since Y (0) = 0

and Y is continuous, there exists 0 < t0 < T , such that for all 0 ≤ s ≤ t ≤ t0,
K(Y (s), Y (t)) > 0 and hence Y (t) > 0 over (0, t0]. Consequently, Y is injective and
hence increasing over [0, t0]. A first zero of Y after t0 would violate its injectivity over
an interval of positivity, and the proof is complete.

The following lemma will be used to discuss the converse of the preceding result.
In what follows, we shall use the notation fx := ∂f

∂x for a function f .
Lemma 8. Let Y , Y (0) = 0, be a nondecreasing solution of (14) defined over

some interval [0, T ] and G(a, b) :=
∫ a

0
K(Y (s), b) ds for (a, b) ∈ [0, T ] × R. The

function G has the following properties: (a) For every fixed a ∈ [0, T ], G(a, b) is a
strictly increasing and concave function of b. (b) G(a, b) is continuous. (c) Gb(a, b)
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is continuous, and the same property holds for Ga(a, b) if Y is continuous. (d) If Y
is continuous, so are G(t, Y (t)) and Gb(t, Y (t)) as functions of t.

Proof. Strict monotonicity in (a) is obvious and concavity follows from the fact
that it is preserved by integration. Properties (b) and (c) can be deduced from the
dominated convergence theorem and suitable estimations, and (d) is obvious.

Theorem 9. Any nondecreasing solution of (14) starting at 0 is continuously
differentiable.

Proof. Let Ỹ defined over [0, T ] (Ỹ (0) = 0) be a nondecreasing solution of (14)
and Y the function of its right-hand limits. Y is nondecreasing and right continuous,
and, by a density argument, continuity of Ỹ and Y are equivalent. Moreover, the
dominated convergence theorem provides Y (t) =

∫ t

0
K(Ỹ (s), Y (t)) ds and since Ỹ (t) =

Y (t) (a.e.), Y (t) is also a solution of (14). Because of the concavity property (a) in
Lemma 8, for every t ∈ [0, T ], G(t, y) = y admits at most two solutions, one of them
being Y (t) since G(t, Y (t)) = Y (t). Moreover, if for a given t the preceding equation
has two distinct solutions y1(t) < y2(t), then Gb(t, y2(t)) < 1 and Gb(t, y1(t)) > 1.

According to Theorem 2, over a sufficiently small right-hand interval of 0, (14) ad-
mits a unique nonnegative solution in the space of bounded measurable functions. As
a consequence, Y (t) is the unique solution of G(t, y) = y for t small enough. The
function G satisfies all regularity conditions of the implicit function theorem [41].
Since G(0, 0) = 0 and Gb(0, 0) = 0 < 1, the latter entails the existence of a unique
continuous function y such that y(0) = 0 and G(t, y(t)) − y(t) = 0 over a right-hand
neighborhood of 0. The preceding unicity property implies Y ≡ y for t small enough
and continuity entails Gb(t, Y (t)) < 1 over some right-hand interval of 0. Hence there
is an interval [0, β) of maximal length β over which Gb(t, Y (t)) < 1.

If Y is not continuous over [0, β), then there is a point of discontinuity t0 �= 0
because Y is continuous for small values of t. Y is right continuous and since it is in-
creasing, its left and right-hand limits at t0 satisfy Y (t−0 ) < Y (t+0 ) = Y (t0). According
to the implicit function theorem, there exists a unique continuous function y0 defined
over an open interval It0 containing t0, such that y0(t0) = Y (t0) and G(t, y0(t)) = y0(t)
for t ∈ It0 . Since Gb(t0, Y (t0)) < 1, the continuity of y0 implies the existence of t < t0
in It0 , with Gb(t, y0(t)) < 1 and Y (t−0 ) < y0(t). Because Y (t) ≤ Y (t−0 ), we obtain the
configuration G(t, Y (t)) = Y (t), G(t, y0(t)) = y0(t), Gb(t, Y (t)) < 1, Gb(t, y0(t)) < 1,
and Y (t) �= y0(t). This is a contradiction of the concavity of G(t, b) in the variable b,
and Y is continuous over [0, β) and thus identical to Ỹ .

The function Gb(a, b) is continuous and, because of (c) in Lemma 8, the continuity
of Y implies that of Ga(a, b). Consequently, G is continuously differentiable and,
according to another version of the implicit function theorem [10, 11], every locally
defined continuous solution y provided by the last theorem is also differentiable. Since
Y is continuous over [0, β), local unicity implies local identity of y and Y and entails
the differentiability of the latter over [0, β).

