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Phases and phase transitions in the half-filled t-t� Hubbard chain
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We study the quantum phase transition from an insulator to a metal realized at t�= tc��0.5t in the ground
state of the half-filled Hubbard chain with both nearest-neighbor �t� and next-nearest-neighbor �t�� hopping.
The study is carried out using the bosonization approach and density-matrix renormalization-group calcula-
tions. An effective low-energy Hamiltonian that describes the insulator-metal transition is derived. We find that
the gross features of the phase diagram are well described by the standard theory of commensurate-
incommensurate transitions in a wide range of parameters. We also obtain an analytical expression for the
insulator-metal transition line tc��U , t�. We present results of density-matrix-renormalization-group calculations
of spin and charge distribution in various sectors of the phase diagram. The numerical results support the
picture derived from the effective theory and give evidence for the complete separation of the transitions
involving spin and charge degrees of freedom.

I. INTRODUCTION

During the past decades, the Mott metal-insulator transi-
tion has been the subject of great interest.1–3 In the canonical
model for this transition—the single-band Hubbard model—
the origin of the insulating behavior is the on-site Coulomb
repulsion between electrons. For an average density of one
electron per site, the transition from the metallic to the insu-
lating phase is expected to occur when the electron-electron
interaction strength U is of the order of the delocalization
energy �which is a few times the hopping amplitude t�. The
critical value �U / t�c turns out to be quite independent of the
specific band structure.4 It is important to recall that the Mott
transition is often preceded by antiferromagnetic ordering,
which usually leads to insulating behavior and thus masks
the Mott phenomenon.

While the underlying mechanism driving the Mott transi-
tion is by now well understood, many questions remain open,
especially about the region close to the transition point where
perturbative approaches fail to provide reliable answers. The
situation is more fortunate in one dimension, where nonper-
turbative analytical methods together with well-controlled
numerical approaches allow us in many cases to determine
both the ground state and the low-lying excited states.5–7

However, even in one dimension, apart from the exactly
solvable cases, a full treatment of the fundamental issues
related to the Mott transition still constitutes a hard and long-
standing problem.

In this paper, we study the t-t� Hubbard chain which in-
cludes both nearest, t, and next-nearest-neighbor, t�, hopping
terms. We limit ourselves to an average density of one elec-
tron per site �the half-filled band case�. Depending on the
ratio between t� and t, the system has two or four Fermi
points. Correspondingly, it shows one- or two-band behavior
and has a rich phase diagram. Therefore, it is not surprising
that the model has been the subject of intensive analytical
and numerical studies, including a weak-coupling renormal-
ization group analysis,8 density-matrix-renormalization-

group �DMRG� calculations for charge and spin gaps,9–13 the
electric susceptibility,14 the momentum distribution
function,15–17 and the conductivity13 as well as, very recently,
a variational technique.18

Unfortunately, conflicting results have been reported for
the transition region, in particular, regarding the character of
the transition, the number of different phases, and the num-
ber of gapless modes. In this paper, we hope to settle some of
the unresolved issues using a combined analytical and nu-
merical analysis. We focus our attention on the insulator-
metal transition as a function of t� for a fixed on-site repul-
sion U. An effective continuum theory allows us to show that
in the parameter range 0.5t� t�� tc� the system exhibits the
characteristic behavior of a commensurate-incommensurate
transition.19 Close to the transition point, additional scatter-
ing processes characteristic of two-band behavior8 set in. We
argue that these processes induce a crossover to Kosterlitz-
Thouless-type critical behavior, as found in Ref. 14. The nu-
merical analysis also allows us to study the gaps in the ex-
citation spectrum as well as the charge and spin-density
distributions.

The paper is organized as follows. In Sec. II, general
properties of the model including the strong-coupling limit
and the structure of the phase diagram are briefly reviewed.
Section III discusses the metal-insulator transition from the
point of view of a weak-coupling bosonization approach,
which leads to the quantum sine-Gordon field theory, the
standard model for commensurate-incommensurate transi-
tions. The critical line obtained is then compared with that
obtained from numerical calculations. The behavior of the
numerically obtained spin and charge gaps is presented and
discussed in terms of the bosonization picture. In Sec. IV,
spin-charge separation in various phases is explored via nu-
merical results for the Fourier transform of the local charge
density in the ground state and the local spin density in the
excited spin triplet state. Special attention is given to the
regime of large t� where the model represents a system of
two coupled chains. Section V summarizes and concludes.
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II. t-t� HUBBARD CHAIN

