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Effect of initial configuration on network-based recommendation
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Abstract – In this paper, based on a weighted object network, we propose a recommendation
algorithm, which is sensitive to the configuration of initial resource distribution. Even under the
simplest case with binary resource, the current algorithm has remarkably higher accuracy than
the widely applied global ranking method and collaborative filtering. Furthermore, we introduce
a free parameter β to regulate the initial configuration of resource. The numerical results indicate
that decreasing the initial resource located on popular objects can further improve the algorithmic
accuracy. More significantly, we argue that a better algorithm should simultaneously have higher
accuracy and be more personal. According to a newly proposed measure about the degree of
personalization, we demonstrate that a degree-dependent initial configuration can outperform the
uniform case for both accuracy and personalization strength.
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Introduction. – The exponential growth of the Inter-
net [1] and World-Wide-Web [2] confronts people with
an information overload: they are facing too many data
and sources to be able to find out those most relevant
for them. Thus far, the most promising way to efficiently
filter out the information overload is to provide personal
recommendations. That is to say, using the personal infor-
mation of a user (i.e., the historical track of this user’s
activities) to uncover his habits and to consider them
in the recommendation. For instances, Amazon.com uses
one’s purchase history to provide individual suggestions.
If you have bought a textbook on statistical physics,
Amazon may recommend you some other statistical-
physics books. Based on the well-developed Web 2.0
technology, recommendation systems are frequently used
in web-based movie-sharing (music-sharing, book-sharing,
etc.) systems, web-based selling systems, and so on.
Motivated by the significance to the economy and society,
recommendation algorithms are being extensively inves-
tigated in the engineering community [3]. Various kinds
of algorithms have been proposed, including correlation-
based methods [4,5], content-based methods [6,7], the
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spectral analysis [8], principle component analysis [9],
and so on.
Very recently some physical dynamics, including

heat conduction process [10] and mass diffusion [11,12],
have found applications in personal recommendation.
These physical approaches have been demonstrated to be
both highly efficient and of low computational complex-
ity [10–12]. In this paper, we introduce a network-based
recommendation algorithm with degree-dependent initial
configuration. Compared with the uniform initial config-
uration, the prediction accuracy can be remarkably
enhanced by using the degree-dependent configuration.
More significantly, besides the prediction accuracy, we
present novel measurements to judge how personal the
recommendation results are. The algorithm providing
more personal recommendations has, in principle, greater
ability to uncover the individual habits. Since mainstream
interests are more easily uncovered, a user may appreciate
a system more if it can recommend the unpopular objects
he/she enjoys. Therefore, we argue that those two kinds
of measurements, accuracy and degree of personalization,
are complementary to each other in evaluating a recom-
mendation algorithm. Numerical simulations show that
the optimal initial configuration subject to accuracy can
also generate more personal recommendations.
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Method. – A recommendation system consists of
users and objects, and each user has collected some
objects. Denoting the object set asO= {o1, o2, · · ·, on} and
the user set as U = {u1, u2, · · ·, um}, the recommendation
system can be fully described by an n×m adjacent matrix
A= {aij}, where aij = 1 if oi is collected by uj , and aij = 0
otherwise. A reasonable assumption is that the objects you
have collected are what you like, and a recommendation
algorithm aims at predicting your personal opinions (to
what extent you like or hate them) on those objects
you have not yet collected. Mathematically speaking, for
a given user, a recommendation algorithm generates a
ranking of all the objects he/she has not collected before.
The top L objects are recommended to this user, with L
the length of the recommendation list.
Based on the user-object relations A, an object network

can be constructed, where each node represents an object,
and two objects are connected if and only if they have
been collected simultaneously by at least one user. We
assume a certain amount of resource (e.g., recommenda-
tion power) is associated with each object, and the weight
wij represents the proportion of the resource oj would
like to distribute to oi. For example, in the book-selling
system, the weight wij contributes to the strength of book
oi recommendation to a customer provided he has bought
book oj . Following a network-based resource-allocation
process where each object distributes its initial resource
equally to all the users who have collected it, and then
each user sends back what he/she has received to all the
objects he/she has collected (also equally), the weight wij
(the fraction of initial resource oj eventually gives to oi)
can be expressed as:

wij =
1

k(oj)

m∑

l=1

ailajl

k(ul)
, (1)

where k(oj) =
∑n
i=1 aji and k(ul) =

∑m
i=1 ail denote the

degrees of object oj and ul, respectively. Clearly, the
weight between two unconnected objects is zero. Accord-
ing to the definition of the weighted matrix W = {wij}, if
the initial resource vector is f , the final resource distribu-
tion is f ′ =W f .
The general framework of the proposed network-based

