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From the Palaeozoic to the Cretaceous, crustal thinning in the Mid Norway area was associated with the denudation of gneiss-cored

culminations and metamorphic core complexes in the footwalls of major extensional faults. The development of the culminations led to

warping and deactivation of early detachments, to the nucleation of new faults in more distal positions and to the exhumation of high-

grade metamorphic rocks to more shallow levels in the crust. Some of the culminations and core complexes became part of the erosional

template in Mid-Late Palaeozoic time, some were probably exhumed in the Mesozoic, whereas some may never have reached the surface.

We present an overview of five types of gneiss-cored culminations and core complexes that have been identified in the field, through the

interpretation of offshore, long-offset seismic reflection data. We furthermore address their mechanism(s) of formation, and their role in

the progressive evolution of the Mid-Norwegian margin.

Introduction

The multi-stage development of many passive
margins, the scale of differential vertical movements
involved in their formation and the importance of
source areas in the adjacent continent interior
shows that, for the most part, present-day shore-
lines constitute an artificial boundary in passive
margin studies. Recent studies in basin dynamics
emphasise the source-to-sink perspective, highlight-
ing the importance of the processes that take place
in the source areas (e.g. Leeder et al., 1998). The
onshore–offshore approach to the continental
margin studies provides an opportunity to address
both the source and sink, and their evolution
through time. In the source areas, structural studies
combined with 40Ar/39Ar geochronology and
apatite fission track analysis provide a means to
link cooling with tectonically controlled exhuma-
tion, and to date activity on shear zones and faults.
Thus, such studies allow us to assess directly the
tectonothermal template that was exploited by
erosion during the later rift phases.

Onshorestructuresarenotnecessarilyeasy to trace
offshore, and, even if a successful correlation can be
made, the implications and importance of this with
respect to an understanding of passive margin
evolution may be variable. One of the challenges in
onshore–offshore studies is, thus, to define common
denominators that provide links, not only between
individual geological features, butmore importantly,
between the processes that were involved. In the
present contribution, we focus on gneiss-cored
culminations and metamorphic core complexes
that straddle the Mid Norway passive margin.
The formation of a number of these culminations
is strongly linked to extensional tectonics and to the
exhumation and cooling of rocks that eventually
became parts of the erosional template. Most of
the culminations are associated with sites of fault
nucleation, re-activation and de-activation, and
some appear to be controlling the location of
major domain boundaries within the Mesozoic rift.
The control on fault patterns by the underlying
core complexes and culminations suggests that, at
least locally, syntectonic sedimentation may have
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been severely affected by the denudation of the
metamorphic cores.

Gneiss-cored culminations form in a variety of
tectonic environments, including compressional,
extensional and strike-slip settings. A common
occurrence of gneiss-cored culminations is in the
internal parts of orogens, where parautochthonous
or autochthonous rocks are exposed in tectonic
windows (e.g. Haller, 1971; Ramberg, 1980). A
special type of gneiss-cored culmination is the
metamorphic core complex, where rocks from the
middle or lower crust have become tectonically
juxtaposed with non-metamorphic sedimentary
rocks. Metamorphic core complexes form in the
footwalls of large-magnitude extensional detach-
ments, and are known from a number of highly
extended terranes, including the Basin and the
Range Province of the western U.S. (e.g. Wernicke,
1985; Lister and Davis, 1989), the Tyrrhenian
Sea area (Jolivet et al., 1991), the southwestern
Norwegian Caledonides (Norton, 1986; Andersen
and Jamtveit, 1990; Fossen, 1992), and from
the classic rift zones, such as the Red Sea Rift
(Talbot and Ghebreab, 1997). Extensional detach-
ments have been suggested to constitute funda-
mental elements in the structural architecture of
continental margins (e.g. Lister et al., 1991; Fossen
et al., 2000; Whitmarsh et al., 2000; Manatschal
et al., 2001).

The Mid Norway area (Fig. 1) experienced
multi-stage crustal thinning from the Devonian to
the Tertiary (e.g. Skogseid et al., 1992). The earliest
phases of extension in the Devono–Carboniferous
times resulted in a dramatic reduction of the
Caledonian orogenic crust and in differential
exhumation of the Caledonian nappe pile and
basement. Structural products associated with the
early phases of crustal thinning are well-preserved
onshore Mid Norway (Braathen et al., 2002;
Osmundsen et al., 2003), and significant advances
have recently been made to understand the thermal
consequences of Palaeozoic and later extension
in the onshore areas (Eide et al., 2002, 2003
and in press; Redfield in press). As Devono–
Carboniferous, late- to post-orogenic extension
gave way to successive Late Palaeozoic and
Mesozoic rift phases, a complex structural hier-
archy was superposed on the extended remains of
the Caledonian orogen. Uplift and erosion of the
Palaeozoic tectonothermal template continued into
the Mesozoic and Tertiary, providing detritus that
contributed to the filling of syn- and post-rift
offshore basins (e.g. Sherlock, 2001). We aim at
an overview of the geometry and the mechanisms of
formation of gneiss-cored culminations that occur

onshore and offshore Mid Norway. Whereas the
exhumation history of onshore culminations are
important in a provenance perspective and with
respect to re-activation, the development of core
complexes in Mesozoic times affected shallow-level
structural development and, thus, the syndeposi-
tional rift architecture.

