
Summary The bending and growth characteristics of large
fresh stems from four silver fir (Abies alba Mill.) and three
Norway spruce (Picea abies (L.) Karst.) trees were studied.
Twenty logs taken from different stem heights were subjected
to four-point bending tests. From the bending test records, we
calculated stress–strain curves, which accounted for detailed
log taper, shear deformation and self weight. From these curves
we determined, among other parameters, the modulus of elas-
ticity (MOE), the modulus of rupture (MOR) and the work ab-
sorbed in bending (W ). No significant differences were found
between species for the wood properties examined. Values of
MOE, MOR and W generally decreased with stem height, with
MOR in the range of 43 to 59 MPa and MOE ranging from
10.6 to 15.6 GPa. These MOE values are twice or more those
reported for stems of young Sitka spruce (Picea sitchensis
(Bong.) Carr.) trees. Based on the radial growth properties
measured in discs from the logs, we calculated predicted values
of MOE and MOR for the stem cross section. The predictions
of MOE were precise, whereas those of MOR were approxi-
mate because of a complex combination of different failure
mechanisms. Methods to test and calculate MOE, MOR and W
for the stems of living trees are discussed with the aim of im-
proving analyses of tree biomechanics and assessments of for-
est stability protection.

Keywords: Abies alba, energy absorption, experiment, fresh
wood, model validation, nonlinear behavior, Picea abies.

Introduction

Stem bending is an important factor determining tree stability.
It occurs as a tree interacts with wind or is subjected to rock
impacts or avalanches. The mechanical processes involved
during bending and failure of tree stems remain, however,
largely unexplored.

Bending stress as a function of bending strain describes how
a material behaves while bending, and this function includes
several important bending characteristics. For example, the
modulus of rupture (MOR) is the maximum value of bending
stress, the modulus of elasticity (MOE) represents the se-
cant-modulus of the stress–strain curve, and the work ab-
sorbed in bending (W ) is proportional to the area under the

stress–strain curve. How a stem bends thus depends on its ge-
ometry and mechanical properties, which in turn are influ-
enced by radial stem growth processes reflected in annual ring
width and knottiness.

The effects of stem growth on the bending properties of dry
and sawn wood have been well established by the wood and
timber industry. In contrast, how growth affects the mechani-
cal properties of fresh wood, especially of intact tree stems, is
less well known (Lundström et al. 2007). The structure of
wood in the stem is anisotropic and heterogeneous, with varia-
tion in stiffness and strength properties (Trendelenburg and
Mayer-Wegelin 1955, Green et al. 1999). Because lumber is
sawn in such a way as to minimize heterogeneity in mechani-
cal properties within a piece, we can expect a more complex
distribution of stresses during the bending of an entire fresh
stem than of dry and sawn wood, and thus different bending
stress–strain behaviors. Tests of fresh logs of young Sitka
spruce (Picea sitchensis (Bong.) Carr.) growing in plantations
in Scotland (Cannell and Morgan 1987) with an MOE of about
8 GPa show that cambial age positively influences the cross-
sectional MOE. For intact stems of older trees, however, there
seems to be no information on MOE or on stem bending in
general.

Differences among Norway spruce (Picea abies (L.) Karst.)
and silver fir (Abies alba Mill.) in mechanical bending proper-
ties of dry timber are related to growth patterns, not species
(Trendelenburg and Mayer-Wegelin 1955, Kucera and Gfeller
1994). To assess possible differences in mechanical properties
between these species, data are required on the properties of
radial growth that have a significant influence on tested me-
chanical values.

When tree stems in nature are subject to bending, they react
with a combination of mechanisms and modes of failure (e.g.,
Mattheck and Breloer 1994). Diverse behavior makes it diffi-
cult to predict the consequences of stem bending. In static
bending tests in the laboratory, shearing or torsion can be lim-
ited or accounted for. The shear strain can be calculated (e.g.,
Newlin and Trayer 1956) and the torsion avoided by selecting
straight and round test logs. Independently of how the bending
properties of intact stems are tested, a detailed description of
stem taper under bark is required, because the determination of
MOE, MOR and W depends on measured woody stem diame-
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ter in the fourth, third and second power, respectively. It is dif-
ficult to predict these properties, because little is known about
how the cross-sectional bending stress develops with increas-
ing strain, even for dry and clear wood (Adjanohoun et al.
1998, Dinwoodie 2000).

To assess how mature fresh stems bend and to relate this
bending to properties of radial growth, we carried out static,
four-point bending tests on 20 logs of silver fir and Norway
spruce taken from different stem heights and analyzed radial
growth in the laboratory. We present novel data relating to the
bending stress–strain of the stem and results from perfor-
mance tests of models that predict stem bending based on
properties of radial stem growth.

Materials and methods

Trees and logs

The stems analyzed for their bending and cross-sectional
growth were cut from three large Norway spruce (P. abies) and
four large silver fir (A. alba) trees. These trees grew in a mixed,
single-story forest stand of Norway spruce, silver fir, Scots
pine (Pinus sylvestris L.) and common beech (Fagus sylvatica
L.) on nearly flat ground. The stand is located on the Swiss
Plateau (47°14′ N, 8°53′ W, 460 m a.s.l.) and was previously
studied by Lundström et al. (2007). The seven test trees were
codominant or dominant in relation to their neighboring trees,
straight in stature and apparently healthy. Their bark thickness
at breast height relative to the woody stem radius at this height
was 6 ± 1%. Further tree data are given in Table 1. Symbols
used in this paper are summarized in Table A1.

The trees were felled in mid-November. Before the stems
were transported to the laboratory, the stem base was removed
to minimize taper, and the upper crown was removed to avoid
irregular stem growth due to branching. In the laboratory, the
stems were cut into two, three or four sections, depending on
the total stem length, resulting in 11 silver fir and nine Norway
spruce logs. We measured log length, log diameter at five
points along the log axis and mean bark thickness at both ends.

Cross sections of the logs were almost perfectly circular. The
20 logs originated from stem heights of between 1.0 and
26.8 m (Table 2).