The one-dimensional t-t� Hubbard model is defined by the
Hamiltonian

H = − t�
j,�

�cj,�
† cj+1,� + cj+1,�

† cj,�� + t��
j,�

�cj,�
† cj+2,�

+ cj+2,�
† cj,�� + U�

j,�
�nj,↑ − 1/2��nj,↓ − 1/2� , �1�

where cj,�
† �cj,�� are electron creation �annihilation� operators

on site j with spin projection �= ↑ ,↓, nj,�=cj,�
† cj,�, and U is

the on-site Coulomb repulsion.
The model can be viewed either as a single chain with

both nearest- and next-nearest-neighbor hoppings or, as illus-
trated in Fig. 1, as a system of two coupled chains. The
former view is appropriate for t� t�, the latter for t�� t.

For t�=0, we recover the ordinary Hubbard model which
is exactly �Bethe ansatz� solvable.5 In the case of a half-filled
band, the ground state is insulating for arbitrary positive val-
ues of U; the charge excitation spectrum is gapped while the
spin excitation spectrum is gapless.5,6 For U� t the charge
gap �c is exponentially small, �c��Ute−2�t/U, while �c
�U for U� t.6

For t��0 the model is no longer integrable except in the
noninteracting limit, U=0, where H is diagonalized by Fou-
rier transformation and has a single-electron spectrum

	�k� = − 2t cos k + 2t� cos 2k . �2�

For t��0.5t, the electron band has two Fermi points at
kF= ±� /2, separated from each other by the umklapp vector
q=� �see Fig. 2�. In this case, a weak-coupling renormaliza-
tion group analysis8 predicts the same behavior as for t�=0
because the umklapp term of order U is not modified; it
again leads to the dynamical generation of a charge gap for
U�0, while the magnetic excitation spectrum remains gap-
less. Note that the stability of the Mott insulating phase with
respect to the weak perturbation caused by the next-nearest-
neighbor hopping is an intrinsic feature of the one-
dimensional system, where the topology of the Fermi surface
remains unchanged for t��0.5t. For instance, for the two-
dimensional half-filled t-t� Hubbard model, the ideal nesting
of the square Fermi surface at t�=0 is broken by an arbi-
trarily small t��0, thereby destroying the insulating behav-
ior for U→0.20

In the strong-coupling limit, U� t , t�, the charge sector is
gapped, while the spin sector can be mapped onto a frus-
trated Heisenberg chain

H = �
j

�JS j · S j+1 + J�S j · S j+2� , �3�

with J=4t2 /U and J�=4t�2 /U. This model has been exten-
sively studied using a number of different analytical
methods21–23 and has been found to develop a spin gap for

J� /J��t� / t�2�0.2412,21,22 and incommensurate antiferro-
magnetic order for J� /J�0.5.23 This picture has been con-
firmed numerically.11,12

For t��0.5t, the Fermi level intersects the one-electron
band at four points �±kF

±�. This is the origin of more complex
behavior for weak and intermediate values of U. For weak
coupling �U� t�, the ground-state phase diagram is well un-
derstood in the two-chain limit �t�� t�.8 In this case, the
Fermi vectors kF

± are sufficiently far from � /2 to suppress
first-order umklapp processes. Therefore, the system is me-
tallic. The infrared behavior is governed by the low-energy
excitations in the vicinity of the four Fermi points, in full
analogy with the two-leg Hubbard model.24 Thus, while the
charge excitations are gapless, the spin degrees of freedom
are gapped.8,12,13,15,24 Higher-order umklapp processes be-
come relevant for intermediate values of U because the
Fermi momenta fulfill the condition 4�kF

+ −kF
−�=2� �at half-

filling�. Therefore, starting from a metallic region for small
U at a given value of t� �t��0.5t�, one reaches a transition
line U=Uc�t��, above which the system is insulating with
both charge and spin gaps.8 The gross features of the phase
diagram are depicted in Fig. 3.

III. METAL-INSULATOR TRANSITION

A. Bosonization

We first consider the regime U , t�� t where bosonization
is applicable. We linearize the spectrum in the vicinity of the
two Fermi points kF= ±� /2 and go to the continuum limit by
substituting

t
−t

FIG. 1. The t-t� Hubbard chain.