In the following considerations, every interchange of integration and derivation
can be justified with the dominated convergence theorem. For t ∈ [0, T ] we introduce

φ(t) := Gb(t, Y (t)) =
∫ t

0
α c

Y (s)+Δ (exp(−αY (t)−Y (s)
Y (s)+Δ )) ds. Writing ′ = d

dt and using the

differentiability of Y , for every t ∈ [0, β) we get

(16) φ′(t) = Kb(Y (t), Y (t)) +
1 − c

1 − φ(t)

∫ t

0

Kbb(Y (s), Y (t)) ds.

We now suppose that β < T and claim that supt∈[0,β) φ(t) = m < 1. If not,
m = 1 as a consequence of the definition of β, and by using the mean value theorem
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of differential calculus, one can choose an increasing sequence (tn)n∈N such that tn ↑ β
as n → ∞ and φ′(tn) ≥ 0 for every n ∈ N. The first term in (16) is positive and
bounded, and the integral is negative and bounded away from 0. Since 0 < c < 1, the
quotient before the integral tends to +∞ as t ↑ β. According to (16), φ′(tn) < 0 for
n sufficiently large, and we get a contradiction and conclude that m < 1.

Because of the monotonicity of Y , Y (t) ≤ Y (β) for all t ∈ [0, β), and thus, for any

sequence un ↑ β, we have
∫ un

0
α c

Y (s)+Δ (exp(−αY (β)−Y (s)
Y (s)+Δ )) ds ≤ φ(un) ≤ m. Letting

n → ∞ in the integral, we get φ(β) ≤ m < 1 and thus Gb(β, Y (β)) < 1. Applying
once more the implicit function theorem, we get a unique continuous function y+

defined over an open interval Iβ containing β with y+(β) = Y (β), G(t, y+(t)) = y+(t)
over Iβ , and Gb(t, y

+(t)) < 1 for every t sufficiently close to β. If Y ≡ y+ does not
hold over a right-hand open neighborhood of β, then one can find a sequence vn ↓ β
as n → ∞, such that Y (vn) �= y+(vn) for every n. Monotonicity and concavity entail
Y (β) ≤ Y (vn) < y+(vn), and hence Y (vn) → Y (β) as n → ∞. Concavity again
implies that Gb(vn, Y (vn)) > 1, and thus, letting n → ∞, Gb(β, Y (β)) ≥ 1, which is
a contradiction. Since Y ≡ y+ on a right-hand open interval of β, Gb(t, Y (t)) < 1
for all sufficiently small t to the right of β, which is a contradiction of its maximality.
Consequently β = T and Y is continuous over [0, T ]. Moreover, Y is also differentiable,
and the relations Y ′(t) = 1−c

1−φ(t) = 1−c
1−Gb(t,Y (t)) show that it is even continuously

differentiable and Y ′(t) > 0 over [0, T ].
We would like to stress that, in Theorem 9, the condition 0 < c < 1 plays a

delicate role. Indeed, let us assume that c = 1 and look for a solution of (14) of the
form Y (t) = a I(t∗,+∞)(t), where I denotes the indicator function and t∗ and a have
to be specified. For t ≤ t∗, (14) is satisfied since both sides are equal to 0. For t > t∗,
it reduces to a = t∗ (1 − exp(−αa

Δ )). By choosing t∗ so that t∗α
Δ > 1 and the positive

solution of the preceding equation for a, we get a discontinuous nondecreasing solution
of (14).

Collecting all the preceding results, we get the following theorem.
Theorem 10. The following properties are equivalent for a solution Y of (14)

with Y (0) = 0: (a) Y is physiological, i.e., nondecreasing, (b) Y is strictly increas-
ing, (c) Y is continuous, and (d) Y is continuously differentiable and Y ′ is strictly
positive.

It is interesting to note that although (14) admits possibly discontinuous solutions,
any physiological solution is automatically continuously differentiable.

Theorem 11. Equation (14) admits a unique physiological solution.
This uniqueness result can be deduced from Gronwall’s inequality and the fact

that, according to the proof of Theorem 9, φ(t) < 1 over [0, T ]. We propose another
argument which will also provide a nice way to get the solution of (14).

Proof. We proved that every nondecreasing solution Y of (14) over [0, T ] is strictly
increasing and continuously differentiable with a strictly positive and bounded deriva-
tive. Consequently, X = Y −1 has the same properties as Y and Y (X(t)) = t for every
t ≥ 0. In particular, the derivative of X, denoted x, is continuous. Performing the
change of variables s = X(u) and v = X(t) in (14) and rewriting s and t instead of u
and v, we get

(17) t =

∫ t

0

x(s)

(
1 − c exp

(
−α

t− s

s + Δ

))
ds.

Equation (17) is a linear Volterra equation of the first kind for x, the derivative of X
(inverse function of Y ). Since the kernel of (17) satisfies all the conditions of Theorem
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1.3.5 in [4], this equation admits a unique continuous solution, and thus Theorem 11
is proved.

It is interesting to note that (17) has an interpretation. Indeed, it is an integral
equation for the force density function x of a muscle whose force is t if its MUs up to
level t are recruited.