Bending tests

One week passed between tree falling and log testing, during
which time the stems were kept outside in the shade, fully sup-
ported on the ground, to prevent loss of humidity. The fresh
logs were subjected to four-point bending tests according to
the German industry code, DIN 52186 (DIN 1992), with an
exception made for their higher water content. The test geome-
try followed the European code EN 408 (CEN 2003), with a
total span of 5.92 m for logs from Stem heights 1 and 2 (Ta-
ble 2) and 4.80 m for logs from Stem heights 3 and 4, and a dis-
tance between the two symmetrically applied forces of 2.15
and 1.42 m, respectively. The test equipment comprised Parker
Hannifin hydraulic cylinders 8201-5500-H021A (HYDREL,
Romanshorn, Switzerland) and displacement sensors TK-
100-E-2 (PRECISOR Messtechnik, Munich, Germany), and
data were acquired at 1 Hz with a Darwin DA 100 (YOKO-
GAWA Electric, Tokyo, Japan) controller. To avoid local de-
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Table 1. Properties of the four silver fir (Abies alba) and three Norway
spruce (Picea abies) trees subjected to bending tests: AGE = cambial
age measured at 1.3 m stem height; H = total tree height; DBH = di-
ameter at breast height; S = slenderness = H/ DBH; and Lcr = crown
length, measured from lowest green branches to top of tree.

Tree AGE (years) H (m) DBH (mm) S Lcr/H

Silver fir
1 80 35.0 410 85 0.42
2 75 31.0 400 78 0.40
3 105 33.0 440 75 0.42
4 95 31.5 420 75 0.42

Norway spruce
5 100 35.0 420 83 0.43
6 80 37.0 415 89 0.43
7 100 31.5 420 75 0.35

Table 2. Dimensions and height positions of Logs 1–4 of each silver fir (Abies alba) and Norway spruce (Picea abies) test tree: Ltot = total log
length; Dc = log diameter at its center; and zc /H = height of log center relative to total tree height. Log numbers 1–4 are found at Stem heights 1–4,
respectively, which refer to ranges of zc /H.

Tree Log 1 Log 2 Log 3 Log 4

Ltot (m) Dc (mm) zc /H Ltot (m) Dc (mm) zc /H Ltot (m) Dc (mm) zc /H Ltot (m) Dc (mm) zc /H

Silver fir
1 6.85 319 0.19 6.96 288 0.41 5.55 254 0.56 – – –
2 6.96 322 0.14 6.90 282 0.40 5.55 242 0.57 – – –
3 6.89 353 0.15 7.08 319 0.38 5.57 279 0.54 – – –
4 6.15 320 0.26 6.12 273 0.50 – – – – – –

Norway spruce
5 6.45 340 0.13 7.08 307 0.34 5.60 276 0.49 – – –
6 6.92 332 0.16 6.95 295 0.37 5.45 254 0.53 5.50 217 0.65
7 6.94 334 0.16 6.96 285 0.38 – – – – – –



formation and concentration of stresses perpendicular to the
wood grain, each log was placed on a 250-mm-thick, cylindri-
cally sawn veneer board positioned on an articulated joint on
each support. For the same reason, both points of load applica-
tion were provided with cylindrical “gloves” and additional
rubber inlays. The load was applied at a constant deflection
rate, so that the maximum force was obtained within 120 ± 30
s. The tests were then continued until the logs failed. The load
records could be followed until the load returned close to zero.
In contrast, the stem deflection could not be recorded (only vi-
sually estimated) until the log fell apart, because of the re-
stricted measuring range of the displacement sensors.
However, this has no practical implications for the parameters
that are the focus of this study.

Growth properties of log cross sections

After the bending tests, 150-mm-long cross sections were cut
close to the failure zone of the logs and annual ring width
(RW) and knottiness (Q) from pith to bark were measured
with a caliper (Figure 1). Based on SIA (2003), we defined Q
at the radius from the pith (r) as an eighth of the summed sur-
face area of knots (Aknots) intersecting with the 150-mm-long
cylinder:

Q r A r d dz
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where φ is the rotation around the z-axis and z is in mm. For
comparison, the frequently used knot area ratio (KAR; SIA
2003) applied to our logs approximately equals the mean of
Q(0 ≤ r ≤ D0 /2), where D0 is stem diameter under bark. The
woody stem discs were weighed to determine disc density.

Water content (u) was not measured in the radial direction
and only coarsely in the longitudinal direction (one stem disc
per log). We therefore adopted the same distribution for u in
the relative radial and longitudinal directions as for the Nor-
way spruce stem growing in the same stand studied by
Lundström et al. (2007), and verified that this assumption was
correct based on measured disc density. The sapwood and
heartwood extensions (Figure 1), which are used only as an
approximate description of the radial positions, were esti-
mated on the basis of RW(r) and the RW(r) and u(r) measure-
ments by Lundström et al. (2007). Bark density at testing was
an estimated 600 kg m– 3 (USDA 1972, Schmidt-Vogt 1991).

Analysis

In the analysis of mechanics, we refer to tree coordinates z and
x, where z is along the stem with z = 0 at the stem base of the
standing tree and x is in the direction of deflection with x = 0 at
the stem center. We also refer to some calculation algorithms
that are included in the Matlab 7.0 (MathWorks) software
package.

When analyzing the bending behavior of logs, we accounted
for log taper, self weight and deflection due to shear forces.
The taper of each stem (Table 2) was first given a continuous

description with a polynomial fit D(z) based on the diameters
measured along the stem. Each fit was then reduced for bark
thickness b(z), i.e., D0(z) = D(z) – 2b(z), where b(z) is a polyno-
mial based on relative bark thickness at breast height, as de-
scribed by Laasasenaho et al. (2005), which was verified with
the bark measurements at each log end.