(a)

(b)

FIG. 2. Single-particle dispersion relation of the t-t� chain for
�a� t�=0.4t and �b� t�= t.
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cn� → in
R��x� + �− i�n
L��x� , �4�

where the operators 
R��x� and 
L��x� are the right and left
components of the Fermi field, respectively. These fields can
be bosonized in a standard way,25


R� → 1
�2��

ei�4��R�,


L� → 1
�2��

e−i�4��L�, �5�

where �R� ��R�� are the right�left�-moving Bose fields and �
is the infrared cutoff. We define ��=�R�+�L� and introduce
linear combinations, 
c= ��↑+�↓��2 and 
s= ��↑−�↓��2, to
describe the charge and spin degrees of freedom, respec-
tively. Correspondingly, we introduce the conjugate fields
��=�L�−�R� and �c= ��↑+�↓��2 and �s= ��↑−�↓��2. After
some standard algebra, we arrive at the bosonized version of
the Hamiltonian �1� as follows:

H = Hs + Hc,

where both the spin part

Hs = vs� dx	1

2
��x
s�2 +

1

2
��x�s�2 +

ms
0

2��2 cos��8�
s�
 ,

�6�

and the charge part,

Hc = vc� dx	 1

2Kc
��x
c�2 +

Kc

2
��x�c�2

+
mc

0

2��2 cos��8�
c�
 , �7�

are described by the massive sine-Gordon model, with pa-
rameters

vs � vc � vF,

�Kc − 1� = − 2ms
0 = 2mc

0 � − U/�t . �8�

There is an important difference between Hs and Hc due to
the different stiffness constants. In the spin sector with Ks
=1, the system is in the weak-coupling limit and scales to a
Gaussian model with gapless spin excitations. In the charge
sector with Kc�1, the system is in the strong-coupling re-
gime and the low-energy behavior is dominated by the co-
sine term. In the ground state, the field 
c is pinned at one of
the minima of the cosine term and, correspondingly, there is
a finite energy gap for charge excitations.

Let us now discuss what happens when t� increases and
reaches values of the order of t /2, where two additional
Fermi points appear in the band structure. For spin degrees
of freedom, new scattering channels appear at t�= t /2, and
the system scales to strong coupling. Therefore, a spin gap is
expected to open for t�� t /2, very much like in the case of
two coupled Hubbard chains.24

For the charge degrees of freedom, the situation is more
complicated �and more interesting� because the charge gap
blocks new scattering channels until t� is made sufficiently
large so that additional states emerge beyond the gapped re-
gion. Thus, for t� slightly above t /2, the �bare� Fermi mo-
mentum changes without affecting the umklapp processes.
To discuss this phenomenon, it is useful to measure the
single-particle energies with respect to the Fermi energy

	F = �− 2t�, t� � 0.5t

− t2

2t�
, t� � 0.5t . � �9�

In addition, the bosonized version of the single-particle part
of the Hamiltonian introduces a chemical potential term
−2t��2/�
dx�x
c. In order to allow for a change of the
particle number around the Fermi points ±� /2, we therefore
have to add a topological term

�Hc = − �eff� 2

�
� dx�x
c, �10�

where

�eff = �0 for t� � 0.5t

t2

2t�
− 2t� � 0 for t� � 0.5t . � �11�

The Hamiltonian Hc+�Hc is the standard one for the
commensurate-incommensurate transition,25,26 and has been
intensively studied in the past using bosonization19 and the
Bethe ansatz.27

We now apply the theory of commensurate-
incommensurate transitions to the insulator-metal transition
as a function of t�. At �eff=0 and Kc�1, the ground state of
the field 
c is pinned at

�0��8�
c�0�0 = 2�n . �12�

The presence of the effective chemical potential makes it
necessary to consider the ground state of the sine-Gordon
model in sectors with nonzero topological charge. Using the

t

c 0

c 0

U

0.5t

insulator

m e t a l

c 0 s 0

s 0

i n s u l a t o r

s 0

FIG. 3. �Color online� Qualitative sketch of the ground-state
phase diagram of the half-filled t-t� model. The solid line marks the
metal-insulator transition. The dashed line indicates the transition
from a gapless spin excitation spectrum at t��0.5t to the spin-
gapped phase.
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standard expression for the charge density in the case of two
Fermi points,25