For continuous x, derivation and integration by parts of (17) provide, respectively,

x(t) =
1

1 − c
− α c

1 − c

∫ t

0

x(s)
1

s + Δ
exp

(
−α

t− s

s + Δ

)
ds and(18)

X(t) =
t

1 − c
− α c

1 − c

∫ t

0

X(s)
t + Δ

(s + Δ)2
exp

(
−α

t− s

s + Δ

)
ds.(19)

The last two equations are linear Volterra equations of the second kind, for which
theory and numerical treatments are well known [4, 14, 32].

Let us remark that existence and unicity of Y for every T > 0 automatically
provide a unique solution of (14) defined over [0,∞).

We would like to point out that Theorem 10 together with the preceding ar-
guments also lead to the existence of an increasing and continuously differentiable
solution of (14). However, Schauder’s theorem provides the existence of a nonde-
creasing solution without continuity assumption and thus without Theorem 10. Both
approaches are interesting, and methodological diversity is always welcome for the
treatment of future investigations.

3. Properties of the physiological solution. In the following, x will be the
unique continuous solution of (17) defined over [0,+∞) and X(t) =

∫ t

0
x(s) ds. As

can be seen in (18), x depends on the parameters α, c, and Δ = k In0. Since α and c
are fixed and muscle-independent, x, X, and Y will be considered as functions of the
two variables t ≥ 0 and Δ > 0 and written x(t,Δ), X(t,Δ), and Y (t,Δ).

Theorem 12. For every fixed Δ > 0, the following properties hold: (a) x(t,Δ)
is continuously differentiable in the variable t, (b) x(0,Δ) = 1

1−c , (c) 0 < x(t,Δ) ≤
(1 − c)−1 for every t > 0, (d) 0 < X(t,Δ) ≤ t

1−c for every t > 0, (e) as a function

of t, X(t,Δ)
t is decreasing over (0,∞), and (f) as a function of u, Y (u,Δ)

u is increasing
over (0,∞).

Proof. Part (a) follows from the facts that (18) is again differentiable in t and
that the result involves only continuous functions. Since the integrand in (18) is
bounded, letting t → 0, we get (b). The second inequality in (c) follows from (18)
and x(t,Δ) = Xt(t,Δ) > 0. Integrating (c) provides (d). To prove (e), we have

to show that ∂
∂t (

X(t,Δ)
t ) = 1

t (x(t,Δ) − X(t,Δ)
t ) ≤ 0, that is, X(t,Δ)

t ≥ x(t,Δ) for

t > 0. We divide (19) by t and obtain X(t,Δ)
t = 1

1−c +
∫ t

0
K(s, t) s

t
t+Δ
s+Δ

X(s,Δ)
s ds =

1
1−c +

∫ t

0
K̃(s, t) X(s,Δ)

s ds, where K(s, t) := − α c
1−c

1
s+Δ exp(−α t−s

s+Δ ) is the kernel

of (18). We observe that K̃(s, t) = K(s, t) st
t+Δ
s+Δ . A straightforward computation

based on kernel iterations shows that the corresponding resolvents R(s, t) and R′(s, t)
also satisfy R′(s, t) = R(s, t) st

t+Δ
s+Δ . Obviously for Δ > 0 and 0 < s ≤ t, we

have s
t
t+Δ
s+Δ < 1, and according to the general theory [4], we can write X(t,Δ)

t =

(1−c)−1+(1−c)−1
∫ t

0
R′(s, t) ds = (1−c)−1+(1−c)−1

∫ t

0
R(s, t) st

t+Δ
s+Δ ds ≥ (1−c)−1+

(1 − c)−1
∫ t

0
R(s, t) ds = x(t,Δ). The last inequality clearly holds if R(s, t) ≤ 0,

and it is enough to prove the latter. The resolvent formula [4] provides −R(s, t) =
α c
1−c

1
s+Δ exp(−α t−s

s+Δ ) +
∫ t

s
R(s, u) α c

1−c
1

u+Δ exp(−α t−u
u+Δ ) du. Applying the changes of
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variables u = v−Δ and then v = exp(w) and rewriting t′ = ln(t+Δ), s′ = ln(s+Δ),
for fixed s′, −R′(s′, t′) = −R(exp(s′)−Δ, exp(t′)−Δ) is a solution of the convolution-

type integral equation −R′(s′, t′) = f(t′) +
∫ t′

s′ R
′(s′, w)h(t′ − w) dw, where f(t′) =

α c
1−c

1
exp(s′) exp(−α exp(t′)−exp(s′)

exp(s′) ) and h(t′) = α c
1−c exp(α − α exp(t′)). Since f(T )

f(t) =

exp(−α e−s′ (eT − et)) ≤ exp(−α e−s(eT − et)) = h(T−s)
h(t−s) for 0 ≤ s′ ≤ s < T < t,

according to Theorem 6.1 in [32], we conclude to R′(s′, t′) ≤ 0.
For t1 = Y (u1,Δ) and t2 = Y (u2,Δ), t1 < t2 implies u1 < u2. By using (e) and

Y (t,Δ) = X−1(t,Δ) in the variable t, we get u1

Y (u1,Δ) = X(Y (u1,Δ),Δ)
Y (u1,Δ) = X(t1,Δ)

t1
≥

X(t2,Δ)
t2

= X(Y (u2,Δ),Δ)
Y (u2,Δ) = u2

Y (u2,Δ) , and (f) is proved.