The bending properties of the logs were characterized based
on curves of bending stress (σ) as a function of the bending
strain (ε), from zero load to failure. To obtain the σ(ε) curves,
we followed seven calculation steps (Table 3) and used two
equations (Equations 2 and 3):
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Figure 1. (A) Annual ring width (RW) and (B) knottiness (Q) as func-
tions of radial distance from the pith (r) of logs from silver fir (Abies
alba) and Norway spruce (Picea abies) trees. Each log is identified by
tree number (1–7) and linetype: solid = Log 1; dashed = Log 2; dash-
dotted = Log 3; and dotted = Log 4. Filled circles indicate approxi-
mate locations of heartwood–sapwood borders.



where σF is bending stress due to the applied force (F ), σg is
bending stress due to the weight of the log (mg), subscript c re-
fers to the center of the log, I0c is moment of inertia about the
log center excluding bark, L is log span (distance between the
two supports), LF is the distance between the two points of load
application, m is mass of the log within the span reduced for
overhang at the two log ends, g is earth gravity, ρw and ρb are
the bulk densities of fresh wood and bark, respectively, and V
is total volume within the span reduced for overhang of the two
log ends; and:
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where EF is explained in Table 3, C1 is a length factor, C2 is a
correction factor for shear deformation and measured differ-
ence in diameter under bark (0) between the thin end (1) and
the thick end (2) of the log at the supports, with KL = (D02 –
D01 )/D01 (Cannell and Morgan 1987), β is a load coefficient,
which equals 16/81 in four-point bending (Newlin and Trayer
1956), and (E(z)/G(z))′ is an estimated (′) relationship be-

tween the elasticity in bending E and shear G along the grain of
the cross section. This relationship depends primarily on the
value of E/G at the stem heights where the largest bending
strain (in the outermost stem) and shearing strain (in the stem
center) occur. Both E and G of fresh wood are correlated with
RW (Kollmann 1968, Lundström et al. 2007). For the stems
tested, RW in the outermost stem decreased with z, but RW in
the stem center remained nearly constant with z, suggesting
(E(z)/G(z))′ decreases with z. We therefore estimated G(z) in
the heartwood and E(z) in the sapwood on the basis of RW(x,z)
and adopted (E(z)/G(z))′ = 25 – 0.07z/H for all the logs. The
contribution of bark to the bending resistance of the log was
ignored, because both the shear resistance of the bark-to-wood
layer and the shear and bending strength of bark are much
lower than the corresponding values of the underlying wood
for hardwood species (Einspahr et al. 1984). We believe that
these orders of magnitude apply to the softwood species
tested. To explore the influence of differences in diameter at
the thin and thick log ends and of shear deformation on the cal-
culated MOE values (cf. Table 3), EF was calculated by setting
K and C2, respectively (Equation 3), equal to zero.

Idealized stress–strain curves were calculated for each
bending test, and characteristic bending stress–strain curves
were established for the lowest three logs. “Idealized” as used
here means that the stress–strain curve includes one ideal elas-
tic and one ideal plastic deformation, and “characteristic” re-
fers to the mean stress–strain curve of the group according to
height or species. For details on the calculation methods, see
Lundström et al. (2007).

Shear stress as a function of radial distance from the pith and
position along the log (τ(x,z)) was calculated as:
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where T = dM/dz is the transverse force along the log (com-
monly called the shear force), occasioned by the applied forces
and the weight of the log, A0 is the cross-sectional area of the
log and 0 < x < D0 /2. This equation is a simplification, because
it assumes the shearing elasticity (G) is constant across the log
section. The shear strength (τmax(x,z); Equation 5) was esti-
mated according to Kollmann (1968) and Dinwoodie (2000)
on the basis of the dry wood density (ρ0(x,z); Equation 6)
calculated according to Lundström et al. (2007):

τ ρmax( , ) ( , )x z a x z a= +1 0 2 (5)

( )ρ0 1 2( , ) log ( , )x z a x z a= +RW (6)

where
�

a = [0.019 –4.9] in Equation 5 and
�

a = [543 –106] in
Equation 6.

The work absorbed by the logs in bending up to MOR
(WMOR) was calculated from the load-deflection curve F(s) as:
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Table 3. Successive steps in analyzing the properties of the bending
mechanics of tested logs.

Step Description

1 Calculation of bending stress (σ; Equation 2), including contri-
butions from applied force and log weight. Maximum σ, inde-
pendent of type of failure, corresponds to MOR.

2 Calculation of the elasticity in bending EF (Equation 3; DIN 52
186) due to the applied force F, accounting for shear deforma-
tion and detailed log taper.

3 Combination of Steps 1 and 2 into the bending strain εF =
σF /EF and EF(εF). As EF is elasticity in bending corrected for
shear deformation, εF is bending strain as it would be under
pure bending conditions.

4 Calculation of bending strain due to weight of the log: εg =
σg / ,. max

E F0 4 where E F0 4. max
is EF at 40% of maximum F.

5 Concatenation of (ε,σ) = (0,0), (εg,σg) and (εF,σF), into the ar-
ray σ(εE), where E(εE) is the corresponding elasticity in pure
bending.

6 Definition of MOE as E(εE)0.4MOR, i.e., the gradient of the
straight line between σ(εE) = 0 and σ(εE) = 0.4MOR, and in ad-
dition, as E(εE)LIN, the gradient for the visually estimated first
linear part of σ(εE).

7 Computation of σ(ε), where ε is apparent strain, from ε = 0 un-
til the end of the test, with no correction for shear deformation
(ε is slightly greater than εE). Apart from the analysis of MOE
(Step 6), σ(ε) is used throughout the study.
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where sg is the initial deflection at mid-span due to the linear
load caused by the log weight, sMOR is the total deflection at
mid-span at MOR and Fg is the concentrated (fictive) force
that causes the same deflection as the log weight. Here, sg is
calculated using MOE.

