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The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the
change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation
phenomenon in Hang—Seng index. It is observed that the bifurcation phenomenon in financial index is not
universal, but specific under certain conditions. For Hang—Seng index and randomly generated time series, the
phenomenon just emerges when the power-law exponent of absolute increment distribution is between 1 and 2 with
appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself
is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours.
However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs
is far different from real market to artificial data, which may reflect certain market information.

PACS: 89.90.+n, 87.10.+e, 89.65. Gh, 89. 75. Da

Financial markets are typical complex systems. To
understand their dynamics requires interdisciplinary
knowledge and exploration, including the application
of concepts and tools of statistical physics. Since
the early 1970s, a number of physicists have devoted
their effort to the study of economic and financial 1.6
phenomena.l! 6 They have developed a wide range of

on trading volume indicate that the bifurcation phe-
nomenon is an artifact of the distribution of trade sizes
q, which follows a power-law distribution with expo-
nent {, < 2 in the Lévy stable domain.['5~17]
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concepts and models, including fractal and multifrac- = H
tal scaling, frustrated disordered systems, phenomena 5 127
far from equilibrium, and so on.[7—12] = 1.01

Recently, using transactions and quotes data for 0.8
116 most-actively traded US stocks for the two-year 0.6
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Py period 1994-1995, Plerou—Gopikrishnan—Stanley em- 400 X . X ‘ . : .
(@} o . ! o ) ®)
— pirically discovered a two-phase behaviour in finan 5l
+) cial markets.!'3] Introducing a parameter ¥ describing 3007
L the fluctuation during the time interval At, the con- \:J 2004

ditional probability distribution p(2|2) of the volume

imbalance €2, is found to be with a single peak for 1001

¥ < X and double peaks for ¥ > ¥.. At the critical

value Y., the transition from a single peak to dou- 6 8§ 10 12 14 16
ble peaks occurs. The change of p(Q|X) from an uni- t (10* min)

modal to a bimodal distribution (the bifurcation phe-
nomenon) indicates that the market moves between an
‘equilibrium’ state and an ‘out-of-equilibrium’ state,
and these two different states were interpreted as dis-
tinct phases. Following this idea, Zheng et al.l'4
investigated the bifurcation phenomenon in financial
markets with the time series of the German DAX from

Fig. 1. (a) Hang—Seng index from 1 July 1994 to 28 May
1997 at the sampling intervals 1minute. (b) The corre-
sponding absolute increment I(t).

In this Letter, the bifurcation phenomenon is
investigated with the minute-by-minute records of

Hang—Seng index from 1 July 1994 to 28 May 1997
(see Fig. 1 the index and its absolute increment). The

1994 to 1997. It was observed that the probability dis-
tribution of the return Z(t) conditioned on the fluctu-
ation of the financial index r(¢) displays a transition
from a unimodal distribution for small r, to a bimodal
distribution for large r. However, some recent works

trading time for a trading day in the data was not the
same in the whole period. Although for all trading
days, the Hong Kong stock market opened from 10:00
A.M. to 12:30 P.M. for the morning session, occupy-
ing a time interval of 150min and opened from 2:30
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P.M. in the afternoon, the closing times were not the
same. From 1 July 1994 to 30 August 1995, the mar-
ket closed at 3:45 P.M. with the total trading time 225
min per day. From 1 September 1995 to 30 December
1996, the market closed at 3:55 P.M. with the total
trading time 235min per day. From 1 January 1997 to
28 May 1997, the market closed at 4:00 P.M. with the
total trading time 240 min per day. The total number
of data points is 165727. In order to carefully investi-
gate the character of the Hang—Seng index, the total
data is divided into six segments every half a year, as
shown in Fig. 1(b). The largest number of data points
in one segment is 29889, while the smallest is 24442.
The number of data points is sufficiently large for a
detailed statistical analysis.

Denote by y(t) the time series of the Hang—Seng
index, the corresponding absolute increment reads

It) =l y(t+1) —y(t) | . (1)

The fluctuation ra.(t) is simply the relative variation

Figures 2(a)-2(f) show the empirical results of six
segments, respectively. It can be found that for all
the six segments, when the fluctuation r is very small,
the distribution of return is single-peaked at about
zero. However, for segment one to five, different from
the expected two phase phenomena,*3! when the fluc-
tuation becomes bigger, the distribution of return is
not a bimodal distribution. Instead, each of those five
has more than two maxima. Actually, clear transition
from unimodal to bimodal distribution can not be ob-
served with the scale ranging from 1 min up to about a
day. In contrast, as shown in Fig. 2(f), when the fluc-
tuation r < 4.8 the distribution of return pa:(Z,r)
is single-peaked; when the fluctuation r > 4.8, the
bigger the fluctuation is, the clearer the bimodal dis-
tribution becomes. The transition from unimodal to
bimodal distribution holds for the scale ranging from
75 min to 125 min. Beyond the range this phenomenon
fades away.