recommendation is as follows: i) construct the weighted
object network (i.e. determine the matrix W ) from the
known user-object relations; ii) determine the initial
resource vector f for each user; iii) get the final resource
distribution via f ′ =W f ; iv) recommend those uncollected
objects with highest final resource. Note that the initial
configuration f is determined by the user’s personal infor-
mation, thus for different users, the initial configuration
is different. From now on, for a given user ui, we use f

i to
emphasize this personal configuration.
Actually, the present method can also be extended to

a diffusion-like algorithm, which focus on the stationary
solution of equation f∗ =W f∗ where a few boundary
elements can be different (see the details in a similar

method for multi-rating system [12]). However, as we
pointed out (see fig. 2 in ref. [12]), the diffusion method
greatly increases the computational complexity, but
cannot provide more accurate recommendation results
compared with the present one. Therefore, in this paper we
will not discuss the extension to a diffusion-like algorithm.

Numerical results. – For a given user ui, the j-th
element of f i should be zero if aji = 0. That is to say, one
should not put any recommendation power (i.e. resource)
onto an uncollected object. The simplest case is to set a
uniform initial configuration as

f ij = aji. (2)

Under this configuration, all the objects collected by ui
have the same recommendation power. In spite of its
simplicity, it can outperform the two most widely applied
recommendation algorithms, the global ranking method
(GRM)1 and the collaborative filtering (CF)2. A more
detailed discussion on collaborative filtering can be found
in refs. [4,5,13,14].
To test the algorithmic accuracy, we use a benchmark

data set, namely MovieLens3. The data consists of 1682
movies (objects) and 943 users, and users vote movies
using discrete ratings 1–5. We therefore applied a coarse-
graining method similar to that used in ref. [15]: a movie
has been collected by a user if and only if the giving rating
is at least 3 (i.e. the user at least likes this movie). The
original data contains 105 ratings, 85.25% of which are
� 3, thus after coarse gaining the data contains 85250 user-
object pairs. To test the recommendation algorithms, the
data set is randomly divided into two parts: The training
set contains 90% of the data, and the remaining 10% of
data constitutes the probe. The training set is treated as
known information, while no information in the probe set
is allowed to be used for prediction.
A recommendation algorithm should provide each user

with an ordered queue of all its uncollected objects. For
an arbitrary user ui, if the relation ui-oj is in the probe
set (according to the training set, oj is an uncollected
object for ui), we measure the position of oj in the
ordered queue. For example, if there are 1000 uncollected
movies for ui, and oj is the 10th from the top, we
say the position of oj is 10/1000, denoted by rij = 0.01.
Since the probe entries are actually collected by users, a
good algorithm is expected to give high recommendations
to them, thus leading to small r. Therefore, the mean

1The global ranking method sorts all the objects in the descending
order of degree and recommends those with highest degrees.
2The collaborative filtering is based on measuring the similarity

between users. For two users ui and uj , their similarity can be
simply determined by sij =

∑n
l=1 alialj/min{k(ui), k(uj)}. For any

user-object pair ui-oj , if ui has not yet collected oj (i.e., aji = 0),
the predicted score, vij (to what extent ui likes oj), is given as
vij =

∑m
l=1,l�=i sliajl/

∑m
l=1,l�=i sli. For any user ui, all the nonzero

vij with aji = 0 are sorted in descending order, and those objects in
the top are recommended.
3The MovieLens data can be downloaded from the web-site of

GroupLens Research (http://www.grouplens.org).
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value of the position value 〈r〉 (called ranking score [11]),
averaged over all the entries in the probe, can be used to
evaluate the algorithmic accuracy: the smaller the ranking
score, the higher the algorithmic accuracy, and vice versa.
Implementing the three algorithms mentioned above, the
average values of ranking scores over five independent runs
(one run here means an independently random division
of data set) are 0.107, 0.122, and 0.140 for network-
based recommendation, collaborative filtering, and global
ranking method, respectively. Clearly, even under the
simplest initial configuration, subject to the algorithmic
accuracy, the network-based recommendation outperforms
the other two algorithms.
Consider the initial resource located on the object oi as

its assigned recommendation power. In the whole recom-
mendation process, the total power given to oi is pi =∑
j f
j
i , where the superscript j runs over all the users

uj . Under uniform initial configuration (see eq. (2)), the

total power of oi is pi =
∑
j f
j
i =
∑
j aij = k(oi). That is

to say, the total recommendation power assigned to an
object is proportional to its degree, thus the impact of
high-degree objects (e.g., popular movies) is enhanced.
Although it already has a good algorithmic accuracy, this
uniform configuration may be oversimplified, and depress-
ing the impact of high-degree objects in an appropriate
way could, perhaps, further improve the accuracy. Moti-
vated by this, we propose a more complicated distribution
of initial resource to replace eq. (2):