Theorem 13. For every λ > 0, t ≥ 0, u ≥ 0, and Δ > 0, we have (a) x(t, λΔ) =
x( t

λ ,Δ), (b) x(λt,Δ) = x(t, Δ
λ ), (c) x(λt, λΔ) = x(t,Δ), (d) X(λt, λΔ) = λX(t,Δ),

(e) Y (λu, λΔ) = λY (u,Δ), and (f) YΔ(u,Δ) + uYu(u,Δ) = Y (u,Δ).

Proof. For every λ > 0, (17) yields t =
∫ t

0
x(s,Δ)(1 − c exp(−α λt−λs

λs+λΔ )) ds. By
using the change of variable s = z

λ and ultimately replacing λ t by t, we get t =∫ t

0
x( z

λ ,Δ)(1 − c exp(−α t−z
z+λΔ )) dz. However, according to (17), we also have t =∫ t

0
x(z, λΔ)(1 − c exp(−α t−z

z+λΔ )) dz. Since (17) admits a unique continuous solution,
we conclude that x(z, λΔ) = x( z

λ ,Δ) for all possible values of their arguments. This
is equivalent to (a) and (b), and writing z = λ s yields (c). Part (d) follows from

X(λt, λΔ) =
∫ λt

0
x( z

λ ,Δ)dz =
∫ λt

0
x(z, λΔ)dz = λ

∫ t

0
x(s,Δ)ds = λX(t,Δ). By using

Theorem 13(d) and the fact that, for fixed Δ, Y is the inverse function of X, we can
write λt = Y (X(λt, λΔ), λΔ) = Y (λX(t,Δ), λΔ) = λY (X(t,Δ),Δ). The equality
Y (λX(t,Δ), λΔ) = λY (X(t,Δ),Δ) is valid for every t ≥ 0. Because X(t,Δ) is
strictly increasing in t, we substitute u = X(t,Δ), and (e) is proved. According to
Theorem 13(e), Y (u,Δ) = ΔY ( u

Δ , 1), and the differentiability of Y with respect to u
entails that with respect to Δ.

For any differentiable function F (u), d
dvF (v)|λu = 1

λ
d
duF (λu), and thus Yv(v, 1)| u

Δ

= ΔYu( u
Δ , 1) = Yu(u,Δ). By using Theorem 13(e) again, YΔ(u,Δ) = ∂

∂Δ (ΔY ( u
Δ , 1)) =

Y ( u
Δ , 1)+Δ(− u

Δ2 )Yv(v, 1)| u
Δ

and YΔ(u,Δ) = 1
ΔY (u,Δ)− u

ΔYu(u,Δ). The last equal-
ity is equivalent to (f). The latter, which is the differential equivalent of (e), provides
a partial differential equation for Y . Unfortunately, the initial condition is given along
a characteristic curve and is equivalent to a solution of (17).

Theorem 14. Let x∞ := (1 − c
∫ 1

0
exp(−α 1−s

s ) ds)−1.

(a) For every t ≥ 0, limΔ↑∞ x(t,Δ) = 1
1−c .

(b) For every t > 0, limΔ↓0 x(t,Δ) = x∞ and limΔ↓0 x(0,Δ) = 1
1−c .

(c) For every Δ > 0, limt↑∞ x(t,Δ) = x∞.
Proof. By using the continuity of x, x(0,Δ) = 1

1−c , and Theorem 13(a), we

get 1
1−c = limt↓0 x(t,Δ) = limλ↑∞ x( t

λ ,Δ) = limλ↑∞ x(t, λΔ) = limΔ↑∞ x(t,Δ), and
(a) is proved.

It is enough to consider (b) for t > 0. For every 0 < t < t∗ and Δ > 0,
according to Theorem 13(c), we have x(t,Δ) = x( t

t∗ t
∗, t

t∗
t∗
t Δ) = x(t∗, t∗

t Δ). Let
Δn ↓ 0 and x(t,Δn) → lim infΔ↓0 x(t,Δ) as n ↑ ∞. The preceding equality en-

tails lim infΔ↓0 x(t,Δ) = limn↑∞ x(t,Δn) = limn↑∞ x(t∗, t∗
t Δn) ≥ lim infΔ↓0 x(t∗,Δ).