Differential exhumation and gneiss-cored
culminations onshore Mid Norway

Late/post-Caledonian extension reworked the
Caledonian nappe pile into an array of extensional
allochthons bound by ductile-to-brittle, top-WSW
shear zones and detachment zones (Braathen et al.,
2002; Osmundsen et al., 2003). The configuration of
extensional structures, strike-slip faults and gneiss-
cored culminations developed progressively in
Devono–Carboniferous times, commencing with
deformation along low-angle, medium- to low-
grade extensional shear zones. Some of these
shear zones developed into large-magnitude detach-
ment zones that eventually juxtaposed regional
gneiss culminations with continental, ‘Old Red’
sedimentary basins. Others appear to have become
deactivated as they were incised by moderate-angle,
low-grade, ductile-to-brittle faults (Braathen et al.,
2002; Osmundsen et al., 2003). Thus, the Palaeozoic
structural framework in Mid Norway includes a
large number of important shear zones and faults
that cut the Caledonian nappe stack and affect the
plan-view outline and the cross-sectional geometry
of the onshore tectonostratigraphy.

The gneiss-cored culminations that have been
identified onshore Mid Norway fall into three main
types (Fig. 2; Osmundsen et al., 2002a). Unmodi-
fied, thrust-related culminations (type 1) are
preserved in areas away from, and mainly east of,
the major extensional shear zones that truncate the
Caledonian nappe pile. These particular culmina-
tions will not be considered further here. In the
areas affected by extension, two main types of
culminations developed that show different char-
acteristics with respect to strain pattern as well as to
the amount of displacement on bounding shear
zones. The type 2 culminations are flanked by a
kilometre-thick, ductile, large-magnitude (tens of
kilometres) extensional detachment zones, capped
by brittle detachment faults, and characterised by
extension-parallel folds that developed contempo-
raneously with extension (Norton, 1996; Séranne,
1992; Chauvet and Séranne, 1994; Krabbendam
and Dewey, 1998); i.e., the type 2 culminations are
thought to have developed progressively in a
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Fig. 1 Onshore-offshore map of Norway and the Norwegian margin, mainly from Mosar et al. (2002). Open arrows indicate generalised

tectonic transport directions for Devono-Carboniferous, late/post-orogenic shear zones and faults.
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constrictional strain field (e.g. Krabbendam and
Dewey, 1998, Fig. 2). The type 2 culminations are
juxtaposed against ‘Old Red’ extensional basins,
believed previously to have developed from Early
into Middle Devonian times (Kolderup, 1921;
Jarvik, 1949; Allen, 1976). Recent results from
40Ar/39Ar geochronology indicate, however, that
the upper parts of the ‘Old Red’ basin stratigraphy
in the outer Trondheim Region are Late Devonian
at the oldest, and that the material deposited in the
basins was sourced in the (type 2) Central Norway
Basement Window (CNBW; Fig. 1; Eide et al.,
2003). Thus, some type 2 culminations were
exhumed to the surface and were eroded during
‘Old Red’ basin deposition. The type 2 culminations
in SW and Mid Norway resemble metamorphic
core complexes, and have been described as such
(e.g. Norton, 1986; Braathen et al., 2000).

The array of type 3 culminations (Fig. 2)
generally follows the present-day watershed
between Norway and Sweden (Mosar et al., 2002).
Some of the type 3 culminations have been
interpreted earlier as thrust-related culminations
(e.g. Greiling et al., 1998), but the identification of
an array of relayed, extensional, ductile-to-brittle
fault zones along the western margins of the
Rombak, Nasafjäll and Børgefjell windows (Fig. 1
and 3; Rykkelid and Andresen, 1994; Braathen

et al., 2002; Osmundsen et al., 2003) supports
extension-related structural control on gneiss-core
denudation. Previous modelling of the top to
magnetic basement under the Central Norwegian
Caledonides (Sindre, 1998; Olesen et al., 2002)
is consistent with vertical separation in the order of
3–6 km along the margins of the culminations.
Thus, the displacements related to type 3 culmina-
tions were probably an order of magnitude less than
the displacements associated with type 2 culmina-
tions. The type 3 culminations show little or no
evidence of extension-normal shortening, and may
have formed under conditions approximating plane
strain or even vertical flattening.

