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Abstract 

Salicylic acid (SA) is an important mediator of plant defense response. In Arabidopsis 

thaliana, this compound was proposed to derive mainly from isochorismate, itself 

produced from chorismate through the activity of ICS1 (Isochorismate Synthase1). Null 

ics1 mutants still accumulate some SA, suggesting the existence of an enzymatic activity 

redundant with ICS1 or of an alternative ICS-independent SA biosynthetic route. Here we 

studied the role of ICS2, second ICS gene of the Arabidopsis genome, in the production 

of SA. We have shown that ICS2 encodes a functional ICS enzyme and that, similarly to 

ICS1, ICS2 is targeted to the plastids. Comparison of SA accumulation in the ics1, ics2

and ics1 ics2 mutants indicates that ICS2 participates in the synthesis of SA but in limited 

amounts, that become clearly detectable only when ICS1 is lacking. This unequal 

redundancy relationship was also observed for phylloquinone, another isochorismate-

derived end-product. Furthermore, detection of SA in the double ics1 ics2 double mutant 

that is completely devoid of phylloquinone provides genetic evidence of the existence of 

an ICS-independent SA biosynthetic pathway in Arabidopsis.  
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Introduction 

SA has been linked in various species with diverse physiological aspects, like 

thermogenesis, stomatal closure, senescence, leaf abscision or resistance to abiotic 

stresses (Raskin, 1992; Morris et al., 2000, Martinez et al., 2004). SA is also a well-

established regulatory component of the induced defense response in many plant species 

(Sticher et al., 1997). An increase in endogenous concentration of SA after an infection 

has been observed in many plants and correlated to the activation of defense mechanisms. 

The importance of the involvement of SA in the induction of resistance to oomycetes, 

bacterial or viral pathogens was demonstrated with mutants and transgenic plants that 

exhibit altered levels of SA (Sticher et al., 1997; Métraux and Durner, 2004; Garcion and 

Métraux, 2006). The pathway for SA biosynthesis and its regulation during infection has 

therefore become a central question in the understanding of induced plant resistance 

mechanisms. The biosynthesis of SA was first proposed to proceed through the benzoate 

pathway, as shown by studies based on radiolabeled compounds (Garcion and Métraux, 

2006). In A. thaliana, a second pathway was proposed that is based on isochorismate, 

similar to the pathway described in some Pseudomonas species (Wildermuth et al., 2001). 

In this pathway, chorismate is converted into isochorismate through the action of an 

isochorismate synthase (ICS), and SA is generated from isochorismate by an 

isochorismate pyruvate-lyase. This scheme gained a strong support from studies with ics1

mutants that accumulate only low levels of SA, although the conversion from 

isochorismate to SA has not yet been demonstrated in Arabidopsis (Wildermuth et al., 

2001). The ICS1 gene product was confirmed to possess an ICS activity and to be 

targeted to the plastidic compartment (Strawn et al., 2007). Synthesis of SA following 

exposure to ozone in Arabidopsis was also suggested to proceed through the activity of 

ICS enzymes (Ogawa et al., 2005). The ICS pathway was recently shown to be active in 

tomato (Uppalapati et al., 2007) and Nicotiana benthamiana (Catinot et al., 2008). 

Furthermore, the isochorismate generated by the ICS is a precursor of phylloquinone, 

known as vitamin K1, which is a component of photosystem I (Gross et al., 2006). The 

involvement of isochorismate in the synthesis of this compound was further confirmed in 
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transgenic tobacco plants overexpressing an ICS of Catharanthus roseus and 

accumulating higher amounts of phylloquinone (Verberne et al., 2007). C. roseus or 

members of the Rubiaceae family also use isochorismate as a precursor for compounds 

such as anthraquinone or dihydroxybenzoates (Muljono et al., 2002; Mustafa and 

Verpoorte, 2005). However these molecules are taxon-specific and so far have not been 

investigated in A. thaliana.

The Arabidopsis genome contains a second ICS gene named ICS2 (Wildermuth et al., 

2001), but its biochemical activity relative to isochorismate production and its 

contribution to SA synthesis has not yet been clarified. In this article, we have addressed 

this question by isolating a full-length clone of ICS2 and testing the activity and 

localization of its product relative to that of ICS1. We have also determined the amount 

of remaining SA in the ics1, ics2 and ics1ics2 mutants. 