The numerical values of WMOR were first compared among
the logs by dividing their WMOR by the woody volume of the
log within the bending span (V0). General comparisons of
WMOR or WMOR /V0 obtained by this method assume normalized
test set-ups, e.g., three-point bending of a beam of a square
section according to DIN (1992). Because this was not the
case, we: (1) define work as the integral of the stress–strain
curve of the tested section, σ ε ε( )∫ d ; and (2) calculate work
absorbed by a bent member based on σ ε ε( )∫ d according to the
methods in the Appendix. The results for WMOR from Equa-
tion 7 and from (2) were compared. The work-related mate-
rial-property completeness (η) was also calculated from the
F(s)-curve:

η =
+
W

F F s
F

g F
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max
( )max

(8)

where Fmax is the maximum applied force,WFmax
is the work ab-

sorbed by logs in bending due to Fmax, sFmax
is the mid-span de-

flection due to Fmax, and η = 1.0 and 0.5 characterize materials
with ideal-plastic and ideal-elastic stress–strain behaviors, re-
spectively.

Experimental values of MOE and MOR of the mid-span
cross sections were compared with the calculated predicted
values, as proposed by Lundström et al. (2007). These calcu-
lated values are obtained in two steps.

In Step 1, reference is made to one cylindrical shell of the
cross section in the log mid-span, located at stem height z (cf.
Table 2) and at radial position j, where j ranges from pith
( j = 1) to bark ( j = n) every 1 mm. The measured data of radial
growth are first interpolated radially every mm and then attrib-
uted to this shell, of which MOE(z)j and MOR(z)j are com-
puted as regressions:

( )MOE RW( ) log ( ) ( )z a z a u z aj j j= + +1 2 3 (9)

( )MOR RW( ) log ( ) ( )z a z a Q z aj j j= + +1 2
2

3 (10)

where
�

a = [–5860 –25.0 15100] in Equation 9 and
�

a =
[–17.3 –36.0 66.4] in Equation 10. The standardized regres-
sion coefficients, which indicate the impact of each explana-
tory variable on the response variable, are

�

a = [–1.61 –0.49]
and

�

a = [–1.78 –0.24], respectively, where, for example, a2 =
a2SE(u)/SE(MOE) for the regression coefficient of u in Equa-
tion 9.

In Step 2, values of MOE(z)j and MOR(z)j obtained in Step 1
are superposed radially, cylindrical shell by shell ( j ) to form

the log section. For MOE, this is described as:
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where subscript “sect” is used to distinguish from subscript
“j”, the value of each shell and x = r, because of the circular log
shape. The calculation of MORsect assumes, in principle, that
we know the distribution of bending stress across the stem sec-
tion, σ(x), when MORsect is reached. In the absence of this in-
formation, and based on σ (x) of dry timber as its cross section
reaches MOR (Kollmann 1968), we use two approaches (lin-
ear strain method and scaled MOR method) to calculate
MORsect. The linear strain method applies a linear increase in ε
from pith to bark, with a gradient governed by ε at MOR for
the cylindrical shell at a radial distance of κ1xn, where κ1 is a
factor between 0 and 1:
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In our study, σ(ε,x) in Equation 12 is the the average curve for
Norway spruce and silver fir. The scaled MOR method simply
applies a scaling of MOR:
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where B(κ2 ) is the degree of exploitation of MORj, repre-
sented as an array of n elements that increases from 0 to 1 be-
tween x = 0 and x = κ2xn and then remains constant, at a value
of 1, between x = κ2xn and xn. Parameters κ1 and κ2 thus govern
the degree of plasticity of the outer part of the woody stem sec-
tion.

In applying Equations 11–13 as linear regression models
versus the experimental data for MOR and MOE for all the
logs, the best fits yielded the values of parameters γMOE, γMOR,1,
γMOR,2, κ1 and κ2. The regression coefficients of Equations 9
and 10 were checked, except for a2 in Equation 9, by fitting
them with the measured RW(r), Q(r), MOE and MOR of the
20 logs in unconstrained nonlinear optimization (Matlab) and
setting all γ = 1.0. The significance of the new coefficients was
verified with the S-Plus 2000 software program (Insightful,
Seattle, WA).

Results

Failure mechanisms and stress–strain curve characteristics

Bending failure usually began with buckling of the outermost
wood fibers on the compression side of the log, followed by
the outermost wood fibers on the tension side tearing apart
(Table 4). The logs from the lower part of the Norway spruce
trees, however, broke suddenly in the outer heartwood as a re-
sult of longitudinal shearing. For the three logs that did not fail
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completely, i.e., fall apart, the applied force remained almost
constant between half and maximum deflection, ending with a
slight decrease.

The curves of bending stress–strain of the 20 logs were sim-
ilar, with a quasi ideal-elastic first part to about two-thirds of
MOR, from where the deformation increased significantly
(Figure 2A). Close examination showed that both MOE and
MOR generally decreased with stem height (Figures 2B
and 3). Norway spruce logs were slightly stiffer but slightly
weaker than silver fir logs (Figure 2C, Table 5). A comparison
of the shapes of individual stress–strain curves (Figure 2A)
and the types of failure (Table 4) revealed no obvious pattern.
When MOE was defined as the first linear part of the stress–
strain curve (E(εE )LIN ) instead of as 0.4MOR (E(εE )0.4MOR ),
MOE was overestimated by 2.2%, on average, but the differ-
ence varied between 14% and –9.5%. When MOR was
reached, the calculated shear stress τ(z,x) (Equation 4) was
well below the estimated shear strength τmax(z,x) (Equations 5
and 6) in the outer heartwood (Figure 4). Their ratio
τ(z,x)/τmax(z,x) was highest in the pith at the thinner end of the
log. Higher maximum ratios were generally found for logs
from the lower part of the stem (e.g., 0.74 for Log 1 of Tree 7)
than from the higher part of the stem (e.g., 0.34 for Log 4 of
Tree 6). There was a trend of increasing MOR with increasing
MOE, but the correlation was weak (R = 0.30).