The kinematics of bounding shear zones, the
overall culmination geometry and the map-view
distribution of flanking nappes indicate that the
type 3 culminations resemble the footwall uplifts,
commonly associated with normal faults in conti-
nental rift zones. In this scenario, the gneissic cores
of the culminations mark the areas of maximum
footwall uplift (and thus maximum displacement)
along the ductile-to-brittle faults that bound the
culminations. Correspondingly, an anomalous,
ENE–WSW trend of the Caledonian nappe bound-
aries in the area between the Nasafjäll and Børgefjell
windows has been interpreted in terms of a soft
relay zone (Fig. 3a; Osmundsen et al., 2003).

Fig. 2 Generalised types of gneiss-cored culminations found in the Scandinavian Caledonides. See text for discussion. Inset map: B–Børgefjell

window; Ho – Hornelen Basin; HD – Høybakken detachment; LGF – Lærdal-Gjende Fault; MTFC – Møre-Trøndelag Fault Complex; N –

Nasafjäll window; NSZ – Nesna shear zone; NSDZ – Nordfjord-Sogn detachment zone; R – Rombak window; RD – Røragen detachment;

WGR – Western Gneiss Region.
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An interpretation in terms of displacement gradients
along the bounding faults may also explain the
thinning and excision of some of the main
nappe units along the western margins of the
culminations (Figs. 3b–c). A northwards and
southwards decrease in the amount of displace-
ment is consistent with the tip line of individual
ductile-to-brittle shear-zone segments plunging
underneath the nappe pile at the northern and
southern margins of the windows, leading to the
deflection of nappes that is generally observed
around the gneissic cores. This deflection resembles
that produced by fault-tip monoclines associated
with fault growth, such as described from the
syn-rift stratigraphy of the Suez Rift (e.g.
Gawthorpe et al., 1997). Late Devonian to Early
Carboniferous ages have been assigned to top-to-
the-W, low-grade ductile-to-brittle shearing along
the western margin of the Rombak window (Fig. 1;
Coates et al., 1999). It is likely that shearing and
faulting along the Nasafjäll and Børgefjell culmi-
nations took place during the same time interval
(Osmundsen et al., 2003). However, there are
indications of younger rejuvenation, represented by
fault slip-directions that cannot be reconciled with
the Devono–Carboniferous strain pattern (Braathen
et al., 2002). At present, the age of the exhumation of
the gneissic cores to the surface is unknown.

The Møre–Trøndelag Fault Complex

The Møre–Trøndelag Fault Complex (MTFC) is
spatially related to both, the type 2 and the type 3
culminations. The Hitra-Snåsa Fault of the MTFC
borders the (type 2) Central Norway basement
window, and constitutes a SE transfer boundary for
the extensional Høybakken detachment (Fig. 2;
Séranne, 1992; Braathen et al., 2000). The array of
type 3 culminations and associated, ductile-to-
brittle fault zones is linked to the south with the
MTFC, through a series of relayed fault strands
described by Roberts (1998) that show evidence of
normal/sinistral displacements ( Fig. 3a). The array
of fault strands can be traced towards the Grong–
Olden Culmination (Fig. 3a), which is displaced 3–4
km sinistrally by the Hitra-Snåsa Fault (op. cit.).
Coupled with the age of the uppermost deposits in
the ‘Old Red’ of the outer Trondheim region,
the Late Devonian–Early Carboniferous age of
shearing and faulting along the gneiss culmina-
tions (Coates et al., 1999; Osmundsen et al.,
2003) indicates temporal overlap between shearing
and faulting, along the array of culminations
and faulting/basin formation in the area of the
Høybakken detachment (Fig. 2). Later activity
along the MTFC occurred in multiple stages
(Grønlie et al., 1991) and includes transtension of

Fig. 3 a. Geological map of part of the North-central Norwegian Caledonides (simplified from Solli 1999, see Fig. 1 for location) with the

Nasafjäll (N) and Børgefjell (B) culminations and adjacent nappe units. Note thinning and excision of individual units along the western

boundaries of the gneiss-cored culminations. GSZ–Gaukarelv shear zone; VSZ–Virvassdalen shear zone; NSZ–Nesna shear zone (see Braathen

et al., 2002 and Osmundsen et al., 2003 for descriptions of culmination-bounding shear zones); GOC–Grong-Olden Culmination; HSF–Hitra-

Snåsa Fault; S–Stokkali Granite (Par-? Autochthon). b. Two-layer fault-growth model for the development of type 3 culminations such as the