Results 

Sequence Analysis of ICS1 and ICS2  

Two isochorismate synthase genes, ICS1 (At1g74710) and ICS2 (At1g18870), are present 

in the genome of A. thaliana. These two genes belong to two blocks of approximately 3.5 

Mb containing ordered fragments of similar sequence and therefore presumably originate 

from an ancient genomic duplication event (see http://wolfe.gen.tcd.ie/athal/dup)(Blanc et 

al., 2003). We first obtained a complete sequence of the ICS2 in order to compare the 

nucleotide sequences of ICS1 and ICS2. No full-length ICS2 cDNA sequence was 

available from public databases and the current conceptual translation of the ICS2 coding 

sequence, relying on ESTs, predicted an ICS2 protein sequence lacking a N-terminal 

extension compared to ICS1. We have isolated the 5’ end of the ICS2 messenger by using 

the rapid amplification of cDNA ends (RACE)-PCR technique, and then its full-length 

coding sequence by RT-PCR (accession EU589462). We found that the most 5’-located 

EST (N96097) matched our ICS2 cDNA sequence, but started at position 216 only, 

therefore did not include the first ATG start codon located at position 58 and suggested 

an erroneous start codon. The translation of the complete ICS2 coding sequence (562 
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amino acids) includes a N-terminal extension predicted to be a plastid-targeting peptide, 

unlike the current annotation for ICS2, but similarly to ICS1. Overall, ICS1 and ICS2 

share 78 % of identity and 88 % of similarity at the amino acid level and are close to the 

characterized Catharanthus roseus CrICS (72 % of similarity with both ICS1 and ICS2; 

Fig. 1A) (van Tegelen et al., 1999). ICS1, ICS2 and CrICS contain the so-called 

chorismate-binding domain (Pfam accession PF00425), and conserved key residues 

consistent with an ICS catalytic activity (Kolappan et al., 2007).  

At the genomic level, the ICS2 gene contains 15 exons, compared to 13 for ICS1, but the 

overall exon/intron organization has been retained since the event that duplicated the ICS

genes (Fig. 1B). Minor exceptions are the splitting of exons 3 and 4 of ICS1 into exons 3 

to 6 of ICS2, or alternatively the fusion of exons 3-6 of ICS2 into the exons 3 and 4 of 

ICS1.

Subcellular Localization of ICS1 and ICS2 

Analysis of the ICS1 and ICS2 sequences with the TargetP (Emanuelsson et al., 2000) 

and Predotar (Small et al., 2004) softwares suggested that both proteins contained a 

plastid targeting signal. The predicted localization in plastids is consistent with the 

production of the chorismate substrate in these organelles.  Plastid localization of ICS1 

and ICS2 was tested by fusing their coding sequence to GFP and transiently expressing 

these constructs in tobacco cells. Observations of the transformed cells with a laser 

confocal microscope clearly showed that the GFP fluorescence colocalized with 

chlorophyll fluorescence, indicating that both fusion proteins were located within the 

chloroplasts (Fig. 2). As a control, we expressed GFP alone following the same protocol 

and observed a cytosolic signal. 

Characterization of ICS1 and ICS2 Enzymatic Activity 

ICS1 was initially proposed to catalyze the conversion of chorismate into isochorismate 

based on sequence similarity with a characterized ICS from Catharanthus roseus

(Wildermuth et al., 2001). To determine experimentally whether ICS1 but also ICS2 truly 

possess such an ICS enzymatic activity, we relied on a functional complementation assay. 

In E. coli, an endogenous ICS activity is required for production of enterobactin, a high-
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affinity iron ligand secreted in the medium and internalized following iron chelation 

(Raymond et al., 2003). Iron scavenging by microorganims can be monitored easily using 

the CAS (chrome azurol sulfonate) medium devised by Schywn and Neilands (1987). 

This medium contains a dye that forms an intense blue complex with iron, and turns 

orange when iron has been transferred to another iron-binding molecule. For our 

functional assay we used PBB8, a mutant of E. coli that lacks endogenous ICS activity 

and is therefore unable to produce enterobactin (Muller et al., 1996) (Fig. 3). As a 

positive control, we have used the E. coli EntC gene encoding an ICS, that restored 

enterobactin production after introduction into the PBB8 strain, and entailed the 

formation of an orange halo around positive colonies (Fig. 3). PBB8 cells expressing 

ICS1 under the control of the strong IPTG-inducible Ptac promoter also showed an 

orange halo even without induction by IPTG, indicating that ICS1 could complement the 

PBB8 ICS deficiency. No significant coloration was observed for cells expressing ICS2

under the same conditions. However, induction by IPTG at 0.2 mM lead to the 

appearance of the orange signature for siderophore production (Fig. 3) thus 

demonstrating that ICS2 encodes functional ICS enzymes similarly to ICS1.

The apparent difference of response to IPTG between ICS1 and ICS2 in the CAS assay 

was not due to variations of the expression system since both were cloned in the same 

vector, under the control of the same promoter and 5’UTR, after removal of the transit 

peptide-coding sequence. Expression problems due to codon bias were also prevented by 

using the pRARE plasmid throughout the experiment (Novy et al., 2001). Instead, we 

observed that the ICS2 protein accumulated at much lower levels than ICS1 in E. coli

cells by using tagged versions of ICS1 and ICS2 (data not shown). 