Since for the same reasons the converse inequality also holds, we conclude that
lim infΔ↓0 x(t,Δ) = lim infΔ↓0 x(t∗,Δ). Hence, for t > 0, lim infΔ↓0 x(t,Δ) is in-
dependent of t, and the same property holds for lim supΔ↓0 x(t,Δ). By using (Δn)
such that limn→∞ x(t,Δn) = x, (17) and the dominated convergence theorem provide
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Fig. 2. A: Force of the standard hyperbolic muscle as a function of the tetanic force of the last
recruited MU. B: Frequency modulation to recruitment ratio (FMR). C: Recruitment rate.

t =
∫ t

0
x (1 − c exp(−α t−s

s )) ds. Replacing s by s t in the preceding integral leads

to x = (1 − c
∫ 1

0
exp(−α 1−s

s ) ds)−1 = x∞. Since the same argument holds for
x = lim supΔ↓0 x(t,Δ), we conclude that x = x = x∞, and the proof of (b) is complete.

(c) follows from (b), with limt↑∞ x(t,Δ) = limλ↓0 x( t
λ ,Δ) = limλ↓0 x(t, λΔ) =

limΔ↓0 x(t,Δ) = x∞.
The existence of the limits in the next theorem follows from the monotonicity

properties discussed above.

Theorem 15. For every Δ > 0, we have (a) limt↑∞
X(t,Δ)

t = x∞, (b) limt↓0
X(t,Δ)

t

= 1
1−c , (c) limu↑∞

Y (u,Δ)
u = 1

x∞
, and (d) limu↓0

Y (u,Δ)
u = 1 − c.

Proof. (a) follows from Theorem 14(a) and the fact that ordinary convergence
implies convergence in the Cesaro sense. Since X(0,Δ) = 0, the definition of the
right-hand derivative at 0 provides (b). Part (d) follows from the same argument
applied to the inverse function Y . To prove (c), for fixed Δ we substitute t = Y (u,Δ)

in (a) and use x∞ = limt↑∞
X(t,Δ)

t = limu↑∞
X(Y (u,Δ),Δ)

Y (u,Δ) = limu↑∞ u
Y (u,Δ) .

3.1. Representation of the physiological solution. The use of Theorem 13
requires caution with units. For simplicity of notation, we introduce two rules:

• The argument of F(h,Δ) and F̃(h,Δ) is always expressed in Newtons.
• The presence or absence of units attributed to F(h,Δ) and Y is imposed by

the context.
Since α and c are muscle-independent, the solution F of (13),

F (t) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))
ds, t ∈ [tmin, tmax],

depends only on h and Δ and is therefore denoted F(h,Δ). Recall that a muscle with
h ≡ 1 was called hyperbolic, and with the new notation we have F(1,Δ)(t) = Y (t,Δ)
for all t ≥ 0. By using Theorem 13(e) and (15), we get F(h,Δ)(t) = Y (H(t),Δ) =

ΔY (H(t)
Δ , 1) = ΔF(1,1)(

H(t)
Δ ). F(1,1) is the solution of (13) for h ≡ 1 and Δ = 1, a

muscle which will be called standard hyperbolic (Figure 2A). Introducing the relative

force F̃(h,Δ)(t) :=
F(h,Δ)(t)

Fmax
, we get

F̃(h,Δ)(t) =
Δ

Fmax
F(1,1)

(
H(t)

Δ

)
=

Δ

Fmax
F(1,1)

(
H(t)
Fmax

Δ
Fmax

)
= AF(1,1)

(
H̃(t)

A

)
,
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where H̃(t) := H(t)
Fmax

and A := Δ
Fmax

, a unit-free number. Thus

(20) F̃(h,Δ)(t) = AF(1,1)

(
H̃(t)

A

)

shows that the solution of (13) for an arbitrary muscle can be derived from F(1,1),
which is the inverse function of the solution X(t, 1) of (19) with Δ = 1: X(t, 1) = t

1−c−
αc
1−c

∫ t

0
X(s, 1) t+1

(s+1)2 exp(−α t−s
s+1 ) ds. The values of F(1,1) can therefore be computed

very accurately once and for all and then memorized for subsequent computations
(Figure 2A).

The relative synaptic weight. By using InT (t) =
F(h,Δ)(t)

k +In0, (7), and (20),
the relative synaptic weight as a function of the tetanic force t is given by

(21) g̃(t) =
VT

(EEPSP − VT )In0(F(1,1)(
H̃(t)
A ) + 1)

.