The idealized stress–strain curves (example in Figure 2C)
and η (cf. Equation 8) display some general tendencies. Aver-
aged per tree height, mean εel-pl and mean εMOR were 10%
higher for silver fir than for Norway spruce, whereas mean
αel-pl and mean η differed by less than 1% between species.
These variables increased with tree height, except for εel-pl,
which remained nearly constant. Further, αel-pl was equal to
0.28η + 0.73 (R2 = 0.75) for all logs combined. Although dif-
ferences in mean values of the bending parameters were found
between silver fir and Norway spruce, and according to stem
height, none were significant (Table 6).

The work absorbed by the mid-span of the log, in terms of
σ ε ε( )∫ d , the integral of stress as a function of apparent strain

up to MOR, averaged 0.25 N mm– 2 (min = 0.21, max = 0.30
and SE = 0.02 N mm– 2). The WMOR calculated as bending
stress integrated over the log volume (cf. Appendix) differed
from the actual WMOR absorbed, i.e., Fs. The detailed method
(Equations A1, A2 and A4) yielded, on average, 1% smaller
WMOR, with relative standard, minimum and maximum errors
of 4, –9 and 6%, respectively. Overly low values were calcu-
lated for logs from the lower part of the stem, whereas overly
high values were calculated for logs originating from the up-
per part of the stem. The approximate method (Equations A3
and A4) yielded, on average, 4% larger WMOR, with relative
standard, minimum and maximum errors of 4, –1 and 15%, re-
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Table 4. Subsequent failure mechanisms (separated by a slash) ob-
served during bending tests of 20 logs of silver fir (Abies alba) and
Norway spruce (Picea abies). Failure mechanisms: c = wood fibers
buckling on the compression side of the log; t = wood fibers tearing
apart on the tension side; and s = longitudinal-cylindrical shearing.
Listed are the clearly visible and significant mechanisms (naturally,
the s-mechanism initiates within a brief moment of c- and t-failure).

Tree Log 1 Log 2 Log 3 Log 4

Silver fir
1 c1 t c1 –
2 c / t c / t c / t –
3 c / t c / t c / t –
4 c / t c1 – –

Norway spruce
5 s c / s c / t –
6 s t c / t c / t
7 s c / s – –

1 No complete failure.

Figure 2. (A) Bending stress (σ) as a function of bending strain (ε) for
all 20 logs from silver fir (Abies alba) and Norway spruce (Picea
abies) trees. Mean σ(ε) for logs grouped by (B) height and species
and (C) by species. The idealized stress–strain curve in (C) is ideally
elastic up to a percentage αel-pl of the modulus of rupture (MOR), and
ideally plastic between εel-pl and εMOR.



spectively, and a similar, but less clear, error distribution with
stem height. When the detailed method was applied to a (fic-
tive) three-point bending test of a beam with a square cross
section and the same stress–strain curve data and in-span vol-
ume as our logs, WMOR, and thus also WMOR/V0, were on aver-
age 20% smaller than the recorded WMOR. The ratio WMOR /V0

ranged from 32 to 56, averaging 42 kN m m– 3 (SE = 5 kN m

m– 3 ), otherwise expressed as WMOR = 42V0 (WMOR in kN m, V0

in m3) (R2 = 0.90).

Influences of analytical method on MOE, MOR and energy
absorption

Approximation of the stem taper under bark as a truncated
cone between the large- and small-end diameters of a log
would yield non-negligible errors in diameter at the center of
the log, especially in logs from the stem base where the curva-
ture is strong. For all test trees, these errors were at the most
23, –6, –5 and –7 mm for Logs 1–4, respectively. The trun-
cated cone approximation therefore resulted in relative errors
in calculated values of MOE of –23, 8, 8 and 14%, and of
MOR of –18, 6, 6 and 10% for Logs 1–4, respectively. The in-
fluence of the differences in diameter at the thin and the thick
log ends (KL) on MOE was, however, low. Because KL was
low for the tested logs (≤ 0.05), it reduced MOE by less than
0.13%. When shear deflections were considered (Equation 3),
MOE increased by 3.3–7.4%. The self weight of the logs con-
tributed, on average, 1.3% to MOR, but naturally did not con-
tribute to MOE, because the addition of self weight does not
change the initial slope of the stress–strain curve. The error in
energy absorption, in terms of σ ε ε( )∫ d , was at most –14%,
when ignoring the precise stem taper and log weight.

Predictions of MOE and MOR

Because no significant differences in MOE or MOR were
found between silver fir and Norway spruce, the prediction
models were evaluated for all logs combined. Generally, MOE
of the log section was well predicted by the models (Equa-
tions 9 and 11), unlike MOR (Equations 10, 12 and 13). The
beneficial effect of the intact stem compared with separate cy-
lindrical shells amounted to 6% for MOE. For MOR, this ef-
fect amounted to 0% when calculated with the linear strain
method, and 9% when calculated with the scaled MOR
method. The corresponding regression coefficients were
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Figure 3. (A) Modulus of elasticity (MOE) and (B) modulus of rup-
ture (MOR) of cross sections from silver fir (Abies alba) and Norway
spruce (Picea abies) Trees 1–7 according to relative tree height = z /H
(see Table 5 for numerical data). Dash-dot lines are smoothed aver-
ages of all trees (span = 95% of z /H range).

Table 5. Bending modulus of rupture (MOR) and modulus of elastic-
ity (MOE) for Logs 1–4 of each silver fir (Abies alba) and Norway
spruce (Picea abies) tree. The MOE is defined at 0.4MOR.

Tree MOR (MPa) MOE (GPa)

1 2 3 4 1 2 3 4

Silver fir
1 58.9 57.0 47.2 – 11.6 10.7 11.4 –
2 52.7 45.2 46.9 – 12.0 11.0 10.6 –
3 57.4 46.2 45.8 – 12.0 11.8 11.1 –

Norway spruce
4 50.4 49.2 – – 15.0 14.2 – –
5 51.6 50.0 42.6 – 14.5 13.1 10.8 –
6 48.4 48.7 45.0 45.0 12.6 12.4 11.4 11.0
7 58.0 53.0 – – 13.2 15.6 – –

Figure 4. Shear stress (τ), shear resistance (τmax) and their ratio as
functions of radial distance from pith (r) in logs of silver fir (Abies
alba) and Norway spruce (Picea abies) trees. Means are shown for all
logs as MOR was reached and for the stem cross section where the
highest ratios were found (below location of force application at the
thinner side of the log). Shear failure occurred in the outer heartwood,
i.e., about 60 < r < 100 mm.