Expression of ICS1 and ICS2 in E. coli also allowed to test whether these two enzymes 

could generate SA directly from chorismate. No SA accumulated in cell cultures, unlike 

cells expressing the positive control PchB from Pseudomonas aeruginosa (Gaille et al., 

2002), therefore suggesting that ICS1 and ICS2 have no isochorismate pyruvate lyase 

(IPL) activity (data not shown). 

Phylloquinone Accumulation in ics Mutants
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In order to determine the relative contribution of ICS1 and ICS2 to isochorismate 

production, we used the following mutants: ics1 (sid2-1 allele (Nawrath and Métraux, 

1999)) and ics2 (carrying a T-DNA insertion in the ICS2 gene of Arabidopsis

(SALK_084635)). Neither of these single mutants exhibited a striking visual phenotype 

compared to the wild type (Fig. 4A). We focused our study on phylloquinone and SA, 

presumably both derived from isochorismate in A. thaliana. Phylloquinone was measured 

in the ics1 and ics2 mutant lines by fluorescence HPLC after reduction of phylloquinone 

to the phyllohydroquinone form according to Lohmann et al (2006). The pylloquinone 

content in leaves of ics1 was reduced to ca. 35 % of WT indicating that the ICS1 gene 

product provides the predominant amount of isochorismate required for phylloquinone 

synthesis (Fig. 4B). The amount of phylloquinone of the homozygous ics2 mutant was 

not different from WT (Fig. 4B). Although the phylloquinone content in ics1 was 

strongly reduced, the total chlorophyll content was not affected (1169 ± 62, 1182 ± 61 

and 1208 ± 103 µg.g FW-1 in WT, ics1 and ics2, respectively).  

The functional overlap between ICS1 and ICS2 was investigated in double homozygous 

ics1ics2 mutants. F2 plants derived from a cross of ics1 and ics2 were raised on sucrose 

containing medium and screened for double homozygous lines by phylloquinone 

measurements and by PCR using oligonucleotides designed for the ics2 locus. Double 

homozygous ics1ics2 mutants remained smaller than the WT and single mutants, and 

displayed a pale green to yellowish pigmentation (Fig. 4A). Beside this strong reduction 

in growth, they could only be maintained on sucrose medium. The novel growth defects 

present in the double mutant compared to the single mutants indicated that both genes 

were dispensable but not together, and that at least one was required and sufficient for 

normal growth under these conditions. This defines a symmetrical, or equal redundancy 

between ICS1 and ICS2 in respect to the ability to grow under standard conditions. 

Double homozygous mutant lines (ics1 ics2) were totally devoid of phylloquinone (Fig. 

4B). Plants homozygous for the ics1 mutation, but heterozygous for ics2 contained 

significantly less phylloquinone (19 % of WT, data not shown) than ics1 single mutants 

(35 % of WT, see above)(also see Gross et al., 2006), suggesting that the ICS2 enzyme 

becomes limiting for isochorismate production in the ics1 mutant background.  
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SA Accumulation in ics Mutants

SA is presumed to derive from isochorismate in Arabidopsis, since SA accumulation was 

shown to be severely impaired in the ics1 mutant upon inducing conditions (Nawrath and 

Métraux, 1999; Wildermuth et al., 2001).  We have analyzed the induction of SA 

accumulation in the ics1, ics2 and ics1 ics2 mutants after UV-treatment, a known 

stimulus for SA accumulation (Nawrath et al., 2002). As expected, the ics1 mutant 

accumulated roughly 10% of total SA compared to the wild type (0.47±0.14 versus 

4.17±1.26 µg.g FW-1 respectively) (Fig. 4C). The mean value for the ics2 mutant was 

similar to the wild-type reference (4.13±1.27 versus 4.17±1.26 µg.g FW-1) (Fig. 4C). 

Therefore in the WT the ics2 mutation does not have a high impact on SA accumulation 

upon UV exposure or in a non-induced state (0.54±0.09 versus 0.56±0.12 µg.g FW-1). 

This result was expected following the simple reasoning that if (i) ICS1 and ICS2 were 

independently regulated, and if (ii) ICS1 accounted for approximately 90% of the total 

amount of isochorismate produced in these conditions (phenotype of the ics1 mutant), 

then ICS2 at best would contribute to only 10% of isochorismate production in these 

conditions, and consequently an ics2 mutant should not be strongly affected in SA 

accumulation.   