The range of g̃ is

[g̃(tmax), g̃(tmin)] =

[
VT

(EEPSP − VT )In0(F(1,1)(
1
A ) + 1)

,
VT

(EEPSP − VT )In0

]

and is thus independent of the shape of the MU distribution.
The trace of the muscle in g̃(t) appears in H̃(t) and A. According to the pre-

ceding results, there always exists a unique relative synaptic weight providing a

given affine muscle response during recruitment. Since F(1,1)(
H̃(t)
A ) is strictly in-

creasing in t, g̃(t) is strictly decreasing. The integrability of ρ and (21) imply that

ρ(t)
a.e.
= Δ

t
d
dtF

−1
(1,1) ( VT

(EEPSP−VT )In0g̃(t)
− 1). For fixed values of Δ and In0 (or equiv-

alently for fixed k and In0) and once two densities equal a.e. have been identified,
there is a one-to-one correspondence between the relative synaptic weight and the
MU density function.

4. Activation of the muscle and related functionals. The study of the
activation of a muscle is simplified by normalization of the input Ĩn = In

In0
and the

muscle force F̃ = F
Fmax

. The curve given by Ĩn �→ F̃(Ĩn) will be called the relative

activation curve. During recruitment, the latter is given by F̃(Ĩn) = Δ
Fmax

(Ĩn − 1)

(Figure 3A). The unit-free number A = Δ
Fmax

in (20) is the slope of the preceding
straight line and is called the activation factor (denoted S in [42]). It is remarkable
that A depends on ρ only through its first moment Fmax.

Recruitment ratio. The recruitment ratio is the fraction Q of the force at the
end of recruitment and the maximal force of the muscle. As a ratio of two forces,

Q is a unit-free number. By using (20), we can write Q = AF(1,1)(
H(tmax)

Δ ). Since

H(tmax) = Fmax and A = Δ
Fmax

, the recruitment ratio (Figure 3C) depends on A
only since

(22) Q(A) = AF(1,1)

(
1

A

)
.

Since F(1,Δ)(t) = Y (t,Δ), Q(A) =
Y ( 1

A ,1)
1
A

, and because of Theorem 12(f), it is a

decreasing function of A. Therefore, by using Theorem 15(c) and (d), for all A > 0
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Fig. 3. A: Relative activation curves and end-recruitment curve as a function of the relative
input. They are obtained by projection of the curves in Figure 4 in the (Ĩn, A) plane. B: Relative
recruitment range R(A). C: Recruitment ratio Q(A).

we have 1 − c = limu↓0
Y (u,1)

u ≤ Q(A) ≤ limu↑∞
Y (u,1)

u = x−1
∞ . For the estimated

values α = 1.14 and c = 0.9, we get 0.1 ≤ Q(A) ≤ 0.66 for all A > 0 and thus for all
muscles.

Relative recruitment range. We call relative recruitment range R the smallest
relative input range within which all MUs are recruited. It is also the factor by which
the threshold input of the smallest MU of the pool has to be multiplied in order
to recruit all MUs. Since ĨnT (tmin) = 1, we have R = ĨnT (tmax) − 1. Since A is
the slope of the relative activation curve during recruitment (affine range), we have
R = Q

A . Because of (22), R is a function of A only, given by R = F(1,1)(
1
A ) and thus

decreasing (Figure 3B).
If A → ∞, then R(A) → 0 and Q(A) → 0.1, meaning that all MUs tend to

have the same threshold and be instantaneously recruited. The muscle force is then
close to 10% of the maximal muscle force since, at recruitment, each MU contracts at
10% of its tetanic force (1− c = 0.1). If A → 0, then R(A) → +∞ and Q(A) → 0.66.
The muscle force increases with a slope close to 0. Each recruited MU increases its
firing frequency nearly to the tetanic contraction force until the next is recruited.
Thus frequency modulation and recruitment develop parallel to each other, and at
completion of the MU recruitment, the muscle force approaches 66% of its maximal
force.

Relative activation surface. We know that F(In) =
∫ tmax

tmin
ρ(s)f(s, In) ds,

where f(s, In) = s (1− c exp(−α In−InT (s)
InT (s) )) if In > InT (s) and 0 otherwise. Accord-

ing to (7) and (21), we have

(23) ĨnT (s) = F(1,1)

(
H̃(s)

A

)
+ 1, s ∈ [tmin, tmax].

By using the preceding relations and the change of variable u = H(s), for Ĩn ≥ 1, we
get

(24) F̃(Ĩn) =

∫ 1

0

I{u≤AF−1
(1,1)(Ĩn−1)}

(
1 − c exp

(
−α

Ĩn− (F(1,1)(
u
A ) + 1)

F(1,1)(
u
A ) + 1

))
du,

IE denoting the indicator function of the set E. For fixed α and c, we see that F̃(Ĩn)
is a function of Ĩn and A only. Therefore, it can be interpreted as a surface Σ, called
the relative activation surface (Figure 4) and denoted F̃(A, Ĩn).
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Fig. 4. The relative activation surface, the relation between the relative input, the activation
factor, and the relative force. Vertical sections parallel to the (F̃ , Ĩn) planes are the relative activa-
tion curves. The interconnected ends of the relative activation curves give the recruitment boundary
curve (bold line).

