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Magnesium borohydride: A new hydrogen storage material
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Abstract

Magnesium borohydride (Mg(BH4)2) is a promising material for hydrogen storage because of its high gravimetric storage density

(15.0mass%). We intended to synthesize Mg(BH4)2 by decomposition reaction of LiBH4 with MgCl2 by heat treatment without using a

solvent, where the product consists of LiCl and a compound of magnesium, boron and hydrogen. Hydrogen desorption temperature of

the product is approximately 100K lower than that of LiBH4 and the decomposition consists of a two-step reaction. The products of the

1st and 2nd decomposition reactions are MgH2 and Mg, respectively. This result indicates the following two-step reaction (1st reaction:

Mg(BH4)2-MgH2+2B+3H2, 2nd reaction: MgH2-Mg+H2). The first decomposition peak is dominant and is around 563K. The

2nd decomposition occurs at the temperature greater than 590K.
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1. Introduction

High-density hydrogen storage is one of the most
important issues to introduce fuel cell vehicles. Complex
hydrides, consisting of light elements, are very promising
materials for hydrogen storage because of their high
gravimetric and volumetric hydrogen density [1]. Since
Bogdanovic and Schwickardi reported the reversibility of
the catalyzed hydrogen sorption reaction of NaAlH4 [2],
many efforts have been made to investigate complex
hydrides as hydrogen storage materials [3–5]. Besides the
basic physical properties, the challenges are to tailor the
stability and to investigate the reversibility of the hydrogen
sorption reaction of complex hydrides.

The hydrogen in the complex hydrides is often located in
the corners of a tetrahedron with B or Al in the center. The
negative charge of the anion, [BH4]

� and [AlH4]
�, is

compensated by a cation, e.g. Li or Na. Therefore, the
bonding character and the properties of the complex
hydrides are largely determined by the difference in

electronegativity between the cation and the boron or
aluminum. For example, the docomposition temperatures
of complex hydrides consist of alkaline metal and [BH4]

�

or [AlH4]
� anion have a good correlation with electro-

negativity of cation as is shown in Fig. 1. Based on this
correlation, experimental studies have been preformed to
lower the stability of complex hydrides [6–8]. Also,
theoretical calculations indicate that this tendency can be
applied not only to alkaline metal borohydride, but also to
other borohydrides with alkaline-earth metals or some of
transition metals [9,10].
Magnesium borohydride (Mg(BH4)2) is one of the

promising materials for hydrogen storage because of its
high gravimetric storage density (15.0mass%). The Pauling
electronegativity of magnesium is 1.31, which is greater
than that of lithium (0.98). This implies that Mg(BH4)2 is
less stable than LiBH4. Until now, physical properties of
Mg(BH4)2 as a hydrogen storage material are not known
because it is difficult to synthesize the material. The process
to synthesize Mg(BH4)2 has been mainly examined by two
different approaches. One is the reaction of diborane
(B2H6) with magnesium or its compounds [11]. The other is
the double decomposition of magnesium halides with
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alkaline metal borohydrides in an organic solvent, e.g.
diethyl ether or tetrahydrofuran [11,12]. The second
approach has the advantage that it does not require
diborane, which is a toxic compound. However, the
product which is synthesized by double decomposition in
a solvent is a solvate consisting of Mg(BH4)2 and solvent
(e.g. Mg(BH4)2 � 3THF) and the extraction of Mg(BH4)2
from the solvate is difficult because of its affinity with the
solvent [13].

In this study, we report about a new method intended to
synthesize Mg(BH4)2 by dry process without using a
solvent. Lithium borohydride and magnesium chloride
are used as starting materials. The synthesis products as
well as the hydrogen desorption products were investigated
by X-ray diffraction and hydrogen desorption measure-
ment of the product synthesized by the new method have
been performed.