We then determined if ICS2 was required for the production of the remaining SA in the 

ics1 mutant, and evaluated the genetic relationship between ICS1 and ICS2 in the course 

of SA biosynthesis after UV-induction using the ics1ics2 double mutant. Without any 

induction, ics1 ics2 double mutants accumulated approximately 43% of total SA relative 

to the ics1 mutant (0.12±0.08 versus 0.28±0.09 µg.g FW-1)(Fig. 4c). The difference in SA 

accumulation between the ics1 and ics1 ics2 mutants can be assigned to the activity of the 

ICS2 gene product. The same effect was observed after UV stimulation, since the ics1 

ics2 double mutant produced total SA in a similar range of about 36% relative to the ics1

mutant (0.17±0.12 versus 0.47±0.14 µg.g FW-1)(Fig. 4c). The structure of SA in the 

double mutant was verified by GC-MS (Fig. 5). These results imply that ICS2 can be 

involved in the SA biosynthesis through isochorismate production, however its 

contribution is marginal compared to ICS1. Since the values before and after UV-
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induction are not statistically very different both for the ics1 and ics1 ics2 mutants, we 

can further conclude that unlike ICS1, ICS2 does not display a strong inducible activity 

following UV irradiation. The detection of SA in the double ics1 ics2 mutant, that is 

devoid of plastid ICS activity as suggested from the absence of phylloquinone, indicates 

that an alternative SA biosynthetic pathway is active. Our data show that this pathway is 

not inducible by UV irradiation and accounts for minor amounts of total SA production 

(about 20% in uninduced state and 4% after UV induction). 

Discussion 

SA plays a major role in a number of physiological responses and defense reactions, yet 

some aspects of its biosynthesis still remain unknown. In particular, this concerns the 

implication of the two Arabidopsis ICS genes in the biosynthesis of SA. In this work we 

have characterized the A. thaliana ICS1 and ICS2 gene products and evaluated their 

respective contribution to isochorismate-derived compounds in this species, namely SA 

and phylloquinone. 

The existence of two ICS genes in Arabidopsis raises the issue of their specificity and the 

extent of their redundancy. However, not all higher plants have two distinct ICS genes. In 

rice (Oryza sativa japonica) there is only one ICS gene and this gene has not been studied 

so far. In this species, SA derives from a phenylalanine ammonia lyase (PAL)-dependent 

pathway (Silverman et al., 1995; Sawada et al., 2006). However the regulation of SA 

synthesis and metabolism in rice might be different from other plant species since SA is 

present in very high levels as a free acid, and might serve alternative functions (Yang et 

al., 2004). In poplar, a single ICS gene has been detected (Tsai et al., 2006). For this 

species the involvement of ICS in the synthesis of its numerous potential SA glycoside 

and of phylloquinone has not yet been explored. So far, no generalization can be drawn 

from these model organisms since each of them is known to have a specific metabolism 

for SA. The recent draft sequence of the grapevine genome also suggests that there is 

only one ICS gene in this species, although three ancestral genomes have been detected 

(Jaillon et al., 2007). The uniqueness of the ICS gene in poplar, rice and grapevine may 
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constitute a state of evolution where other duplicated ICS genes have been lost, and a 

single gene takes over the production of the common precursor of phylloquinone and SA. 

The existence of two ICS genes in the Arabidopsis genome may thus appear as an 

exception arising from our consideration of this genome at this time instead of in the 

course of its evolution. The two ICS genes occur within duplicated blocks that originate 

from a large genomic duplication (Blanc et al., 2003). On the one hand, the less obvious 

role of ICS2 compared to ICS1 might indicate that ICS2 could be lost in the future 

without loss of fitness. On the other hand, this gene could also provide a benefit for the 

plant in the field or yet undiscovered conditions, which would justify why ICS2 has not 

been already lost. It is interesting to note that in Catharantus roseus only one gene, but 

two different ICS isoforms have been detected after elicitation of cell cultures (van 

Tegelen et al., 1999). It is possible that in this species the supplementary function of 

isochorismate as a precursor of 2,3-dihydroxybenzoic acid is associated with a specific 

regulation of the ICS gene product.  

It is not known whether only one of the two Arabidopsis ICS would contribute to a 

specific biological process.  The data from the ics mutants (Fig. 4) indicate that both 

participate in the synthesis of SA and phylloquinone. This is consistent with the 

observation that both are targeted to the same subcellular compartment. Moreover, a 

recent study has suggested that the gene products involved in the phylloquinone 

biosynthesis may form enzymatic complexes in the stroma (Kim et al., 2008). However 

the ubiquitous stromal localization of both of the ICS:GFP fusions (Fig. 3) indicates that 

neither ICS1 nor ICS2 is presumably restricted to these complexes. This localization 

suggests that the isochorismate produced by both of the enzymes then diffuses up to the 

subsequent active centers that catalyze phylloquinone formation. 