γMOE = 1.06 (R2 = 0.93, SE(MOE) = 0.16 GPa; cf. Equation
11), γMOR,1 = 1.00 and κ1 = 0.90 (R2 = 0.39, SE(MOR) =
4.2 MPa; cf. Equation 12), and γMOR,2 = 1.09 and κ2 = 0.85 (R2

= 0.26, SE(MOR) = 4.6 MPa; cf. Equation 13). When the mea-
sured cross-sectional modules were refitted with the measured
RW(r) and Q(r), we obtained the following statistical data for
MOE:

�

a = [–4098 –22.3 15749],
�

a = [–0.49 –0.25], R2 =
0.95, SE(MOE) = 0.11 GPa; and for MOR:

�

a = [–6.88 –45.2
68.2],

�

a = [–0.26 –0.89], R2 = 0.64, SE(MOR) = 2.9 MPa,
when using the scaled MOR method, γMOR,2 = 1.0, and κ2 =
0.85; and

�

a = [–0.35 –0.79], R2 = 0.64, when refitting with the
linear strain method, γMOR,1 = 1.00, and κ1 = 0.90. All

�

a coeffi-
cients were highly significant (P < 0.005) except a1 of MOR (P
= 0.01). The initial and refitted regression models of MOE
were similar, but measured MOR was more strongly influ-
enced by Q(r) than was predicted by Equation 9.

The predictions demonstrate a change in cross-sectional
MOE with stem size and cambial age (Figures 5A and 5B):
from a younger (0–25 years) to an older (> 60 years) stage,
MOE increases by up to 60% for individual sections and by
35% on average. This trend is also apparent for MOR(z,r) pre-
dicted with the initial regression model but is less clear for the
refitted model (Figure 5C). For both models, this increasing
trend in MOR(z,r) with radius, was stronger in the lower stem.
In the higher part, it was nonexistent for the initial model and
slightly negative for the refitted model. Figure 5, which in-
cludes all logs and thus all stem heights admixed, shows that
differences in MOE(z,r) and MOR(z,r) were greater among
trees at the same height than among stem heights.

Discussion

Failure mechanisms and stress–strain curve characteristics

Fifteen of the 20 logs tested failed in the same way as sawn
wood. The remaining five logs, from the lower part of Norway
spruce trees broke because of longitudinal shearing apparently
in the outer heartwood. The reasons for this difference in
mode of breakage are unclear. The calculated maximum shear

stresses were well below the estimated shear strengths (Fig-
ure 4). We postulate that there were local unobserved differ-
ences in radial growth properties, implying that local, strong
radial gradients in strength and stiffness initiate slip along the
grain, resulting in shear stresses that exceed the local shear
strength. Heartwood fulfills an important function (cf. Stokes
et al. 2001) in transmitting forces perpendicular to the stem
into stress along the grain in the sapwood, which has a large
capacity to absorb such stress. This function may, however,
constitute a weak mechanical link, as found in 25% of our
tests. It will be challenging to determine under what conditions
this transmission function of heartwood is optimized.

We found no literature on the shape of the bending stress–
strain curves of fresh tree stems. The curve shapes for the two
species studied here were similar. This may have a natural ex-
planation. Both species had similar annual ring widths and
knottiness, both of which significantly influence the mechani-
cal properties of bending (cf. Equations 9 and 10). Based on a
comparison of the shapes of our bending stress–strain curves
with those obtained from square specimens from the fresh
heartwood and sapwood of Norway spruce (Lundström et al.
2007), it appears that the strain values are generally about 40%
lower for the logs than for square specimens. It is probable that
this difference is associated with the greater knottiness of the
test logs, but it may also reflect an inherent behavior of the in-
tact stem while bending.

Several important mechanical properties related to bending
can be deduced from the stress–strain curves. The cross-sec-
tional MOE values of the 90-year-old dominant and codomi-
nant Norway spruce test trees are: 50% higher than those of
dominant Norway spruce of half the age at the same relative
stem height (Brüchert et al. 2000); 70% higher than those of
Sitka spruce of a third the age and with about the same dry
stem bulk density (Cannell and Morgan 1987); and two to six
times higher than those of 22-year-old Sitka spruce (Milne and
Blackburn 1989). It is unlikely that the different methods of
assessing stress and strain in the stem are the only reasons for
these considerable differences. The stem normally produces
stiffer wood at a mature stage, especially in the lower stem,
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Table 6. Characteristics of the bending stress–strain and load-deflection curves for Logs 1–4 of each silver fir (Abies alba) and Norway spruce
(Picea abies) tree. Abbreviations: εel, strain at 0.4MOR; εel-pl, strain at the break point between ideal elastic and ideal plastic bending; εMOR , strain
at maximum load; αel-pl, proportion of MOR at plasticity; η, completeness of the material in bending (Equation 8); and MOR, modulus of rupture.

Tree εel (‰) εel-pl (‰) εMOR (‰) αel-pl (%) η (%)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Silver fir
1 2.0 2.1 1.7 – 4.6 4.8 3.9 – 7.0 7.4 9.2 – 90 90 95 – 61 62 75 –
2 1.8 1.6 1.8 – 4.0 3.8 4.1 – 6.7 7.4 8.1 – 92 92 93 – 65 69 70 –
3 1.9 1.6 1.6 – 4.4 3.7 3.8 – 6.5 7.9 8.4 – 91 95 92 – 61 73 72 –
4 1.3 1.4 – – 3.2 3.3 – – 7.5 6.2 – – 94 94 – – 75 70 – –

Norway spruce
5 1.4 1.5 1.6 – 3.3 3.6 3.7 – 6.6 6.6 8.5 – 92 94 94 – 71 69 74 –
6 1.5 1.6 1.6 1.6 3.5 3.6 3.7 3.7 6.9 6.6 6.6 7.9 92 92 92 92 69 68 68 71
7 1.8 1.4 – – 4.0 3.2 – – 6.5 6.3 – – 91 92 – – 64 70 – –



which then influences the overall stiffness of the stem (cf. Fig-
ures 3A and 5A; Lundström et al. (2007)).