Nasafjäll and Børgefjell windows. c. Resultant map-view configuration. The model is consistent with: (1) the excision of nappe units along

the western margins of the gneiss windows; (2) the monoclinal geometry of nappes along the northwestern and southwestern margins of the

windows; and (3) the formation of soft relays with anomalous orientations of nappe boundaries between the windows, as illustrated in Fig. 3a.
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probable Permian age (Watts, 2001), a phase of
dextral re-activation (Grønlie and Roberts, 1989;
Watts, 2001) as well as dip-slip re-activation,
associated with sedimentation in the Jurassic
Beitstadfjorden Basin (Figs. 1 and 4; Bering, 1992;
Bøe, 1991; Sommaruga and Bøe, 2002). Recent
apatite fission track studies show clear breaks in the
derived ages across lineaments that are parallel to
the trend of the MTFC; most likely, these breaks
reflect Late Palaeozoic and Mesozoic fault-block
rotation and differential uplift (Redfield, 2002;
Redfield et al., in press). The offshore counterpart
of the MTFC has been interpreted to have played
an important role during Late Palaeozoic and
Mesozoic rifting (Grunnaleite and Gabrielsen,
1995; Gabrielsen et al., 1999).

Gneiss-cored culminations offshore Mid
Norway and their influence on rift-zone
architecture

Aeromagnetic data show very strong positive
signatures in the Frøya High and parts of the
Trøndelag Platform area that are probably related
to sources in the deep basement (Skilbrei et al.,
2002). During prograde metamorphism, magnetite
is commonly produced in mafic as well as inter-
mediate rocks; only parts of the magnetite become
redistributed during denudation and retrogression
(e.g. Skilbrei et al., 1991). Most likely, the strong
positive anomalies result from denudation of
strongly magnetic, high-grade metamorphic rocks.
The pattern of strong positive magnetic anomalies
has been compared to the pattern of onshore type 2
and 3 culminations, to provide a basis for offshore
extrapolation of detachment zones exposed in the
onshore areas (Olesen et al., 2002; Skilbrei et al.,
2002). In the Frøya High example, rough and
shallow basement topography may add to the
strong positive magnetic signature. Interpretation

of long-offset seismic data has revealed two
main types of deep-seated culminations. In the
southern Trøndelag Platform/Halten Terrace area,
a Palaeozoic detachment appears to be warped
across the crest of an antiformal culmination that
also controlled the ramp-flat geometry of the
Mesozoic Bremstein–Vingleia Fault Complex to
the east of the Njord field (Figs. 1 and 5a). Another
core complex appears to be related to low-angle
truncation of a strong, intra-basement reflective
band west of the Frøya High by a low-angle
detachment fault west of the Klakk Fault Complex
(Figs. 1 and 5b). In a NW–SE oriented section, the
low-angle detachment west of the Frøya High
reveals horizontal separation in the order of 40 km
(Osmundsen et al., 2002b). The northeastern parts
of the Slørebotn Sub-basin (Fig. 5c; Blystad et al.,
1995) preserves a synclinal depression with rotated,
supradetachment fault blocks, a configuration
commonly encountered between an exhumed core
complex and the detachment breakaway (e.g.
Wernicke, 1985). Thus, Mesozoic structuring in
the offshore areas also involves large-magnitude
normal-faulting and core-complex denudation. The
pattern of offshore magnetic anomalies reflects the
superposition of these processes upon the Palaeo-
zoic structural template (Skilbrei et al., 2002).

The denudation of deep crustal rocks in the
footwalls of large-magnitude Mesozoic faults can
be explained by models involving excisement and/or
incisement (Lister and Davis, 1989), depending on
geometrical and temporal relationships between
the inherited Palaeozoic template and the Mesozoic
fault systems (Figs. 6a,b). Interpreted seismic lines
in the southern Trøndelag Platform area reveal that
a gently WNW-dipping to sub-horizontal reflection
band underlies rotated, Palaeozoic-Early Mesozoic
half-grabens at c. 6 s TWT (Fig. 5a). The reflection
band is interpreted as a detachment zone that may
represent the offshore continuation of the onshore
Høybakken detachment (Osmundsen et al., 2002b;
Skilbrei et al., 2002). Close to well 6407/7-1

Fig. 4. Cartoon showing conceptually the development of a type 2 culmination (such as the CNBW), sinistral strike-slip faults (such as the