A tight regulation of duplicated genes is observed in prokaryotes and correlates with their 

genomic organization in operons. In Escherichia coli, two ICS genes have been described 

and each of them is linked to a distinct pathway. The EntC gene is part of an operon 

associated with the synthesis of enterobactin, a dihydroxybenzoate-derived siderophore, 

and is regulated following iron requirement (Kwon et al., 1996). The MenF gene is 
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involved in the synthesis of menaquinone (also known as vitamin K2), an electron-carrier 

in the respiratory chain during anaerobic growth (Jiang et al., 2007). MenF is induced 

only during anoxygenic conditions. Due to this tight regulation, the two ICS genes show 

a low redundancy (Dahm et al., 1998; Buss et al., 2001). A somewhat different situation 

has been described for Bacillus subtilis, where one of the two ICS can provide 

isochorismate for dihydroxybenzoate and menaquinone production, but the other one is 

active only in menaquinone synthesis (Rowland and Taber, 1996). In Arabidopsis, our 

study established that although ICS1 and ICS2 are involved in both SA and 

phylloquinone production, the absence of ICS2 produced a less dramatic effect than the 

absence of ICS1 on SA and phylloquinone accumulation. That is, the activity of ICS1 

could largely compensate for the absence of ICS2, but the ICS2 activity could not make 

up for a genetic lesion in ICS1. Therefore ICS1 and ICS2 constitute an example of 

unequal redundancy as defined by (Briggs et al., 2006). 

Transcriptional regulation might provide part of a mechanistic interpretation of these 

results. Microarray data available through Genevestigator (Zimmermann et al., 2005) 

indicate that both ICS1 and ICS2 are expressed at low levels in non-inducing conditions. 

The resulting low-level constitutive ICS activity correlates with the continuous 

requirement of phylloquinone from the plant, in order to sustain a continuous growth and 

development. Phylloquinone is an essential component of photosystem I where it 

functions as an electron acceptor (Gross et al., 2006). Visual inspection of the single ics1

and ics2 mutant would suggest that ICS1 and ICS2 are equally redundant, however 

phylloquinone measurement revealed that ICS1 played a greater role in phylloquinone 

accumulation than ICS2. A threshold effect for phylloquinone requirement for growth 

and development is likely responsible for this discrepancy. The different requirements for 

the respective ICS gene products suggests that in these non-inducing conditions ICS1 is 

more accumulated or active than ICS2, maybe because of differences in the transcript 

accumulation rate, translation efficiency, other post-translational control or catalytic 

activity or regulation. A less straightforward possibility to interpret the phenotype of 

phylloquinone accumulation of the single mutants would be that the absence of one ICS 

gene product is compensated by increased activity of the other remaining functional ICS

12

ht
tp

://
do

c.
re

ro
.c

h



14

gene; differences in the efficiency of this negative feed-back control loop for regulation 

of ICS1 or ICS2 would also lead to apparent unequal importance of the two genes. 

Specific induction of ICS1 mRNA accumulation, but not of ICS2 mRNA, under some 

SA-inducing conditions such as biotic (Wildermuth et al., 2001) or abiotic stresses, e.g. 

UV-C, ozone (data not shown) (Zimmermann et al., 2005) provides an obvious 

explanation to the stronger requirement for ICS1 rather than ICS2 for SA biosynthesis, 

and therefore explains the phenotype of the mutants relative to their SA accumulation. 

Alternatively, post-transcriptional mechanisms or enzymatic properties could also be 

postulated to explain the major role of ICS1 compared to ICS2. Interestingly, specific 

stimuli can also induce the ICS2 gene, either in conjunction with ICS1 (i.e. senescence), 

or without induction of ICS1 (i.e. ABA treatment; data not shown) (Zimmermann et al., 

2005), suggesting that ICS2 could play a role yet to be discovered. Careful inspection of 

the ics2 mutant subjected to such stimuli did not reveal obvious phenotypical changes 

(data not shown). So far these data suggest that a major difference between ICS1 and 

ICS2 rely on transcriptional regulation. 

SA biosynthesis in A. thaliana has been proposed to proceed for a large extent through 

the catalytic activity of the ICS genes (Wildermuth et al., 2001).  However the ics1

mutant still exhibit 5-10% of SA compared to the WT after an adequate stimulation. The 

presence of SA in this mutant indicates either a redundant ICS activity or an alternative 

biosynthetic pathway such as the phenylpropanoid pathway as proposed by previous 

studies in A. thaliana (Mauch-Mani and Slusarenko, 1996; Ferrari et al., 2003). Here we 

have assessed the contribution of ICS2 in the production of SA in the ics1 mutant using a 

genetic approach. Our data indicate a low but detectable residual level of SA in the 

double mutant ics1 ics2 supporting the existence of an ICS-independent biosynthetic 

pathway for SA. The susceptibility of the ics1 mutant suggests that SA produced through 

ICS1 is biologically active and important for defense reactions (Wildermuth et al., 2001). 