�c�x� �
1

�2�
�x
c + A2kF

cos�2kFx�sin��2�
c�cos��2�
s�

+ A4kF
cos�4kFx�cos��8�
c� , �13�

we observe that the pinning of the field 
c in one of the
minima �12� suppresses the 2kF charge fluctuations and sta-
bilizes the 4kF component. Any distortion of the 4kF charge
distribution would require an energy greater than the charge
gap. This competition between the chemical potential term
and commensurability drives a continuous phase transition
from a gapped �insulating� phase at �eff��eff

c to a gapless
�metallic� phase at

�eff � �eff
c = �c, �14�

where �c is the charge gap at �eff=0.
We now separately consider the qualitative behavior of

the system in the following three parameter regimes: �i� t�
�0.5t, �ii� 0.5t� t�� tc�, and �iii� t�� tc�. In regime �i�, t�
�0.5t, we expect a charge gap �c�U , t����c�U , t�=0� and
no spin gap, as in the simple Hubbard model �t�=0�. In re-
gime �ii�, 0.5t� t�� tc�, the spin gap opens while the charge
gap is reduced as28

�c�U,t�� = �c�U,0.5t� − �eff, �15�

where �eff is given by Eq. �11�. Therefore, the charge gap
decreases with increasing t� and tends to zero at a tc� quali-
tatively given by

�c�U,0� − 2tc� + t2/2tc� = 0. �16�

In regime �iii�, t�� tc�, the behavior of the system is charac-
terized by four Fermi points, ±kF

±. The charge excitations are
gapless, while the spin excitations are, generically,
gapped.8,24 Charge fluctuations will be characterized by two
dominant periodic modulations with wave vectors 2kF

− and
2kF

+. For t� slightly larger than tc�, the usual charge-density
wave �2kF

+ ��� is accompanied by a long-wavelength modu-
lation at 2kF

−.
Note that the closing of the charge gap is directly con-

nected with the appearance of a “hole bag” at small momenta
�k � �kF

−, which is compensated �at half-filling� by the cre-
ation of occupied states at � /2� �k � �kF

+. �This will be dis-
cussed in more detail in Sec. III C below.� Such a redistribu-
tion of occupied states in momentum space is generic for a
transition in which the dynamically generated gap competes
with some external parameter which tries to shift the system
from the distribution most favored for gap formation. For
example, in the case of the standard repulsive Hubbard
model at half-filling, the chemical potential tries to shift the
Fermi momenta of the system from the commensurate values
±� /2, where the umklapp scattering processes responsible
for the charge gap formation are relevant.25 In the t-t� Hub-
bard model, the same effect takes place via an increase of the
next-nearest-neighbor hopping amplitude t�. Therefore, the

gross features of the metal-insulator transition in the t-t�
Hubbard model are similar to those of the standard
commensurate-incommensurate transition.

However, there is one important aspect which makes the
metal-insulator transition in the t-t� Hubbard model different
from the case of the standard Hubbard chain. In marked con-
trast to the latter case, the metal-insulator transition in the
t-t� Hubbard chain is not associated with a change in the
band filling. Therefore, the “effective” chemical potential is
not an external parameter, but is instead determined by the
hopping amplitudes t and t�. As a result, the change in the
topology of the Fermi surface does not lead to complete
suppression of the scattering processes responsible for the
charge gap formation. Near the transition point, where the
charge gap generated by the standard umklapp scattering
processes vanishes, states in the vicinity of k=0 will start to
contribute to higher-order umklapp scattering processes.
These processes are responsible for the opening of a charge
gap with increasing U in the two-band limit, i.e., when t�
� t.8 Therefore, a crossover to the regime of two-band be-
havior takes place in the parameter range where the renor-
malized one-band �Hubbard� gap �15� becomes exponen-
tially small. Therefore, the linear decay of the charge gap as
a function of t� crosses over to exponential behavior. The
evolution of the charge gap as a function of t� is sketched in
Fig. 4.

B. Transition line

In order to investigate the detailed behavior of the metal-
insulator transition and to test the validity of the picture ob-
tained from bosonization, we have carried out numerical cal-
culations using the DMRG.29

We have calculated the properties of the ground-state and
low-lying excited states for systems with open boundary
conditions of lengths between L=32 and L=128 sites, keep-
ing up to m=1000 density-matrix eigenstates. As we shall
see in the following, the finite-size effects are quite large in
certain parameter regimes, so that a careful finite-size scaling
must be carried out.