Since the function F̂(1,1) is strictly increasing, (24) implies the equivalence of

A1 < A2 and F̃(A1, Ĩn) < F̃(A2, Ĩn) for all Ĩn > 1. Consequently, their projections
on the (input, force) plane (Figure 3A) never intersect each other for Ĩn > 1. The
end of the affine part of an activation curve is a point on Σ corresponding to the
end of recruitment. The set of these points defines a curve Γ called the recruitment
boundary curve (bold line in Figure 4). One of the parametric forms of Γ is 0 < A �→
(A, 1 + R(A), Q(A)). We can project Γ on three different planes:

(a) The projection on (A, F̃) provides the recruitment ratio Q(A) (Figure 3C).
(b) The projection on (A, Ĩn) provides, up to a translation, the relative recruit-

ment range R(A) (Figure 3B).
(c) The projection on (Ĩn, F̃) provides the end-recruitment curve. Simple com-

putations lead to its representation Ĩn �→ Ĩn−1
F−1

(1,1)(Ĩn−1)
(Figure 3A), which,

according to Theorem 12(e), is an increasing function.
The vertical sections of Σ parallel to the (Ĩn, F̃) plane are the relative activation
curves, and according to (24), each one of them is determined by A only (Figure 3A).

Relative force contributions due to recruitment and frequency modula-
tion and related functions. The total muscle force is the sum of the contributions
due to recruitment and frequency modulation F(Ĩn) = Frec(Ĩn) + Fmod(Ĩn). Di-
viding by Fmax, we get F̃(Ĩn) = F̃rec(Ĩn) + F̃mod(Ĩn). It is sufficient to compute
F̃rec, which is the fraction (1 − c) of the maximal force produced by all recruited

MUs for the input Ĩn. Thus F̃rec(Ĩn) = (1 − c)H(t(Ĩn))
Fmax

, where t(Ĩn) is the tetanic

force of the strongest MU recruited by the relative input Ĩn. By using (23), we get

Ĩn = F(1,1)(
H(t(Ĩn))

Δ ) + 1, and hence,

(25) F̃rec(Ĩn) =

{
(1 − c)AF−1

(1,1)(Ĩn− 1) if 1 ≤ Ĩn ≤ Ĩn(tmax),

1 − c if Ĩn > Ĩn(tmax).
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Again we see that the relative muscle forces due to recruitment and to frequency
modulation, as functions of Ĩn, depend only on the activation factor. Straightforward
computations provide the unit independent quotients for 1 ≤ Ĩn ≤ InT (tmax):

Frec

F (Ĩn) =
F̃rec

F̃ (Ĩn) = (1 − c)
F−1

(1,1)(Ĩn− 1)

Ĩn− 1
,

Fmod

Frec
(Ĩn) =

F̃mod

F̃rec
(Ĩn) =

1

1 − c

Ĩn− 1

F−1
(1,1)(Ĩn− 1)

− 1.

We call the recruitment rate the number 100 F̃rec

F̃ (Figure 2C) since it gives, at the

end of recruitment, the percentage of the force due to recruitment. The ratio F̃mod

F̃rec

will be called frequency modulation to recruitment ratio or simply FMR (Figure 2B).

According to Theorem 12(e), F̃rec

F̃ is decreasing and F̃mod

F̃rec
increasing. Both func-

tions are muscle-independent as long as recruitment is not achieved. At the end of
recruitment (e.r.), we have Ĩn− 1 = R(A) and thus

Frec

F |e.r. =
F̃rec

F̃ |e.r. =
(1 − c)

Q(A)
,

Fmod

Frec
|e.r. =

F̃mod

F̃rec
|e.r. =

1

1 − c
Q(A) − 1.

The last two quantities depend only on A, and according to Theorem 12(f), the
first one is increasing and the second one is decreasing. For fixed values of Δ, the
same properties hold for the variable Fmax instead of A.

Recruitment gain. The recruitment gain, introduced in [28] in the context of H-
reflexes, is the “size of threshold differences to recruit additional MUs.” The situation
is simple in the case of the H-reflex since MUs are activated only once during this
reflex and rate modulation is thus nonexistent. The recruitment gain corresponds
to the derivative, during recruitment, of the number of active MUs with respect to

the relative input. It is given by Rg(Ĩn) = d
dĨn

∫ t(Ĩn)

tmin
ρ(s) ds = ρ(t(Ĩn)) d

dĨn
t(Ĩn).