Other studies in A. thaliana have proposed that biologically active SA is mainly made 

from a pathway derived from phenylpropanoids. However, these results might be 

questioned for the following reasons. In the first study, SA levels were determined using 

HPLC separation and detected by absorption at 280 nm (Mauch-Mani and Slusarenko, 
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1996). At this wavelength SA is hardly detectable for the amounts present in leaf extracts 

of A. thaliana and fluorescence detection is required for a reasonable readout. This leaves 

some uncertainty over the nature of the metabolite measured as SA in this report. In 

another study, the production of biologically relevant SA from an ICS-independent 

pathway was mainly inferred from biological effects on resistance against Botrytis 

cinerea using treatments with 2-aminoindane 2-phosphonic acid, an inhibitor of PAL 

(Ferrari et al., 2003). The effect of these treatments on SA accumulation in the tissue was 

however not determined.  

In conclusion, we have demonstrated the function and localization of ICS2 involved in 

SA biosynthesis. Using ics1, ics2 and ics1 ics2 mutants we have demonstrated that ICS2 

contributes to SA but in limited amounts, detectable only when ICS1 is lacking. This 

unequal redundancy was also observed for phylloquinone production. Furthermore, 

detection of SA in ics1 ics2 that is completely devoid of phylloquinone provided genetic 

evidence of the existence of an ICS-independent SA biosynthetic pathway in A. thaliana.

Material and Methods 

Plant material and growth conditions 

Plants were grown on a pasteurized soil mix of humus/perlite (3:1) under a 12-h-light and 

12-h-dark cycle, with a night temperature of 16°C and a day temperature of 20-22°C. 

Arabidopsis accession Col-0 was obtained from the Arabidopsis Biological Research 

Center (Columbus, OH). The T-DNA insertion mutant ics2 (SALK_084635) (Alonso et 

al., 2003) was obtained from the Nottingham Arabidopsis Seed Center. 

RACE-PCR reactions 

We used the First-Choice RLM RACE kit (Ambion, Rotkreuz, Switzerland) to determine 

the 5’end of the ICS2 messenger, following instructions recommended by the 

manufacturer. 

Subcellular localization 
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GFP fusions were realized by using the Gateway technology. ICS1 and ICS2 cDNAs 

were amplified from reverse-transcription products with Pfu polymerase (Stratagene, 

Amsterdam, Netherlands) using primers ICS1-6  

(CACCATGGCTTCACTTCAATTTTCT) and ICS1-8 

(ATTAATCGCCTGTAGAGATG), and ICS2-5 

(CACCATGGCGTCGCTTCAGTGTTCA) and ICS2-7 

(GTTGATTGGTTGCAAAGCTGA) respectively, then cloned into the entry vector 

pENTR-D-Topo (Invitrogen, Basel Switzerland). Entry clones were then recombined 

with the pB7FWG2 vector (Karimi et al., 2005), generating cDNA-GFP fusions driven by 

the CaMV35S promoter. The pB7F2 control vector was generated by digestion of 

pB7FWG2 with EcoRV followed by self-ligation, thus removing the ccdB cassette and 

placing GFP directly under the control of the CaMV 35S promoter. The vectors were then 

transformed into Agrobacterium tumefaciens strain GV3101. The Agrobacterium

infiltration procedure was realized as described (Burch-Smith et al., 2006) except that the 

50-ml culture step was omitted and that acetosyringone was used at 100 µM. Infiltrated 

patches of leaves were observed after 3 to 4 days with a Bio-Rad MRC 1024 laser 

confocal microscope. For imaging GFP and chlorophyll, excitation was at 488 nm and 

647 nm respectively, and emissions were collected with a 506-538 nm band-pass filter 

(referred as 522DF32) and a 664-696 nm band-pass filter (referred as 680DF32) 

respectively. 

Functional complementation of the PBB8 strain of E. coli 

Empty vector pJF119EH1 and EntC-overexpressing construct pDF2 (Franke et al., 2003) 

were a kind gift from G. Sprenger (Stuttgart, Germany). ICS1 coding sequence without 

the first 45 amino acids was flanked with NcoI and BamHI restriction sites by 

amplification with primers ICS1-1 

(AACTTTAAGAAGGAGATATACCATGGCATATGCTATGTCTATGAATGGTTGT

GAT) and ICS1-2 (GGATCCTCAATTAATCGCCTGTAGAGA) and was sub-cloned 

into the pGEM-T-Easy vector (Promega). An EcoRI-BamHI fragment from this contruct 

was then inserted into pJF119EH1 to give pJF202. The ICS2 coding sequence without the 

first 50 amino acids was amplified with primers ICS2-8 
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(CTTTAAGAAGGAGATATACCATGGCAAACGGATGTGAGGCTGACCAC) and 