The critical behavior of the metal-insulator transition as a
function of U / t for t��0.5t can be obtained from the behav-
ior of the electric susceptibility, which diverges in going
from an insulator to a metal.14,30 In Fig. 5, we display the
transition line in the t-t�-U model at t=1 obtained from the

c

c

0.50

c

t
t

t

t

FIG. 4. �Color online� Sketch of the charge gap as a function of
the parameter t�. The inset shows an enlargement of the vicinity of
the transition point.
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DMRG14,30 and from Eq. �16�. The agreement between the
DMRG results and Eq. �16� is remarkably good.

C. Momentum distribution function

In order to investigate the redistribution of occupied mo-
mentum states discussed at the end of Sec. III A, it is very
instructive to examine the momentum distribution function
calculated using the DMRG. The momentum distribution can
be calculated by taking the Fourier transformation of the
single-particle density matrix,

�nk� �
1

2L
�
i,�

�
r

cos kr�ci,�
† ci+r,�� , �17�

with k= 2�
L n where n=−L /2+1, . . . ,L /2. Only the real part

need be considered because the single-particle density matrix
is even in r. In a system with periodic boundary conditions
or an infinite system, the single-particle density matrix
�ci,�

† ci+r,�� would not depend on i due to translational invari-
ance. For the open boundary conditions considered here, we
carry out the average over i. While the discrete Fourier trans-
form we use here is formally correct only for a periodic
system, we find that using either an approximation to a Fou-
rier integral or expanding in single-particle basis functions
for open boundary conditions does not make a significant
difference in the numerical results on the scale of the plots
shown here.

In order to gauge the effect of the interactions, it is useful
to compare with the momentum distribution for the noninter-
acting system. For U=0, all momentum points within the
Fermi points are fully occupied, i.e., �nk�=1 only for �k �
�kF for �t���0.5 and only for kF

− � �k��kF
+ for �t���0.5, and

all other k points are unoccupied, �nk�=0; see also Fig. 2.
In Fig. 6, we present the momentum distribution as a

function of t� for U=3t. In the region 0� t��0.6t, �nk�
shows no qualitative differences from the t�=0 case. Its in-
sulating character manifests itself as a smooth variation of
�nk� at the Fermi points ±� /2, in contrast to the Fermi step

or Luttinger liquid singularity that one would expect for a
metal. States near k=0 begin to be removed at t��0.6t, sig-
nificantly above the value at which the number of Fermi
points changes from two to four in the noninteracting system
�t�=0.5t�. The formation of this hole pocket proceeds con-
tinuously as t� is increased further. It is accompanied by a
steepening of the slope of �nk�, both near kF

− and near kF
+.

More studies will be needed to determine the detailed behav-
ior of the momentum distribution function close to the Fermi
points in this spin-gapped two-chain regime.

We have also performed simulations at larger values of U,
where the first sign of a hole pocket appears at larger values
of t�, following essentially the metal-insulator transition line
of Fig. 5. On the insulating side of this line, �nk� is smooth,
as expected.

D. Charge and spin gaps

In order to investigate the predictions of the continuum
theory, we calculate the charge gap, defined as

�c =
1

2
�E0�N + 2,0� + E0�N − 2,0� − 2E0�N,0�� �18�

and the spin gap,

�s = E0�N,1� − E0�N,0� , �19�

where E0�N ,S� is the ground-state energy for N particles and
spin S on a chain of fixed length L, using the DMRG.

We will first examine the charge gap, starting with its
system size dependence. In Fig. 7, we display the charge gap
plotted as a function of the inverse chain length for various
values of t� for U / t=3. As can be seen, the scaling with 1/L
is well behaved for values of t� from 0 to 0.8. For 0� t�
�0.6t, the scaling has a substantial positive quadratic term in
1/L and the gap is finite. For t�=0.65t and 0.8t, the extrapo-
lated gap clearly vanishes and there is a negligible or nega-
tive quadratic contribution. For t��0.8 �not shown�, the
finite-size effects become irregular due to incommensurabil-
ity of the charge excitations, and finite-size extrapolation be-
comes difficult.

In Fig. 8, the L=� extrapolated value of the charge gap is
displayed as a function of t� for U / t=2 and U / t=3. There is

FIG. 5. The metal-insulator transition line in the t-t�-U model
with t=1 obtained from DMRG studies �Refs. 14 and 30� �black
circles� and from Eq. �16� �solid line�.

FIG. 6. �Color online� Momentum distribution �nk� for U / t=3
and system size L=80. The white lines indicate the Fermi surface
for U=0, and the black lines locate the maximum of �nk�.