f ij = ajik
β(oj), (3)

where β is a tunable parameter. Compared with the
uniform case, β = 0, a positive β strengthens the influence
of large-degree objects, while a negative β weakens the
influence of large-degree objects. In particular, the case
β =−1 corresponds to an identical allocation of recom-
mendation power (pi = 1) for each object oi.
Figure 1 reports the algorithmic accuracy as a function

of β. The curve has a clear minimum around β =−0.8.
Compared with the uniform case, the ranking score can be
further reduced by 9% at the optimal value. It is indeed
a great improvement for recommendation algorithms.
Note that βopt is close to −1, which indicates that the
more homogeneous distribution of recommendation power
among objects may lead to a more accurate prediction.
Besides accuracy, another significant ingredient one

should take into account for a personal recommendation
algorithm is how personal this algorithm is. For example,
suppose there are 10 perfect movies not yet known for user
ui, 8 of which are widely popular, while the other two fit
a certain specific taste of ui. An algorithm recommending
the 8 popular movies is very nice for ui, but he may feel
even better about a recommendation list containing those
two unpopular movies. Since there are countless channels
to obtain information on popular movies (TV, the Inter-
net, newspapers, radio, etc.), uncovering very specific pref-
erence, corresponding to unpopular objects, is much more

Fig. 1: (Color online) The ranking score 〈r〉 vs. β. The optimal
β, corresponding to the minimal 〈r〉 ≈ 0.098, is βopt ≈−0.8. All
the data points shown in the main plot is obtained by averaging
over five independent runs with different data set divisions. The
inset shows the numerical results of every separate run, where
each curve represents one random division of data set.

Fig. 2: (Color online) The average degree of all recommended
movies vs. β. The black solid, red dashed and blue dotted
curves represent the cases with typical lengths L= 10, 50 and
100, respectively. All the data points are obtained by averaging
over five independent runs with different data set divisions.

significant than simply picking out what a user likes from
the top of the list. To measure this factor, we go simul-
taneously in two directions. Firstly, given the length L
of recommendation list, the popularity can be measured
directly by averaging the degree 〈k〉 over all the recom-
mended objects. One can see from fig. 2 that the aver-
age degree is positively correlated with β, thus depressing
the recommendation power of high-degree objects gives
more opportunity to unpopular objects. Also for L= 10,
50 and 100, the corresponding 〈k〉 are 353.50, 258.00 and
214.09 (GRM), as well as 84.62, 87.95 and 83.79 (CF).
Since GRM always recommends the most popular objects,
it is clear that 〈k〉GRM is the largest. On the other hand,
CF mainly depends the similarity between users. Thus one
user may be recommended an object collected by another
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Fig. 3: (Color online) S vs. β. The black solid, red dashed and
blue dotted curves represent the cases with typical lengths L=
10, 50 and 100, respectively. All the data points are obtained
by averaging over five independent runs with different data set
divisions.

user having very similar habits to him, even though this
object may be very unpopular. This is the reason why
〈k〉CF is the smallest. Secondly, one can measure the
strength of personalization via the Hamming distance. If
the overlapped number of objects in ui and uj ’s recom-
mendation lists is Q, their Hamming distance is Hij =
1−Q/L. Generally speaking, a more personal recommen-
dation list should have larger Hamming distances to other
lists. Accordingly, we use the mean value of Hamming
distance S = 〈Hij〉, averaged over all the user-user pairs, to
measure the strength of personalization. Figure 3 plots S
vs. β and, in accordance with the numerical results shown
in fig. 2, depressing the influence of high-degree objects
makes the recommendations more personal. For L= 10, 50
and 100, the corresponding S are 0.508, 0.397 and 0.337
(GRM), as well as 0.654, 0.501 and 0.421 (CF). Note that,
SGRM is obviously larger than zero, because the collected
objects will not appear in the recommendation list, thus
different users have different recommendation lists. Since
CF has the potential to enhance the user-user similar-
ity, SCF is remarkably smaller than that corresponding
to negative β in network-based recommendation.
In a word, without any increase in the algorithmic

complexity, using an appropriate negative β in our algo-
rithm outperforms the uniform case (i.e. β = 0) for all
three criteria: more accurate, less popular, and more
personalized.