MTFC) and sedimentary basins through a) Early- to Mid Devonian, top-to the WSW extension, b) Devono-Carboniferous, contiued extension

and sinistral strike-slip (development of MTFC), and c) Jurassic re-activation of strands of the MTFC as normal faults. The changing roles of

the MTFC has been documented by previous workers (i.e. Grønlie and Roberts, 1989; Bering, 1992; Séranne, 1992; Braathen et al., 2000). Only

phases demonstrably related to basin-forming events have been included in the figure. HGn–medium- to high-grade gneisses and supracrustals,

parautochthonous or in the Lower Allochthon; UA–nappe units, belonging mainly to the Upper and Uppermost Allochthon of the Caledonian

nappe-stack; OR–‘Old Red’ sedimentary rocks; J–Jurassic sedimentary rocks.
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(Fig. 5a), this reflection band appears to be warped
across an antiformal culmination, with the crest
positioned at c. 4.5 s TWT. Two Mesozoic fault
splays, one ramp-flat and the other planar, bound
the rotated fault block hosting 6407/7-1 in the
southeast and in the northwest, respectively. Both
faults merge at depth with the NW-dipping flank of
the antiformal culmination (Fig. 5a). This fault
pattern can be explained in terms of development
of progressively younger detachment faults from
the Palaeozoic into the Late Jurassic/Earliest
Cretaceous (Figs. 6 and 7). Both in this area and
in the area west of the Frøya High, the flanks of

metamorphic core complexes appear to be impor-
tant with respect to the location of major domain
boundaries in the Mesozoic rift, such as the
platform-terrace boundary in the Njord area and
the boundary to the deep basin in the area of 6301/
10-1 (Fig. 5b).

Most likely, the control exerted by the core
complex on higher-level fault geometries, as
observed in the area of 6407/7-1 (Fig. 5a), in turn
affected the stratigraphic architecture in adjacent
half-graben basins. The ramp-flat fault east of 6407/
7-1 most likely owes its geometry to a late phase
of denudation of the underlying core complex

Fig. 5 Interpretations of seismic lines showing evidence for large-magnitude displacements along low-angle Mesozoic detachment faults.

(a) southern Trøndelag Platform/Halten Terrace area (Osmundsen et al., 2002), (b) west of the Frøya High (op. cit.) and (c) the NE Slørebotn

Subbasin area (interpretation redrawn from Blystad et al., 1995). See fig. 1 for approximate location of seismic lines and text for further

discussion.
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(Osmundsen et al., 2002b). On the Halten Terrace,
a pronounced unconformity on top of faulted
Lower and ?lower Middle Jurassic strata indicates
a main phase of faulting and rotation in Mid
Jurassic time (Osmundsen et al., 2002b). The
unconformity truncates a gentle syncline developed
in the pre-Jurassic and Lower Jurassic strata, that
may have developed during slip along the ramp-
flat fault (op. cit.). To the south in the Slørebotn
sub-basin, supradetachment half-graben basins

experienced phases of rotation and syntectonic
sedimentation in Bathonian to Volgian times
(Jongepier et al., 1996). Thus, detachment faulting
and associated late exhumation of metamorphic
core complexes was probably important during
Mid and Late Jurassic rifting, as well as during
previous Devono–Carboniferous and Permo–
Triassic phases of extension. Late denudation of
core complexes led to de-activation of detachment
faults, such as the Palaeozoic-Early Mesozoic

Fig. 6 Models of excision (a) and incision (b) for the formation of metamorphic core complexes (Lister and Davis, 1989). Compare with

examples shown in Fig. 5. See text.

Fig. 7 Tentative model (not to scale) for the geometry of Palaeozoic and Mesozoic extensional detachments and the distribution of resultant

core complexes and gneiss-cored culminations in a section that crosses the CNBW and passes offshore roughly along the trace of Fig. 5a.
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detachment beneath the Trøndelag Platform
(Osmundsen et al., 2002b). In the Slørebotn Sub-
basin area (Fig. 5c), Bathonian-Volgian supra-
detachment rotation had apparently ceased, prior
to the onset of Aptian sedimentation (Jongepier
et al., 1996). In Bathonian to Volgian times, areas
east of the Frøya High underwent fault-block
rotation and sedimentation (Bøe and Skilbrei,
1998), resulting in an array of Mid to Late Jurassic
basins along a NE–SW trend parallel to the Møre-
Trøndelag Fault Complex (Sommaruga and Bøe,
in press). The Jurassic basins are unconformable
upon Devonian sedimentary rocks and upon base-
ment rocks that belong to the ‘Upper Plate’
configuration (following the generalised terminol-
ogy of detachment faults, e.g. Wernicke, 1995;
Lister et al., 1991) of the previous Devonian
structural configuration.