5



ht
tp

://
do

c.
re

ro
.c

h

a clearly defined insulator-metal transition at tc=0.55t at
U / t=2 and tc=0.65t for U / t=3. Note that the charge gap
goes smoothly to zero above t�=0.5t for U / t=3. The inset in
Fig. 8 shows the charge gap for U / t=3 as a function of the
parameter �eff=2t�− t2 /2t� for 0.5t� t��0.85t. As can be
seen, the charge gap drops off approximately linearly with
�eff, in agreement with Eq. �15�. For U / t=2, there is a some-
what irregular behavior of the charge gap near the t�=0.5t. In
particular, there is a small peak exactly at t�=0.5. The finite-
size scaling for this point is completely regular, however, and
we estimate the size of the total error, due to both the ex-
trapolation and the DMRG accuracy, to be less than the sym-
bol size. Therefore, in our estimation, the peak at t�=0.5 is a
real effect. For t�=0.55, the value of the extrapolated charge
gap is slightly below zero. This is due to errors in the finite-
size extrapolation due to slightly irregular behavior with sys-
tem size.

In Fig. 9, we display the spin gap as a function of t� at
U / t=2 and U / t=3 for various values of the chain length L.
As can be clearly seen, for 0� t��0.5t the spin excitation
spectrum on finite chains does not depend on t�. For t�
�0.5t, the value of the spin gap is found to coincide with

that of the half-filled Hubbard model �t�=0� which vanishes
in the infinite-chain limit �see Fig. 10�.

A clear change in the t� dependence of the spin gap at
U / t=2 takes place at t�=0.5t, indicating the development of
a new phase in the spin sector. It is known from other
studies8,12,13,15,24 that a spin gap opens at a critical value of t�
which is approximately at or slightly above t�=0.5t, becom-
ing weakly larger at intermediate U values.

FIG. 7. Charge gap as a function of 1/L for U / t=3 and various
values of t� / t.

FIG. 8. Charge gap as a function of t� for U / t=3 �black circles�
and U / t=2 �open circles�. The inset shows the charge gap as a
function of the parameter �eff for 0.5� t��0.85t.

(a)

(b)

FIG. 9. Spin gap of as a function of t� for �a� U / t=2 and �b�
U / t=3.

FIG. 10. Spin gap as a function of 1/L for U / t=3 and various
values of t� / t.
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In Fig. 10, we display the spin gap plotted as a function of

the inverse chain length for three values of t� near the tran-
sition at U / t=3. At t�=0.55t, the spin gap clearly scales to
zero at infinite system size, with the values at a particular
system size virtually identical to the t�=0 case and the scal-
ing predominantly linear in inverse system size. For t�
=0.6t and t�=0.65t, the dominant scaling term is quadratic
rather than linear in 1/L and there is clearly scaling to a
finite value of the gap. For t�=0.65t, the size of the extrapo-
lated gap is smaller than for t�=0.6t, and there is a slight
upturn in the gap at the largest system size, which, however,
is not significantly larger than the estimated error of the
DMRG calculation, approximately the symbol size. How-
ever, for larger values of t�, the finite-size behavior becomes
less regular, as can be seen in Figs. 9�a� and 9�b�. This be-
havior is due to the appearance of an incommensurate wave
vector characterizing the spin excitations that occurs when a
substantial density of states at all four Fermi points develops
and makes it virtually impossible to carry out a well-
controlled finite-size scaling for larger values of t�.

The transition associated with the opening of the spin gap
is independent of the insulator-metal transition, as can be
clearly seen for U / t=3 �where the effect of fluctuations is
reduced�. As is shown in Fig. 9�b� and Fig. 10, the spin gap
opens for ts��0.55t, while the insulator-metal transition takes
place at tc��0.65t �see Fig. 8�. Note that the critical value of
the next-nearest-neighbor hopping amplitude, corresponding
to an opening of the spin gap at U / t=3, ts��0.55t, deviates
from the line ts��0.5t. Our findings agree with previous
studies.8,12,13,15,24

E. Two-chain limit

We now discuss the limit of strong next-nearest-neighbor
hopping �t�� t�. For t=0, the system is decoupled into two
half-filled Hubbard chains and, for arbitrary U�0, the
ground state corresponds to a Mott insulator. The origin of
the insulating behavior is the commensurability of umklapp
scattering between the Fermi points, located at ±� /4 and
±3� /4. When t�0 this commensurability is lost. The Fermi
points are shifted with respect to their values at t=0, and the
Fermi energy �the chemical potential for U=0� moves away
from 0 to 	F�−t2 /2t� �for t� t��. For large enough values of
t, the system is therefore expected to be metallic.