Dependence of algorithmic accuracy on the
object degree. – The ranking score reported in fig. 1
provides us with a macroscopic description of the algorith-
mic accuracy. To make clear the role of β, a microscopic
understanding of algorithmic accuracy is very helpful.
Especially, since β is a regulating parameter on the object
degree, we would like to see the dependence of accuracy
on the object degree. Given an object degree k, the

Fig. 4: (Color online) A scatter plot showing the average
ranking score, 〈rk〉, and the object degree, k. The black
squares, red circles, green up-triangles and blue down-triangles
represent the cases of β =−2, β =−0.8, β = 0 and β = 1,
respectively. β =−0.8 corresponds to the optimal case. For a
clear observation, the y-axis is set to be logarithmic. All the
data points are obtained by averaging over five independent
runs with different data set divisions.

average ranking score, denoted by 〈rk〉, is defined as the
mean value of the position averaged over all the entries in
the probe with object degree equal to k.
Figure 4 reports the correlation between accuracy and

object degree. Clearly, the algorithm is more accurate for
popular (large degree) objects. The decay of the ranking
score approximately obeys an exponential form. Actually,
the algorithm with smaller β has a better accuracy for
unpopular objects, while the one with larger β performs
better for popular objects. Therefore, the best accuracy is
corresponding to a proper β, namely the optimal β. For
the current data set, it is about −0.8. Besides the overall
tendency (negative correlation between 〈rk〉 and k), fig. 4
displays a small peak at kp ∼ 20. A possible reason is, the
selections of extremely unpopular movies probably stand
for some specific tastes different from the mainstream,
which are easier to be found out.
To see the performance of the current algorithm in

some extreme circumstances, we sort all the entries in
the probe by a descending order of object degree. That
is to say, the user-object pair put in the top is the one
corresponding to the most popular objects. Figures 5(a)
and (b) report the average ranking score for the top-
1000 entries and the bottom-1000 entries, respectively. As
shown in fig. 5(a), the ranking score shows a monotonously
negative relation with β, meaning the larger β outperforms
smaller β for the popular movies, which is in accordance
with the scatter plot in fig. 4. For the unpopular movies, as
shown in fig. 5(b), the curve displays a minimum around
β =−2, which is remarkably smaller than the optimal
value, β =−0.8, for the overall data set. Actually, the more
unpopular the probe set we choose, the smaller the optimal
value of β.
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Fig. 5: The ranking score 〈r〉 vs. β in two extreme circum-
stances: (a) taking into account only the average ranking score
of 1000 entries in the probe with the highest object degrees;
(b) taking into account only the average ranking score of 1000
entries in the probe with the lowest object degrees.

Conclusions. – In this paper, we propose a recom-
mendation algorithm based on a weighted object network.
This algorithm is sensitive to the configuration of the
initial resource distribution. Even under the simplest case
with binary resource, the current algorithm has remark-
ably higher accuracy than the widely applied GRM and
CF. Since the computational complexity of this algo-
rithm is much less than that of CF4, it has great poten-
tial significance in practice. Furthermore, we introduce
a free parameter β to regulate the initial configuration
of resource. Numerical results indicate that decreasing
the initial resource located on popular objects further
improves the algorithmic accuracy: In the optimal case
(βopt ≈−0.8), the distribution of total initial resource
4Instead of calculating all the elements in W , one can implement

the current algorithm by directly diffusing the resource of each
user. Ignoring the degree-degree correlation in user-object relations,
the algorithmic complexity is O(m〈ku〉〈ko〉), where 〈ku〉 and 〈ko〉
denote the average degree of users and objects. Correspondingly,
the algorithmic complexity of collaborative filtering is O(m2〈ku〉+
mn〈ko〉), where the first term accounts for the calculation of
similarity between users, and the second term accounts for the
calculation of the predictions. For GRM, since it only requires a
sorted list of objects by their degrees, its algorithmic complexity is
simply O(n log n).

located on each object is very homogeneous (pi ∼ k0.2(oi)).
Besides the ranking score, there have been many measures
suggested to evaluate the accuracy of personal recommen-
dation algorithms [11,16–18], including hitting rate, preci-
sion, recall, F-measure, and so on. However, thus far, there
has been no consideration of the degree of personaliza-
tion. In this paper, we suggest two measures, 〈k〉 and
S, to address this issue. We argue that to evaluate the
performance of a recommendation algorithm, one should
take into account not only the accuracy, but also the
degree of personalization and popularity of recommended
objects. Even under this more strict criterion, the case
with βopt ≈−0.8 outperforms the uniform case. Theoreti-
cal physics provides us some beautiful and powerful tools
in dealing with this long-standing challenge in modern
information science: how to do a personal recommenda-
tion. We believe the current work can enlighten readers in
this interesting direction.
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