The cross-sectional MOR values can be compared with the
mean value of 55 MPa obtained at a stem height of 2.5 m for
73, 100-year-old, Scots pine trees, which had grown more
slowly at latitude 61° N in Sweden than our test trees
(S. Brüzelius, Rundvirke Poles AB, personal communication).
The logs we tested displayed a greater decrease in MOR with
tree height (Figure 3B) than found by Lundström et al. (2007).
This difference may be associated with a comparatively
greater increase in knottiness in the outer part of the stem
above a relative tree height of 0.3 among the logs we studied.

There have been few studies on WMOR for fresh intact stems.
Expressing WMOR in terms of σ ε ε( )∫ d facilitates comparisons
of WMOR, because comparisons of WMOR calculated as load
times deflection assume an identical geometry of load applica-
tion and cross section. We found that WMOR was 20% lower in
the three-point than in the four-point bending tests, as a result
of the smaller stem volume subjected to stress in the former. If
σ ε ε( )∫ d and bending moment along the log are known, the

work effectively absorbed by a log, or any type of member
subject to bending, can also be calculated (Equations A1–A4).
In our case, WMOR calculated by the detailed σ ε ε( )∫ d -method
(Equations A1, A2 and A4) yielded relatively small errors
compared with the work effectively absorbed, i.e., the mea-
sured force times deflection. Thus, this method appears useful
for estimating work absorbed by a tree stem subject to bend-
ing. The errors in calculated WMOR may arise because of differ-
ences between the actual (not exactly known) and the as-
sumed: (1) cross-sectional distribution of bending or shearing
stress with stem height; and (2) bending moment along the log.
The approximate σ ε ε( )∫ d -method (Equations 16 and 17) also
appears useful, although it tends to overestimate the absorbed
energy, because the radial difference in MOR is not consid-
ered. The mean value of σ ε ε( )∫ d up to MOR of the logs
(0.25 N mm– 2 ) is lower than the values of 0.40 and 0.61 N
mm– 2 obtained for specimens from the heartwood and sap-
wood of fresh Norway spruce by Lundström et al. (2007). This
difference is due to the compressed stress–strain curves in the
strain direction for the logs, as discussed previously. It is clear
that intact stems and sawn wood display different behaviors
while bending. It is also apparent that the bending properties of
living stems largely depend on the growth conditions experi-
enced by the tree. The growth pattern of the Norway spruce
and silver fir stems in our study is representative of other sites
with similar climatic conditions in and around the Alps
(Schweingruber 1996). However, stems of the same species
grown under different conditions will exhibit different bend-
ing properties to those observed here.

Influences of test and analysis methods

Stem bending stress and strain can be assessed and interpreted
in various ways. In laboratory tests, such as four-point, three-
point and cantilever bending, curves of bending stress–strain
can be obtained for stem sections taken from different tree
heights under controlled and close to standardized conditions
(DIN 2000, BSI 2001, CEN 2003). A drawback is that the lon-
gitudinal growth stresses within the stem of a standing tree
(Fourcaud et al. 2003, Huang et al. 2005) are released when
the tree is felled. However, these stresses represent only a few
percent of the stem bending resistance for Norway spruce and
silver fir (Dinwoodie 2000), and the internal growth stresses
may, at least theoretically, be superimposed on the bending
stress obtained in the laboratory test. The stress– strain of the
stem while bending can also be assessed in situ, by pulling the
stem of a standing tree sideways (cf. Milne and Blackburn
1989), but it may then be more difficult to precisely assess
strains and load application along the stem. For any test used,
our investigations show that a precise measurement of stem
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Figure 5. Modeled changes in (A) modulus of elasticity (MOE) and
(C) modulus of rupture (MOR) of the cross section, with stem radius
(r) and (B) cambial age at 1.3 m stem height (AGE). (A and C) Gray
lines show the predicted MOE and MOR for all 20 logs (Equa-
tions 9–10 with the initial regression coefficients); solid black lines
are means up to r = 150 mm, resulting from the initial coefficients; and
dashed black lines are means resulting from the refitted coefficients.
(B) Gray lines represent individual logs, and the black line is the
mean.



taper is especially important. Otherwise errors of more than
20% may arise in the calculated stress–strain and the derived
bending properties, making comparisons of results from dif-
ferent investigations less meaningful (cf. Morgan and Cannell
1994). In addition to bending, the stem of a standing tree can
occasionally be subject to torsion (e.g., if the crown is asym-
metric) and length forces that may impair the bending capacity
of the stem. Torsion is, however, rare, and length forces are of
low magnitude (Mayer 1985, Amtmann 1986), so neither
were considered in this study.

Predictions of cross-sectional MOE and MOR

The method used for predicting MOE appears to be robust.
The predictions of MOR were only approximate because of
several failure mechanisms that are difficult to predict. The
small differences in error between the two methods of predict-
ing MOR (Equations 12 and 13) are irrelevant in the context of
the study, but Equation 13 has the advantage of being simpler.
The MOR(r) values predicted with the initial and with the re-
fitted regression coefficient differed. Although it is not evident
which method best predicts MOR(r), the tested MOR(r =
D0 /2) is predicted better with the refitted version. The method
to obtain the regression coefficients of the refitted version sta-
tistically weights the RW and Q in the outermost part of the
stem cross section heavily. Also, the prediction using the ini-
tial regression coefficients is statistically stronger for the mean
of MOR(r) than for individual MOR(r)s because of the statis-
tical effect of linear transformation. The increasing trend in
this initial mean MOR(r) with radius, and thus with the
cambial age, as well as the strong correlations between MOE
and MOR for wood in general (Kollmann 1968) suggest that
MOR should increase with cambial age, similarly to MOE. For
better predictions of cross-sectional MOR, we need to know
more about the stem-bending failure mechanisms in trees dif-
fering in age and radial stem growth properties.
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Work absorbed in bending, based on bending stress as a
function of bending strain

The total work absorbed by a member subjected to bending
can be expressed as the sum of energies absorbed by the small
volume elements of the member. Below, this is exemplified at
two levels of detail for the round logs that we tested.