In order to estimate the location of the Mott transition, we
can use a similar argument to the one given above for t�
�0.5. As long as the chemical potential is smaller than the
charge gap, the system remains an insulator. A transition to a
metallic phase is expected to occur for 	F of the order of �c,
i.e., for t2��Ut�

3
�1/2 exp�−2�t� /U�. A qualitative sketch of

the phase diagram is given in Fig. 11.

IV. SPIN-CHARGE SEPARATION

A. Spin and charge densities

Valuable insight into the nature of the insulator-metal
transition can be obtained by studying the charge density
distribution in the ground state and the spin-density distribu-
tion in the triplet excited state. The local density deviation

�n��− �n� on site � and its Fourier transformation

�Nq� � �
�

e−iq���n�� − �n�� �20�

yields information about the spatial and momentum compo-
nents present in the ground state of a system with open
boundary conditions because the ends behave like impurities
which produce Friedel oscillations.31,32 Similar information
about the lowest spin excited state in the triplet sector can be
obtained by examining �S�

z� and its Fourier transform �Sq
z�,

defined analogously to Eq. �20�.
The Fourier transform of the charge distribution is shown

in Fig. 12 for U=3, an intermediate interaction strength, as a
function of t�. For t��0.6, there are no significant fluctua-
tions in the local charge density, as would be expected in
one-chain picture ��n��=1 for all � at t�=0�. At t��0.6 and
larger, we see the development of peaks near q=0 and q
=� which rapidly and symmetrically shift to higher and
lower q values, respectively, with increasing t�, going as-
ymptotically toward q=� /2 for large values of t�. These
peaks reflect scattering processes at 2kF

− �low q� and 2kF
+

�high q�. Above t��0.9, an additional peak at q=� /2 devel-
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FIG. 11. �Color online� Qualitative phase diagram of the half-
filled repulsive t-t� Hubbard chain. A gapless charge excitation
spectrum �metallic phase� exists at U=0 for arbitrary t and t� and
for U�0 in the sector of parameter space below the “roof” cover-
ing the area U�Uc between the lines t�=0.5t and t=0 in the U
=0 plane.

FIG. 12. �Color online� Density plot of the Fourier transform of
the charge distribution ��Nq�� as a function of t� �vertical axis� for
U=3 on an L=80 lattice.
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ops, quickly becoming dominant as t� is further increased.
This peak is at the wave vector associated with scattering
between the Fermi points, kF

+ −kF
−.

The behavior of the Fourier transform of the local spin
density ��Sq

z�� of the ground state in the Sz=1 sector is de-
picted in Fig. 13. For t��0.5t and smaller, there is a single
well-defined peak at q=q* slightly less than �. This is due to
the soliton-antisoliton pair that makes up the lowest triplet
excitation in a single-chain picture, and is present in the
Heisenberg chain. We expect q* to shift closer and closer to
� with system size because the size of the soliton-antisoliton
pair is constrained by the number of sites. At t��0.6, this
peak disappears rapidly with t� and is then replaced with a
pattern of weaker peaks similar to those appearing in ��Nq��;
compare with Fig. 12. The peaks starting near q=0 and q
=� can again be attributed to 2kF

− and 2kF
+ scattering pro-

cesses. The peaks near q=� /2 are associated with scattering
with wave vector q=kF

+ −kF
−.

Also evident in Fig. 13 are regular patterns as a function
of t�. There are regular steplike structures in ��Sq

z�� as a func-
tion of t�. At the steps, there are interruptions in density, also
marked by the appearance of peaks at additional scattering
vectors. These effects are due to commensurability between
the available low-lying scattering wave vectors, which
change with t� and U, and the system size. In other words,
when the appropriate wavelength of the excitation is com-
mensurate with the system size, there is a shift and mirroring
of the strongly weighted q points. This corresponds to a
qualitatively more commensurate behavior of �Si

z�, as viewed
in real space. These effects are also closely related to the
irregular finite-size scaling of the spin gap, as seen in Fig. 9
for larger values of t�. Note that weaker, but analogous ef-
fects are also present in the charge density ��Nq��, Fig. 12.