¢ A Table 1. Exponents and the existence of bifurcation phe-
rom t to t + At nomenon.
rAt(t) — <| y(t+ 1) _y(t) — <y(t_|_ 1) _y(t)>At |>At, (2) segment exp exp exp unimodal
ID (KS) (LS) (average)  to bimodal
where ()a; denotes the average from t to t + At, 1 2.16 + 0.03 2.08 £ 0.03 2.12 + 0.03 N
and y(t + 1) means y(t + 1 min). For a fixed At 2 2.33 £ 0.04 231 4+0.04 2.32 + 0.04 N
we calculate the conditional probability distribution i 333 i 88? g'ég i 882 ;gi i 88?)) E
pai(Z,r) = pai(Z]r) of the return Z(t) = y(t + At) — 5 2,09+ 003 2.09+0.03 2.09 % 0.03 N
y(t) with a specified r. 6 1.95 + 0.03 1.91 + 0.03 1.93 + 0.03 Y
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Fig. 2. Distribution pa+(Z,r) of six segments: (a) segment one from 1 July to 30 December 1994 with the scale
150 min, (b) segment two from 3 January to 30 June 1995 with the scale 100 min, (c) segment three from 3 July to
29 December 1995 with the scale 100 min, (d) segment four from 2 January to 28 June 1996 with the scale 175 min,
(e) segment five from 1 July to 31 December 1996 with the scale 200 min, (f) segment six from 2 January to 28 June

1997 with the scale 100 min.
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Fig.3. Cumulative probability of absolute increment. (a) Fig.4. Re-scaled plot of the probability
Segment one with average exponent {; = 2.12 £ 0.03. (b) distributions. The abscissa is the re-scaled
Segment six with average exponent {;f = 1.93 + 0.03. CDF returns, and the ordinate is the logarithm
stands for the cumulative distribution function. of re-scaled probability.
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Fig. 5. Numerical simulation of the bifurcation phenomenon on artificial data. Power-law distributed I with the
parameters: (a) Imin = 7, (7 = 1.93, 24442 data points as the same as segment six; (b) Imin = 5, {7 = 2.44, 28955
data points as same as segment three; (c) Imin = 7, {f = 1.50, 25000 data points; (d) Imin = 7, {r = 0.80, 25000

data points.

The study on trading volume shows that the tran-
sition of p(Q|X) from an unimodal to a bimodal distri-
bution is an artifact of the distribution of trade sizes ¢,
which obeys a power-law distribution with exponent
¢, < 2 in the Lévy stable domain.['>~17ISimilar to the
consideration in Refs. [16,17], we guess the existence of
bifurcation phenomenon of stock index is dependent
on the statistics of absolute increment I. Two typical
cumulative distributions of I are reported in Fig. 3,

which both follow a power-law form above a lower
bound I,;n. To demonstrate the stability of the dis-
tributions, PDFs of return for different time scales are
analysed. As an example, Fig.4 shows the re-scaled
distributions for segment six. From Fig. 4 one can ob-
serve that the distributions for different time scales
well collapse onto one master curve, which implies the
stability of the distribution. We use the method of the
best-fit power-law model and Kolmogorov—Smirnov
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(KS) statisticl'®~20] to estimate parameters in the dis-
tribution, including both the lower bound I,,;;, and the
power-law exponent (;. In order to estimate carefully
and accurately, we also apply the usual method of
least-squares (LS) on the logarithm of the histogram.
The exponents obtained by those two methods are
nearly the same (see Fig.3), and we report the two
values and the average value (see Table 1). In Table
1, N means no bifurcation phenomenon appears and Y
means the phenomenon can be observed. Compared
with other five segments, the exponent of segment
six is the smallest. Apparently, the bifurcation phe-
nomenon of Hang-Seng index emerges when (; < 2.

Furthermore, given a power-law distribution of I,
we generate artificial absolute increment time series
I(t) using the method introduced in Ref.[20]. The
sign of increment (could be + or —) is randomly as-
signed, that is to say, the increment i(t) is equal to
I(t) or —I(t). Accordingly, z(t) and r(t) are

t+At
2(t) =Y i(r), 3)
and
rae(t) = ([i(t) = (i(t)) acl) ac- (4)

The number of data points and the lower bound are
set to be same as the real ones. The bifurcation phe-
nomenon is clearly observed in Figs.5(a) and 5(c),
which holds for the scale ranging narrowly from 3
to 15 and from 3 to 18, respectively. Artificial data
obeying power-law distribution with exponents rang-
ing from 0 to 3 are carefully investigated, it is found
that the obvious bifurcation phenomenon only holds
when the power-law exponent (; satisfies 1 < (7 < 2.
There is no bifurcation phenomenon with {; > 2 and
0 < ¢; < 1 whatever the scale is (see, for example,
Figs.5(b) and 5(d)).

Our findings suggest that the bifurcation phe-
nomenon in financial index is not universal, but spe-
cific under certain conditions. For Hang—Seng index
and randomly generated time series, the phenomenon
just happens, within an appropriate period of time
scale, when the power-law exponent of absolute incre-
ment distribution is between 1 and 2. The simulations
on randomly generated time series suggest the bifur-
cation phenomenon itself is subject to the statistics

of absolute increment, thus it may not be able to re-
flect the essential financial behaviours (see also the
relative comments from Refs. [15,21]). However, one
should note that, even under the same distribution of
absolute increment, the range where bifurcation phe-
nomenon occurs is far different from real market to
artificial data: for actual index the appropriate pe-
riod is wide, while for the artificial data, it is very
narrow (compare Fig. 2(f) with Fig.5(a)). We expect
that this difference could reflect certain market infor-
mation, however, the underlying reason is not clear to
us thus far.
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