Discussion

Detachment faulting and subsequent de-activa-
tion through core-complex denudation or low-angle
incision appears to have taken place progressively
and repeatedly in the Mid Norway area from the
Devonian well into the Mesozoic times. Warping,
incision and de-activation of Early Devonian
extensional shear zones across type 3 culminations
(Fig. 2) have been interpreted from onshore
structural relationships (Braathen et al., 2002;
Osmundsen et al., 2003); the offshore interpreta-
tions summarised above indicate that such modes
of extensional deformation are applicable to
important phases of Late Palaeozoic and Mesozoic
structuring. We suggest that the Late Devonian–
Early Carboniferous structural template involved
the onshore gneiss-cored culminations observed
onshore Mid Norway and their bounding structures
in a sinistral, transtensional pull-apart that prob-
ably also included a number of NE–SW-trending
faults now buried beneath Middle Triassic and
younger strata on the Trøndelag Platform (see
also Titus et al., 2002). The rift-style geometries
displayed by the type 3 culminations (Fig. 2) and
associated structures contrast with the low-angle
ductile shear zones that characterised the earliest
phase of extension. The structures associated with
the type 3 culminations, thus appear to herald the
structural styles associated with the later rift phases.

In the Mid Norway area, the maximum elonga-
tion trend changed by close to 90�, from ENE–
WSW in the Devonian to NW–SE in the Late
Cretaceous and Early Tertiary (Gabrielsen et al.,

1999; Mosar et al., 2002). The exploitation of the
Palaeozoic structural template in the Mesozoic was
thus, probably preferential and dependent on the
orientation and dip direction of inherited detach-
ments and gneiss-cored culminations. The Devono–
Carboniferous structural template included
extension-parallel, NE–SW-trending, megascopic
fold structures, as indicated by the Trøndelag
synform and the Central Norway Basement
Window (CNBW, Fig. 1), as well as a large
number of kilometre-scale folds. The flanks of
doubly plunging, antiformal culminations wrapped
by detachment zones (type 2 culminations, Fig. 2)
may thus have become the preferred loci for
excision or incision in the Mesozoic, even if the
extension direction had changed dramatically. The
Hitra-Snåsa and Verran faults of the MTFC
developed along the flanks of NE–SW-trending
folds (Fig. 4; Séranne, 1992; Watts, 2001). Oblique-
and dip-slip re-activation of segments of the MTFC
took place in the Permian and the Mesozoic,
respectively (Grønlie and Roberts, 1989; Bering,
1992; Watts, 2001). The Mesozoic phase of
reactivation caused the formation of the inshore
Jurassic Beitstadfjorden Basin as an extensional
half-graben (Bøe and Bjerkli, 1989; Bering, 1992).
The array of small Jurassic half-graben basins that
straddle the Norwegian coast in the Trondheimsleia
area, as well as parts of the SE Møre Basin margin,
may have a similar explanation (Fig. 4; Bøe and
Bjerkli, 1989; Bøe, 1991; Gabrielsen et al., 1999;
Sommaruga and Bøe, in press).

Along the western margin of the (type 3)
Børgefjell culmination, phases of re-activation with
top-to-the-SSW and top-to-the-NW polarity were
superposed on the main, Devono-Carboniferous,
top-WSW ductile-to-brittle fault (Fig. 3). Thus,
onshore, complex re-activation of the flanks of
gneiss-cored culminations took place repeatedly
during the formation of the passive margin. The
possibility exists that individual faults in the
offshore areas also experienced re-activation that
involved transition from strike-slip to dip-slip or
vice versa, depending on their orientations with
respect to the changing stress field.

With the exception of the examples discussed
above, the geographical extent of reactivation,
deactivation and incision of core complexes and
inherited detachments is unknown at present. We
suspect, however, that variations on these themes
were important during pre-Cretaceous structuring
of the Mid-Norwegian margin.

Early to Mid Devonian, 40Ar/39Ar white
mica cooling ages in the 395–385 Ma interval
have been reported previously from gneiss-cored
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culminations, such as the CNBW and the Western
Gneiss Region (WGR, Fig 1) ( e.g. Dallmeyer et al.,
1992; Berry et al., 1995; Eide et al., 2003). Thus, the
Early to Middle Devonian time interval was an
important one with respect to exhumation of high-
grade metamorphic rocks through the 350–400�C
temperature interval in the footwalls of large-
magnitude extensional detachments (Chauvet
et al., 1992; Andersen and Jamtveit, 1990; Eide et al.,
2003; Kendrick et al., in press). The post-Mid
Devonian exhumation history of the gneiss-cored
culminations is less well-known. Whereas some
onshore core complexes, such as the CNBW, were
exhumed to the surface in ?Late Devonian-Early
Carboniferous time, yielding material to ‘Old Red’
sedimentary basins (Eide et al., 2003), very little
is known about the late stages of exhumation of
a number of other gneiss-cored culminations.
Carboniferous cooling ages of around 340 Ma have
been obtained through 40Ar/39Ar geochronology
performed on feldspars from the Sjona window of
North-Central Norway (Eide et al., 2002), indicat-
ing cooling through temperatures of around 250�C,
at that time. A basement core sample from the well
6407/10-3 on the Frøya High yielded a biotite age
of 395þ 4 Ma and a K-feldspar age of 376þ 7 Ma
(Eide et al., 2003), indicating that in the Devonian,
the rocks of the present-day Frøya High were being
exhumed through the c. 350�C isotherm in the
footwall of an extensional detachment, similar to
those observed on the flanks of the type 2
culminations. Basement rocks that outcrop on the
sea floor in the Griptarane area east of the Frøya
High (Fig. 1), as well as on the islands in the
Trondheimsleia area, belong to rock complexes that
were in a high structural position in the Devonian
configuration. This indicates truncation by faulting
or erosion of the principal Devonian detachment
between Griptarane and the Frøya High, prior to
deposition of the Cretaceous strata that drape
the high.