The bending work absorbed within an infinitesimally thin
slice of the middle cross section of the log (i.e., the test section)
can be expressed as:

dW

dz
z x d C x y x dx
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where: 0 < z′ < L is the coordinate along the log subjected to
bending and ′ztest = L/2; r0 is the radius of the middle of the
woody log; σ(ε,x) is the bending stress as a function of bend-
ing strain and distance from the log centre; dAy(x) is an area
segment of the cross section (cf. Figure A1) with an infinitesi-
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Appendix

Table A1. List of symbols and notations and their definitions and units used in the study.

Symbol/Notation Description Unit

AGE Cambial age counted from pith year
D, D0; 1, 2, c Stem diameter on and under bark; reference to thin and thick log end and to log centre mm, m
A0 Cross-sectional area of woody log mm2, m2

E; EF Secant modulus of elasticity due to pure bending, i.e., elasticity corrected for shear
deformation = σ/εE; EF = σF/εF GPa

ε; εE; εF Apparent bending strain (simply “bending strain”); ε corrected for shear deformation; –
ε due to F and corrected for shear deformation

εel; εMOR ε as σ reaches: 0.4MOR (defined limit of elasticity); and MOR –
εel-pl, αel-pl The ideal elastic–ideal plastic σ(ε)-curve has a break point at ε = εel-pl and σ = αel-plMOR –
F; Fmax; Fg Applied force in bending test; maximum applied F; concentrated (fictive) force causing same N

deflection as log weight
g; g Earth gravity; reference to own weight m s– 2

G Shear modulus in the z-direction, i.e., along fibers MPa
γMOE; γMOR,1; γMOR,2 Coefficients accounting for the beneficial effect on MOE and MOR of intact logs compared to –

sawn wood (cf. Equations 11–13)
η Completeness of the material in bending (cf. Equation 8) –
H Total tree height m
K Log taper = (D02 – D01 )/(D01L) m–1

κ1; κ2 Coefficients of plastification (cf. Equations 12 and 13) –
Ltot; L; LF Test log length (total; in-span); and distance between support and force application mm, m
MOE Modulus of elasticity = the secant modulus of σ(ε) as 0.4MOR is reached GPa
MOR Modulus of rupture = maximum value of σ(ε) MPa

σ ε ε( )∫ d Integration of σ(ε) up to σ = MOR, i.e., area under σ(ε)-curve MPa
Q; Q(r) Knottiness: of the stem cross section; and at the radial distance (r) from the pith (cf. Equation 1) –
r; r0 Radial coordinate of the stem, ranging from the stem center (r = 0) to the bark (r = r0) mm, m
ρw, ρb; ρ0 Density of fresh wood and of bark; calculated dry wood density kg m– 3

RW Annual ring width mm
σ; σF; σg Bending stress; σ due to F; σ due to weight of log MPa
I0c Moment of inertia about the log center mm4, m4

s; sFmax
; sg Mid-span deflection of log; s at Fmax; s due to weight of log mm, m

τ, τmax Shear stress and resistance in z-direction MPa
u Wood moisture content = mass of water/oven-dry mass %
V0 Volume of woody log within the bending span m3

W; WMOR; WFmax
Work absorbed in bending; W at MOR; W due to Fmax N m

x, y, z Cartesian coordinates of standing tree stem: z is height above stem base; and x is in the mm, m
direction of deflection, x = 0 at stem center

φ Rotation around z-axis rad

Trendelenburg, R. and H. Mayer-Wegelin. 1955. Das Holz als Rohs-
toff. 2nd Edn. J.F. Lehmanns Verlag, Munich, 541 p.

USDA. 1972. The moisture content and specific gravity of the bark
and wood of northern pulpwood species. USDA For. Serv., North
Central Forest Exp. Stn., Minnesota, Res. Note NC-141, 3 p.



mal height dx, so that the strain occasioned by the bending can
be assumed to be constant within the segment; and C(x) is a co-
efficient that accounts for the radial gradient in MOR across
the circular log:

C x

dA x x

dA x

xy i i
i

n
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( )
( ) ( )
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= =

∑ MOR

MORsect
MOR

1 γ (A2)

where γMOR = 1.09 or 1.00 (found in this study), depending on

the x-wise distribution of bending stress (Equation 12 or 13).
The other notations are explained in Figure A1B. If the distri-
bution of bending stress across the section is approximated as
triangular, then Equation A1 simplifies to:
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This seems justified if: (1) the bending remains elastic, or at
least, does not cause bending strain larger than that at MOR
(cf. Table 6); and (2) the variation in MOR(r) is low. The work
absorption along the log is proportional to the applied bending
moment M(z′ ), which is obtained from basic mechanics.
Therefore, the total bending work W absorbed by the log can
be expressed as:

W
dW

dz
z

M z

M z
dz

L

= ′ ′
′

′∫ ( )
( )

( )test sect
test0

(A4)

Consequently, the total work absorbed by a log can be calcu-
lated if data are available on: (1) the curve of the bending
stress–strain, which may or may not be linear, of one stem sec-
tion; (2) the shape or radius of this cross section; (3) the radial
variation of MOR across the section; and (4) the applied bend-
ing moment along the log.
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Figure A1. (A) Log cross section with schematic, enlarged annual
year rings. Axes: z is the height above the stem base, and y the axis of
applied bending moment in the tests, which causes deflections in the
x-direction. (B) Enlargement of the upper left part of (A). Modulus of
rupture (MOR) of each area element dAy is calculated (Equation 15)
on the basis of MOR(x)i of finite area elements dAxy(x)i.