2. Experimental

The samples were purchased from Aldrich Co. Ltd.: the
purities are 495% for LiBH4, 499.9% for MgCl2,
respectively. The samples were always handled in an argon
glove box to avoid any possible reaction with moisture or
air. The reaction between LiBH4 and MgCl2 was investi-
gated by differential scanning calorimetry (DSC) (Mettler
Toledo Inc. HP DSC827e). Five milligrams of the sample
(for 2:1 mole ratio) was mixed in an argon glove box and
filled in a DSC sample cell made of aluminum. The sample
cell was sealed up in argon atmosphere. Therefore, it has
never been exposed to any gases except pure argon during
the measurement. DSC measurement of LiBH4 and MgCl2
mixture was carried out in the temperature range from 313
to 513K at the heating (or cooling) rate of 5K/min in the
sealed sample cell for three heating and cooling cycles.
Measurements with pure LiBH4 and MgCl2 were also
performed at the same heating condition.

Heat treatments of LiBH4 and MgCl2 mixture were
carried out in a stainless steel cylinder o10MPa of
hydrogen at 453, 523 or 593K. In each heat treatment,
approximately 600mg of LiBH4 and MgCl2 mixture (for
2:1 mole ratio) was pressed in order to make a pellet and

filled into a cylinder in an argon glove box. After evacu-
ating by rotary vacuum pump for 1 h at room temperature,
10MPa of hydrogen was introduced into the cylinder and
heated up. It was kept at the final temperature mentioned
above for 3 h and then slowly cooled to room temperature.
Crystal structures of the samples were investigated at

room temperature by powder X-ray diffraction measure-
ment (SIEMENS, D-500, Cu Ka). To avoid exposure to
air, each sample was filled into a sample holder in an argon
glove box and covered with plastic wrap film during X-ray
diffraction measurement.
Temperature-programmed desorption (TPD) measure-

ment was carried out in vacuum continuously after heat
treatment at 593K in the same stainless steel cylinder. The
desorbed gas volume was measured by a mass flow
controller (Brooks instruments, 5850E, max. flow 5
standard cm3/min), with a maximum full-scale error of 1%.

3. Results and discussion

The DSC profiles of LiBH4 and MgCl2 mixture are
shown in Fig. 2. Profiles of pure LiBH4 and pure MgCl2
were also investigated as references. For LiBH4, there is an
endothermic peak (at T ¼ 386K, DQ ¼ �206.0 J/g) during
heating from 313 to 513K and an exothermic peak during
cooling both of them are corresponding to the phase
transition of LiBH4, whereas no peak was observed for
MgCl2 in this temperature range. For the LiBH4 and
MgCl2 mixture sample, there is an endothermic peak
(at T ¼ 385K, DQ ¼ �56.3 J/g) during the 1st heating
procedure, corresponding to the phase transition of LiBH4.
However, this peak disappears after the cooling of 1st
cycle. This result indicates that there is no pure LiBH4

remains after the 1st heating. In addition, for the LiBH4

and MgCl2 mixture, other exothermic and endothermic
peaks are observed after the 1st cooling at T ¼ 440K
(DQ ¼ 23.6 J/g). These peaks are not observed for pure
LiBH4 or pure MgCl2. This result implies that some
reaction took place during the 1st heating. The endother-
mic peak at 440K observed after the 1st cooling is in
agreement with the DSC measurement result which
Stasinevich and Egorenko has reported for Mg(BH4)2
[14]. Therefore, the following reaction during the 1st
heating procedure is assumed:

2LiBH4 þMgCl2 ! MgðBH4Þ2 þ 2LiCl:

XRD measurement results after heat treatment also
indicate that LiBH4 react with MgCl2 during heat
treatment. Fig. 3 shows the XRD measurement results
after heat treatment at various temperatures. Simply
mixing LiBH4 and MgCl2 in an inert atmosphere (Ar)
does not lead to any reaction. However, after heat
treatment, the peaks corresponding to LiBH4 and MgCl2
disappear. New peaks were observed which correspond to
LiCl. Although there is still a small amount of LiBH4

and MgCl2 after heat treatment at 453K, neither LiBH4

nor MgCl2 was observed after heat treatment at the
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Fig. 1. Decomposition temperature as a function of Pauling electro-