The Early to Late Devonian cooling history of
the rocks positioned in the footwalls of the major,
Mid Palaeozoic extensional structures provides a
template for provenance studies on the Mid-
Norwegian shelf. As the types 2 and 3 culminations
became exposed at the surface, either through Mid
Palaeozoic exhumation or by Late Palaeozoic and
Mesozoic excision and incision, the culminations
commenced their history as source areas for
adjacent sedimentary basins. In the case of the
CNBW, erosion at the surface started some time
after the Mid/Late Devonian boundary, probably
in the Late Devonian or Early Carboniferous, when
material sourced from the CNBW was deposited in

the Asenøy Basin (hangingwall of the Høybakken
detachment, Fig. 1; Eide et al., 2003). Conversely,
there is no evidence that coastal parts of the WGR
were exhumed to the surface during deposition of
the Middle Devonian basins of SW Norway (e.g.
Cuthbert, 1991). Radiometric dating of mylonites
related to sinistral strike-slip shear zones in the
northern WGR indicate that these rocks were
undergoing deformation under greenschist-facies
conditions in the Mid/Late Devonian (Terry et al.,
2000). Alluvial fan and fan-delta, gneiss-clast
conglomerates banked against the SE margin of
the Møre Basin indicate, however, that the north-
ernmost WGR was yielding erosional products to
the Slørebotn Sub-basin area in Triassic and Early
Jurassic times (Smelror et al., 1994; Mørk and
Stiberg, 2003).

The offshore core complexes are less well-known
at present, due to their identification on a seismic
grid are not dense enough for mapping. In the area
close to well 6406/7-1 (Fig. 5a), it appears that the
metamorphic core resided at depth during Jurassic
faulting; in the area west of the Frøya High,
however, an Upper Jurassic or earliest Cretaceous
unit offlaps the main detachment and onlaps the
most proximal tilted fault block in the hanging-
wall (Fig. 5b). This indicates that the abandoned
detachment fault was exposed after the main
incising event and that high-grade metamorphic
rocks in the footwall, as well as the tilted half-
graben west of the Frøya High, may have yielded
eroded debris to the adjacent Cretaceous Basin.
40Ar/39Ar geochronology performed on white
micas obtained from cores through parts of the
offshore Mesozoic succession reveal a spectrum of
Early to Late Devonian, white mica cooling ages
(Sherlock, 2001). These record Mesozoic erosion of
rocks exhumed in the type 2 (and 3?) culminations.
Sherlock (2001) did, however, conclude that the
dated micas had experienced at least one phase
of recycling since their erosion off the onshore
tectonothermal template. The abandonment,
partially or completely, of parts of an extensional
system and its role in cannibalisation and
recycling of basins is only partly understood for
the Mid-Norwegian margin. An excision scenario
would, however, provide an explanation for deac-
tivation and for the commonly cited (e.g. Blystad
et al., 1995) westward younging of fault activity.
Both the excision and the incision models would
lead to deactivation of more proximal parts of the
extensional system, leaving older arrays of faults
and half-grabens in a structurally high position
where they could be eroded and recycled into the
younger parts of the rift basin.
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Conclusions