B. Two-chain behavior

We examine the behavior of the t-t�-U chain for large
next-nearest hopping �t�� t�, a limit which corresponds to
two chains coupled with a weak zigzag hopping. In particu-
lar, we numerically investigate the transition from a two-
chain �four-Fermi-point� metallic regime at weak U to the
strong-coupling regime, for which the effective model is two

spin-S=1/2 Heisenberg chains coupled with a frustrating
zigzag interaction at U� t�� t, i.e., J��J.

In Fig. 14, we show the Fourier transform �Nq� of the
charge distribution in the ground state of the t-t�-U chain at
U=4,8 ,10,12 for t�=3t. In the metallic phase �U / t=4 and
U / t=8�, the strongest peak is at q=� /2, which corresponds
to alternating charge density along each chain. In addition,
there are side peaks which are due to weak alternations be-
tween the chains, as well as an incommensurate peak near
q=� due to asymmetric end effects on the two different
chains, which shifts toward smaller q and becomes weaker as
U is increased. As U / t is increased to 10, the amplitude of
the charge fluctuations between the chains is strongly sup-
pressed, as seen in the near disappearance of the peak at q
=� /2. This indicates the transition to the insulating phase.
The peak near q=� now moves toward larger q, but be-
comes yet weaker with U. Deeper into the insulating phase,
at U / t=12, the Fourier transform of the charge density is
almost featureless, corresponding to a real-space charge den-
sity which is smooth and equal between the chains.

In Fig. 15, we show the Fourier transform of the spin-
density distribution �Sq

z� in the Stotal
z =1 state for t�=3t and

U / t=4,8 ,10,20. As can be seen, the weak incommensurate
peaks on either side of q=� /2 present for U / t=4 and 8
become sharper and move toward q=� /2 as U is increased.
These large-U excitations correspond to two-spinon excita-
tions, as seen in the single Heisenberg chain,33 in each chain.
This behavior, also seen in the frustrated Heisenberg chain at

FIG. 13. �Color online� Density plot of the Fourier transform of
the spin distribution ��Sq

z�� in the Sz=1 state with lowest energy for
U=3 on an L=80 lattice.

FIG. 14. �Color online� Fourier transform of the charge distri-
bution ��Nq�� in the ground state of the t-t�-U chain with L=64, t�
=3t, and U / t=4,8 ,10,20.

FIG. 15. �Color online� Fourier transform of the spin distribu-
tion ��Si

z�� in the Stotal
z =1 state of the t-t�-U chain with L=64, t�

=3t, and U / t=4,8 ,10,20.
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large J� /J, indicates that the system behaves as two weakly
coupled S=1/2 Heisenberg chains at large U.

V. CONCLUSIONS

We have carried out a combined analytical and numerical
analysis of the insulator-metal transition in the half-filled
one-dimensional t-t�-U model. Using the weak-coupling
bosonization approach, we have shown that the gross fea-
tures of the transition from an insulator to metal as a function
of next-nearest-neighbor hopping t� can be described within
the standard theory of commensurate-incommensurate tran-
sitions. We have derived an explicit expression for the criti-
cal line tc��U� separating the metallic phase from the spin-
gapped insulator.

Using DMRG calculations on chains of up to L=128
sites, we have performed a detailed numerical analysis of the
excitation spectrum and the charge and spin-density distribu-
tions in various sectors of the phase diagram. In particular,
we have studied the evolution of the charge and spin gap
with increasing next-nearest-neighbor hopping amplitude t�.
We have found evidence for a spin gap in the parameter
range 0.5t� t�� tc�, in agreement with previous studies. We
have shown that the change in the topology of Fermi surface
at the insulator-metal transition is reflected in the appearance

of incommensurate modulations of the charge density. In-
commensurate spin-density distributions in the triplet sector
are always present in the metallic phase, but can also appear
independently in the spin-gapped insulator due to frustration.

For t�� t, we have argued that the insulator-metal transi-
tion can be best understood starting from the limit of two
uncoupled chains. At small U, turning on the zigzag coupling
between the chains destroys the commensurability present
for a single chain, and leads to a metallic phase. At large U,
the system is insulating and behaves as two weakly coupled
Heisenberg chains. We have estimated that the insulator-
metal transition in this regime occurs when the shift in the
Fermi energy is comparable to the size of the charge gap in
the isolated Hubbard chain.
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