ICS2-9 (GGATCCTTAGTTGATTGGTTGCAAAGC) and then subcloned into pJF202 

as a NcoI-BamHI fragment, giving pJF608. These constructs were introduced into the 

entC- MenF- PBB8 E. coli strain (Muller et al., 1996), previously tranformed with the 

pRARE plasmid (Novy et al., 2001). The PBB8 strain was kindly provided by E. Leistner 

(Bonn, Germany). Individual colonies were allowed to grow for 6h in 400 µl of LB 

medium containing ampicillin and chloramphenicol; bacterial cells were then rinsed in 

MgSO4 (10mM) and plated onto CAS agar (Schwyn and Neilands, 1987) supplemented 

with 10% casaminoacids  (BD Biosciences, Allschwil, Switzerland). 

Determination of the genotype of the ICS2 locus 

The primers ICS2-1 (GTCTTCAAAGTCTCCTCTGAT) and ICS2-2 

(TGAATCACCTCTAGGCCTTGT) were used to detect a wild-type copy of the ICS2

gene by PCR. The T-DNA disrupted allele (Alonso et al., 2003) was detected by using 

primers ICS2-2 and Lba1 (TGGTTCACGTAGTGGGCCATCG). PCR reactions for 

investigating the presence of WT and mutant alleles were run separately. 

Phylloquinone determination 

Phylloquinone was measured in the ics1 and ics2 mutants by fluorescence HPLC after 

reduction of phylloquinone to the phyllohydroquinone form (Lohmann et al., 2006). 

SA extraction and quantification by HPLC 

Samples were taken from leaves of plants grown on MS medium supplemented with 1% 

sucrose 18 h after exposure to UV-C light for stimulation of SA accumulation (Nawrath 

and Métraux, 1999). SA was extracted and total SA (free and conjugated) quantified 

using a modification of the method previously described (Nawrath and Métraux, 1999). 

Leaf tissue (0.2 to 0.3 g with 1.5 µg o-anisic acid as internal standard) was extracted 

twice with 2 ml of 100 % methanol each. After evaporation of methanol from the 

combined extracts, acid hydrolysis was performed with 4 N HCl at 80 °C for 1 hr, and 

SA was extracted twice with 2 ml ethyl acetate/hexane (1:1). The combined organic 

extracts were evaporated, re-dissolved in 50 µl acetonitrile of which 20 µl were injected 
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on a reverse phase HPLC column (ABZ+, 250 mm x 4.6 mm; Supelco, Munich, 

Germany) and separated at a flow rate of 1 ml min-1 (Agilent 1100 HPLC System, 

Böblingen, Germany). Elution began with an isocratic flow of 15 % acetonitrile in water 

(pH 2.6 adjusted with phosphoric acid) for 1 min, followed by a linear increase to 20 % 

acetonitrile over 5 min, isocratic elution at 20 % for 10 min, a linear increase from 20 to 

55 % acetonitrile over 9.5 min, and to 90 % in 5 min. For column regeneration, 

acetonitrile was decreased linearly from 90 % to 0 %, followed by a linear increase to 15 

% acetonitrile and an isocratic flow at 15 % for 4 min.  Fluorescence was recorded with 

excitation/emission/ wavelengths of 305/365 nm and 305/407 nm for o-anisic acid and 

SA, respectively (Dewdney et al., 2000). 

GC–MS analysis of SA 

For GC-MS analysis, the SA samples were extracted as described above. After 

evaporation of solvent, 50 µl of MSTFA (N-Methyl-N-trimethylsilyl-trifluoracetamide) 

was added, and the samples were incubated for 1 hr at 80 °C for silylation. After the 

evaporation of MSTFA, the extracts were re-dissolved in 40 µl hexane. The trimethylsilyl 

(TMS) derivatives of SA were analyzed by GC using an Agilent 6890 system (Agilent, 

Böblingen, Germany) equipped with an Agilent 5973 quadrupole mass detector. The inlet 

was maintained at 260 °C and operated in the splitless mode  (injection volume 1 µl). A 

30 m × 530 µm and 0.2 µm film thickness SP-2380 column (Supelco, Munich, Germany) 

was used for analyses with a Helium flow of 5.1 ml min−1. The initial oven temperature 

was 80°C and was then ramped to 180°C at a rate of 1°C min−1. The oven temperature 

was maintained at 180°C for 1 min and decreased to 80°C with a rate of 20°C min -1.

Silylated SA and o-anisic acid were detected at m/z 267 and 209, respectively. 
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Legends of figures 

Figure 1. 