In the Mid Norway area, onshore core
complexes and gneiss-cored culminations were
exhumed to the surface in the footwalls of exten-
sional shear zones and low-angle normal faults
from the Late Devonian-Early Carboniferous.
Since then, the culminations started to supply
adjacent basins with debris that preserves the
40Ar/39Ar signature and, thus, the cooling history
of the source rocks from which it was eroded. The
recent AFT data show that faulting along the
Møre-Trøndelag trend continued at least into
the Late Mesozoic. Late Palaeozoic and Mesozoic
stages of exhumation were strongly dependent on
the location and geometry of new faults that formed
by excisement, incisement or re-activation of
the previous structures. Interpretation of long-
offset seismic reflection data strongly indicates
that low-angle normal-faulting and core-complex
denudation continued into the Mesozoic; however,
the lateral extent of the core complexes and the
detachment faults interpreted in the offshore areas
(Osmundsen et al., 2002b) and their influence on
shallower-level extensional faulting is not known
in detail. There is a considerable potential, in our
view, residing in the links between deep and shallow
structure and, in turn, in their influence on syn-
and post-rift stratigraphic architecture. A better
coverage of low-temperature thermochronological
data (AFT, U-Th-He) is essential to improve
our understanding of the relationship between the
source area uplift and the offshore basin formation
in Late Palaeozoic and Mesozoic times.
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Chauvet, A. and Séranne, M., 1994. Extension-parallel folding in

the Scandinavian Caledonides: implications for late-orogenic

processes. Tectonophysics, 238: 31–54.

Coates, B.H., Zeltner, D.L., Carter, B.T., Steltenpohl, M.G.,

Andresen, A. and Kunk, M.J., 1999. 40Ar/39Ar and structural

investigations of extensional development of the North-Central

Norwegian margin. Abstracts with programs, Geological Society

of America, 31 (7): 118.

Cuthbert, S.J., 1991. Evolution of the Devonian Hornelen Basin,

Western Norway: new constraints from petrological studies of

metamorphic clasts. In: Morton, A.C., Todd, S.P. and Haughton,

P.D.W. (Editors), Developments in sedimentary provenance

studies. Geol. Soc., London, Spec. Publ., 57: 343–360.

Dallmeyer, R.D., Johansson, L. and Möller, C., 1992. Chronology
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Areas, Ålesund Norway, 5–7th May 2003, pp. 41–44.

Norton, M.G., 1986. Late Caledonian extension in western Norway:

a response to extreme crustal thickening. Tectonics, 5: 195–204.

Olesen, O., Lundin, E., Nordgulen, Ø., Osmundsen, P.T., Skilbrei,

J.R., Smethurst, M.A., Solli, A., Bugge, T. and Fichler, C., 2002.

Bridging the gap between the onshore and offshore geology in

Nordland, northern Norway. Nor. J. Geol. (NGT), 82: 243–262 .

Osmundsen, P.T. and The BAT team, 2002a. Core complexes,

gneiss-cored culminations and detachments, Mid Norway. In:

Eide (Editor), BATLAS—Mid Norway plate reconstruction atlas

with global and Atlantic perspectives. A product of the Basin

Analysis and applied thermochronology on the Mid Norwegian

shelf (BAT) project, 1998–2002. ISBN: 82-7385-106-0. pp. 64–65.

Osmundsen, P.T., Braathen, A., Nordgulen, Ø., Roberts, D.,

Meyer, G.B. and Eide, E., 2003. The Devonian Nesna shear

zone and adjacent gneiss-cored culminations, North-Central

Norwegian Caledonides. J. Geol. Soc., London, 160: 137–150.

Osmundsen, P.T., Sommaruga, A., Skilbrei, J.R. and Olesen, O.,

2002b. Deep structure of the Mid Norway rifted margin. Nor. J.

Geol. (NGT), 82: 205–224.

Ramberg, H., 1980. Diapirism and gravity collapse in the

Scandinavian Caledonides. In: Phillips, W.E.A. and Johnson,

M.R.W. (Editors) Deformation and metamorphism in the

Caledonian Orogen. J. Geol. Soc., London, 137: 261–270.

Redfield, T.F., 2002. Apatite fission track data from the Møre

Trøndelag fault complex and the Fosen Peninsula, central

Norway. In: A. Hurst (Editor), Onshore-Offshore Relationships

on the Nordic Atlantic Margin. NGF Abstracts and proceedings

2, 2002 of the Norwegian Petroleum Society (NPF) and

Norwegian Geological Society (NGF) Conference, 7–9th Oct.

Trondheim, pp. 166–168.

Redfield, T.F., Torsvik, T.H., Andriessen, P.A.M. and Gabrielsen,

R.H., in press. Mesozoic and Cenozoic tectonics of the Møre

Trøndelag Fault Complex, central Norway: constraints from new

apatite fission track data. Physics and Chemistry of the Earth.

Roberts, D., 1998. High-strain zones from meso- to macro-scale at

different structural levels, Central Norwegian Caledonides. J.

Struct. Geol., 20: 111–119.

Rykkelid, E. and Andresen, A., 1994. Late Caledonian exten-

sion in the Ofoten area, northern Norway. Tectonophysics, 231:

157–169.
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