negativity of the cation.
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temperature 4523K. The reason for the absence of a
diffraction pattern for Mg(BH4)2 may be that the
compound synthesized by this method does not crystallized
sufficiently. Orimo et al. [15] have reported that long-range
order of LiBH4 disappears when LiBH4 melts and solidifies
again. The same phenomena may happen in the sample
after heat treatment.
TPD measurement of the LiBH4 and MgCl2 mixture was

carried out after heat treatment at 593K for 3 h o10MPa
of hydrogen. After heat treatment, the sample was cooled
down to room temperature o10MPa of hydrogen.
Subsequently, hydrogen gas was extracted from the
cylinder to vacuum at room temperature, where no gas
evolution was observed from the sample during this
procedure. After evacuation, the sample was heated with
a heating rate of 0.2K/min. The thermograms of the TPD
measurement are shown in Fig. 4. The hydrogen deso-
rption temperature of the sample after the heat treatment is
approximately 100K lower as compared to that of the pure
LiBH4 sample. The sample after heat treatment has two
desorption peaks. It starts to decompose at 500K and the
1st desorption peak appears around 563K. This peak is
dominant and more than half of hydrogen is evolved. The
second desorption peak starts at 600K and it is very sharp
as compared to the 1st desorption peak. The shape of two
independent desorption peaks implies that decomposition
reaction consists of two steps.
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Fig. 2. Differential scanning calorimetry profiles of LiBH4 and MgCl2
mixture with a sealed sample cell. The heating rate is 5K/min.

Measurements with pure LiBH4 and MgCl2 were also performed at the

same heating condition. Solid lines and dotted lines show heating and

cooling, respectively. Five milligrams of the sample was used for each

measurement.
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Fig. 3. Powder X-ray diffraction profiles of LiBH4 and MgCl2 mixture:

(a) before heat treatment; (b) after heat treatment at 453K; (c) after heat

treatment at 523K; and (d) after heat treatment at 593K, respectively.

Each heat treatment was carried out o10MPa of hydrogen.
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Fig. 4. Temperature-programmed desorption spectra of: (a) LiBH4 and

MgCl2 mixture after heat treatment at 593K o10MPa of hydrogen; and

(b) pure LiBH4. The samples were heated after evacuation at room

temperature with a heating rate of 0.2K/min.
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Fig. 5 shows the XRD measurement results of the LiBH4

and MgCl2 mixture (a) before heat treatment, (b) after heat
treatment at 593K for 3 h, (c) after TPD measurement up
to 593K and (d) after TPD measurement up to 773K. As it
is shown in Fig. 5(c), after the desorption measurement up
to 593K, the peaks which correspond to MgH2 are
observed, whereas the diffraction pattern of metallic Mg
is not observed. On the other hand, as is shown in Fig. 5(d),
after heated up to 773K, the peaks corresponding to Mg
are clearly present, where the peaks from MgH2 are no
longer observed. This result supports the following two-
step reaction:

MgðBH4Þ2 ! MgH2 þ 2Bþ 3H2 ð1st stepÞ;

MgH2 ! MgþH2 ð2nd stepÞ:

4. Conclusions

We intended to synthesize Mg(BH4)2 by decomposition
reaction of LiBH4 with MgCl2 by heat treatment without

using a solvent, where the product consists of LiCl and a
compound of magnesium, boron and hydrogen. Hydrogen
desorption property of the product was examined by TPD
measurement. It was found that the decomposition
temperature of the product is approximately 100K lower
than that of LiBH4 and the decomposition consists of a
two-step reaction. The 1st decomposition peak is dominant
and is around 563K. The 2nd decomposition reaction
occurs at the temperature 4590K. The products of the 1st
and 2nd decomposition reaction are MgH2 and Mg,
respectively. Therefore, this is an evidence for Mg(BH4)2
as the possible reaction product, although no diffraction
pattern was found.
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Fig. 5. Powder X-ray diffraction profiles of LiBH4 and MgCl2 mixture:

(a) before heat treatment; (b) after heat treatment at 593K o10MPa of

hydrogen; (c) after desorption up to 593K; and (d) after desorption up to

773K in vacuum, respectively.
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