 A. Sequence alignement of Arabidopsis thaliana ICS1(NP_565090) and ICS2 

(ACC60228) and Catharanthus roseus ICS (CAA06837). The chorismate-binding 

domain is located in the dashed area and the position of residues conserved in ICS 

enzymes (Kolappan et al., 2007) is indicated with a star. 

B. Exon/intron structure of ICS1 and ICS2. Exons are represented by grey boxes and 

introns by thin lines. Sequence similarity between exon 3 of AtICS1 and 3 and 4 of ICS2, 

and 4 of AtICS1 and 5 and 6 of ICS2 is highlighted by dashes. 

Figure 2.  

Subcellular localization of ICS1 and ICS2. GFP fusion constructs were transiently 

expressed in tobacco cells by agroinfiltration. GFP signal (green) and chlorophyll 

autofluorescence (magenta) were observed using confocal microscopy. Magenta and 

green overlay is shown in white. Bars represent 10 µm. 

Figure 3. 

Functional complementation of the PBB8 ICS-deficient strain of E. coli by expression of 

Arabidopsis ICS1 and ICS2. PBB8 cells were transformed with constructs expressing ICS

and ICS-GFP fusions and spread onto CAS medium. Orange coloration indicate iron 

uptake from the medium and therefore restoration of siderophore production by a 

functional ICS activity. Bacteria were plated either on CAS medium without IPTG (A) or 

CAS medium containing 0.2 mM of IPTG (B).  

Figure 4. Functional roles of ICS1 and ICS2

A, phenotype of WT, ics1, ics2 and ics1 ics2 double mutant when grown in vitro. ics1 

ics2 double mutants can be more affected and display a more yellowish pigmentation. B 

and C, accumulation of isochorismate-derived compounds in the mutants: phylloquinone 

(B) and total SA accumulation following UV-induction (C).  
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Figure 5. Identification of SA in ics1ics2 by GC-MS 

SA in leaf extracts was silylated and separated by GC-MS. o-Anisic acid was used as 

internal standard. Panels A (wild type), B (ics1ics2) and C (SA standard) show the ion 

traces for m/z 209 (dotted line, characteristic for silylated o-anisic acid) and 267 (solid 

line, silylated SA). D, E, F depict the mass spectra for the peaks eluting at 10.8 min 

(arrows in panels A and B) for wild type, ics1ics2 and the SA standard, respectively. The 

inset in panel F shows the fragmentation pattern of silylated SA. 
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Figure 1. A. Sequence alignement of Arabidopsis thaliana ICS1(NP_565090) and ICS2 
(ACC60228) and Catharanthus roseus ICS (CAA06837). The chorismate-binding domain 
is located in the dashed area and the position of residues conserved in ICS enzymes 
(Kolappan et al., 2007) is indicated with a star. B. exon/intron structure of ICS1 and ICS2.
Exons are represented by grey boxes and introns by thin lines. Sequence similarity 
between exon 3 of AtICS1 and 3 and 4 of ICS2, and 4 of AtICS1 and 5 and 6 of ICS2 is 
highlighted by dashes.
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Figure 2. Subcellular localization of ICS1, ICS2 
and control GFP. GFP fusion constructs were 
transiently expressed in tobacco cells by 
agroinfiltration. GFP signal (green) and chlorophyll 
autofluorescence (magenta) were observed using 
confocal microscopy. Red and green overlay is 
shown in white. Bars represent 10 µm.
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A B

Figure 3. Functional complementation of the PBB8 ICS-deficient strain of E. coli by expression of 
Arabidopsis ICS1 and ICS2. PBB8 cells were transformed with the various constructs and spread 
onto CAS medium. Orange coloration indicate iron uptake from the medium and therefore 
restauration of siderophore production, thus revealing a functional ICS activity. Bacteria were plated 
either on CAS medium without IPTG (A) or CAS medium containing 0.2 mM of IPTG (B).
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Figure 4. Functional roles of ICS1 and ICS2
A. phenotype of WT, ics1, ics2 and ics1 ics2
double mutant when grown in vitro. B and C, 
accumulation of isochorismate-derived 
compounds in the mutants: phylloquinone (B) 
and salicylate accumulation following UV-
induction (C).
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Figure 5. Identification of SA in ics1ics2 by
GC-MS.
SA in leaf extracts was silylated and separated 
by GC-MS. o-Anisic acid was used as internal 
standard. Panels A (wild type), B (ics1ics2)
and C (SA standard) show the ion traces for 
m/z 209 (dotted line, characteristic for silylated 
o-anisic acid) and 267 (solid line, silylated SA). 
D, E, F depict the mass spectra for the peaks 
eluting at 10.8 min (arrows in panels A and B)
for wild type, ics1ics2 and the SA standard, 
respectively. The inset in panel F shows the 
fragmentation pattern of silylated SA.
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