As we have seen before, t(Ĩn) = H−1(ΔF−1
(1,1)(Ĩn − 1)), and by differentiating both

sides with respect to Ĩn and denoting ′ = d
dĨn

, we obtain ρ(t(Ĩn)) t(Ĩn) t
′
(Ĩn) =

Δ(F−1
(1,1))

′
(Ĩn− 1). Finally, the last three equations lead to

Rg(Ĩn) =
Δ(F−1

(1,1))
′
(Ĩn− 1)

H−1(ΔF−1
(1,1)(Ĩn− 1))

.

In contrast to the preceding relations derived in this section, Rg(Ĩn) depends on the
particular muscle via H and Δ.

5. Discussion. The relative synaptic weight, which specifies the efficacy of the
synaptic input to the individual MNs, cannot be determined with the present experi-
mental techniques. However, every model of the MNPMC requires this quantity, and
we present here an approach allowing its computation. A main feature of the model
is that it is based on a known behavior of the activation curve during recruitment. In-
direct measurements [38] indicate that this function is affine during recruitment, and
this turns out to be sufficient to determine the relative synaptic weight. The MNPMC
model can now be used to compute various functionals related to the muscle activation.
They provide a deeper insight into the processes occurring during muscle activation
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and also yield values for missing experimental data required for more complex models
of the MNPMC. The computed relative synaptic weight has been implemented in a
time-dependent model which considers each MU individually [36, 39].

Normalizing the force by the maximal muscle force Fmax and the input by the
threshold input In0 is the source of several advantages. In this new frame, the slope
k of the activation curve during recruitment is transformed into the activation factor
A = kIn0

Fmax
. The signature in A of the muscle MU population is Fmax, the first moment

of ρ. One could have expected a more intricate dependence since ρ is an arbitrary
nonnegative and integrable function.

The activation factor is the parameter which governs completely the activation
process of a muscle in our model. Indeed, the relative activation surface depends on
Ĩn and A. It turns out that the relative activation curve depends only on A (even
after recruitment is completed), entailing that the recruitment boundary curve Γ, the
end-recruitment curve γ, the relative activation curves, the relative recruitment ratio
Q, and the relative recruitment range R(A) depend only on A.

It is also quite remarkable that the ratios F̃mod

F̃rec
= Fmod

Frec and F̃rec

F̃ = Frec

F , as

long as recruitment is not achieved, depend only on the function F−1
(1,1) and are thus

totally independent of the muscle. Of course, the values of these ratios depend on A
at the end of recruitment. However, the relative synaptic weight depends on In0 and
A, and finally, the recruitment gain Rg(Ĩn) depends on Δ and ρ. As in [45], several
functionals become muscle-independent or depend only on the activation factor.

The preceding normalization also allows for the comparison of muscles with differ-
ent strengths, as described in [42] for the first dorsal interosseus, a small hand muscle,
and the gastrocnemius, a much stronger leg muscle.

We proved that for fixed values of k and In0, the MU population density ρ and
the relative synaptic weight g̃ are linked by a one-to-one relation. The MU population
ρ of a muscle can therefore be recovered from the synaptic weight and conversely is
a feature which might be used by the CNS. If the properties of an MU population
change by a lesion or a pathological situation such as muscular dystrophy, or simply
by disuse or training, an input to the MN pool does not result in the force expected
by the CNS. As a consequence, the relative synaptic weight in the MN pool might
be readjusted in order to achieve the activation curve required for a properly working
motor control. Sensory input from muscle spindles and additional sensors might play
a major role in such a feedback system. This hypothesis could be tested in patients
with motor diseases, in subjects participating at bed rest and thus concerned with
muscle atrophy, or in subjects undergoing a force training.

The activation curve is composed of an affine part, prescribed a priori during
recruitment, followed by a nonaffine portion due to frequency modulation only. Our
model predicts that the affine part can be maintained up to at most 66% of the
maximal muscle force, a situation achievable with a slope approaching 0. For muscle
forces above the relative recruitment range, the slope of the activation curve is steadily
decreasing. As a consequence, relatively strong inputs are required to adjust high
force levels. The activation curve has not yet been investigated in muscles with a
large activation factor where the nonaffine range extends over an important domain
of the input. However, there is evidence that an affine relationship holds in the
working range of the human soleus muscle. Unpublished data (D. G. Ruegg and
T. H. Kakebeeke) show that humans are able to voluntarily contract the soleus muscle
up to only about 60% of its maximal force, and the activation curve is affine over
that range, suggesting that the behavior of the soleus is compatible with our model.
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In this way, the CNS might limit the muscle’s working field to the affine range, a
possibly very useful property. Indeed, motor centers that are hierarchically above
the MN pool would be faced with a fixed activation curve. Consequently, a control
mechanism at the spinal level would be sufficient to adjust the synaptic weight in order
to maintain the activation curve, when changes in the MU population are induced by
training, disuse, or disease. Moreover, the whole activation curve is automatically
adjusted by the affine part since it depends only on its slope, namely, the activation
factor. The verification of this property requires subjects with a modified MU density
function.
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