
ht
tp

://
do

c.
re

ro
.c

h

Heat Conduction Process on Community Networks as a Recommendation Model

Yi-Cheng Zhang* and Marcel Blattner
Physics Department, University of Fribourg, 1700 Fribourg, Switzerland and Physics Department, Renmin University, Beijing, China

Yi-Kuo Yu†

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, Maryland 20894, USA

Using heat conduction mechanism on a social network we develop a systematic method to predict
missing values as recommendations. This method can treat very large matrices that are typical of internet
communities. In particular, with an innovative, exact formulation that accommodates arbitrary boundary
condition, our method is easy to use in real applications. The performance is assessed by comparing with
traditional recommendation methods using real data.

With the advent of the internet, there sprout many web
sites that enable large communities to aggregate and inter-
act. For example livejournal.com allows its 3� 106 mem-
bers to share interests and life experiences; del.icio.us is a
social bookmark service for people to share their findings
on the World Wide Web. Thousands of such web sites are
built by web entrepreneurs and activists for the public, and
their number is growing ever faster. This brings about
massive amount of accessible information, more than
each individual is able or willing to process. Information
search, filtering, and recommendation thus become indis-
pensable in the internet era. Ideally speaking, a good
recommendation mechanism should be able to ‘‘guess’’
what a person may want to select based on what he or she
already selected [1,2]. Many such mechanisms are in ac-
tual use (like www.amazon.com proposing its readers with
new books), however, the jury is still out as to what is the
best model. For a review of current techniques, see [3].

Based on the heat conduction (or diffusion) process, we
propose a recommendation model capable of handling
individualized boundary conditions (BC). To better explain
our model, we first illustrate using the friendship network
of N people: each person (member) is a node, and a pair of
nodes is connected by an edge provided they are mutual
friends. The collection of these information forms the
symmetric adjacency matrix A: element Aij � 1, or 0 de-
pending on whether people i and j are mutual friends (1) or
not (0). Although it is possible to consider asymmetric
connection, this generalization will not be studied here.
To recommend friends to any individual member, we first
set (Dirichlet) BC: to set the values on the directly con-
nected nodes as 1 and some remote nodes (will be further
specified) as 0. Values on all other nodes are treated as
variables to be determined. These values can be interpreted
as the probabilities that these nodes might be selected as
friends.

We now describe an efficient and effective strategy to
solve the proposed heat conduction problem. From A, we
first construct a propagator matrix P � D�1A, where D is

the diagonal degree matrix. Denote H as the temperature
vector of N components: the source components are high
temperature nodes with temperature 1; the sink-
components are low temperature nodes with temperature 0.
Our task is to find, through thermal equilibrium, the tem-
peratures associated with the remaining nodes that are
neither sinks nor sources. The discrete Laplace operator,
analog of �r2, on this network is L � I � P, where I is
the identity matrix. We only need to solve

LH � f; (1)

where f is the external flux vector. Note that this is the
discrete analog of ��r2T�~r� � ~r � ~J� ~r� with H�i� plays
the role of �T� ~r� and f�i� plays the role of ~r � ~J� ~r�.

Because Laplace operator conserves total heat and tend
to spread heat from high temperature region to low tem-
perature region, the only way to maintain the fixed tem-
perature values at the sources and sinks is to apply external
heat flux (inflow at sources and outflow at sinks). For the
rest of the nodes, the equilibrium condition demands that
no net heat flux should occur. Therefore, the only allowed
nonzero components of f are source and sink components.

The computation of the temperature vector is straight-
forward. It is convenient to group the source and sink
components together into a block H1, and the other free
variables into another block H2. That is

H � H1

H2

� �
: (2)

Likewise, we group the Laplace operator in a similar
fashion and Eq. (1) may be expressed as

L11 L12

L21 L22

� �
H1

H2

� �
� f

0

� �
: (3)

All we need to solve is the homogeneous equation

L21H1 � L22H2 � 0; (4)

without the need to know f. Fixing the values of H1, H2

1

Published in "Physical Review Letters 99(15): 154301, 2007"
which should be cited to refer to this work. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20641863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ht
tp

://
do

c.
re

ro
.c

h
can be readily found using standard iterative methods [4].
The above approach, although straightforward, represents
a daunting challenge: for each individual, we must solve
the huge matrix problem once—a prohibitively expensive
task for a typical internet community having millions of
members.

The standard way to get around this dilemma is to resort
to the Green’s function method. Starting from Eq. (1) we
would like to have a Green’s function �0 such that Eq. (1)
can be inverted:

H1

H2

� �
� �0 f

0

� �
(5)

to get H2��0
21�

0�1
11 H1. However, �0 �L�1��I�P��1

is divergent: the Laplace operator has a zero eigenvalue
and the inverse L�1 is meaningful only if �H1; H2�T is in
the subspace that is orthogonal to the eigenvector of zero
eigenvalue. A fortunate scenario like this has occurred in
the studies of random resistor networks [5,6].

To simultaneously deal with all possible BC, we lose the
freedom to limit the solution to a certain subspace.
Nevertheless, we have a good understanding regarding
this divergence. Basically, the P matrix has an eigenvalue
one with the right eigenvector being a column of 1’s

ju0i � �1; 1; � � � ; 1�T
and with left eigenvector being

hv0j �
�
d1
d
;
d2
d
; . . . ;

dN
d

�
;

where di denotes the degree of node i and d � P
idi being

the sum of degrees. Note that with this notation, we have
hv0ju0i � 1.

We may then decompose P into

P � Q� ju0ihv0j
with Qju0ihv0j � ju0ihv0jQ � 0. Further, the spectral ra-
dius of Q is now guaranteed to be smaller than 1 and thus
(I �Q) is invertible with �I �Q��1 � P1

n�0 Q
n. We may

then rewrite Eq. (3) as

�I �Q� H1

H2

� �
� f

0

� �
� ju0ihv0j H1

H2

� �

� f
0

� �
� c�H�ju0i; (6)

where the H-dependent constant may be written as c�H� �
hv0

1jH1i � hv0
2jH2i. We need to explain the notation fur-

ther. Basically, ju01i represents a column vector whose
components are obtained from the column vector ju0i
with component labels corresponding to that of the sources
and the sinks. On the other hand, ju02i represents a column
vector that is the remainder of ju0i after removing the
components whose labels correspond to the sources and
sinks. Similarly, we define hv0

1j to be a row vector whose
components are obtained from the row vector hv0j with
component labels corresponding to that of the sources and
the sinks; while hv0

2j represents a row vector that is the

remainder of hv0j after removing the components whose
labels correspond to the sources and sinks. To simplify the
notation, we will represent c�H� by c without explicitly
showing its H dependence.

Note that since Qju0i � 0, upon multiplying � 	
�I �Q��1 to both side of Eq. (6) we have

H1

H2

� �
� �11 �12

�21 �22

� �
f
0

� �
� cju0i (7)

or, equivalently,

H1 � cu01
H2 � cu02

� �
� �11 �12

�21 �22

� �
f
0

� �
: (8)

Consequently, we may write H2 in the following form

jH2i � cju02i ��21�
�1
11 jH1i � c�21�

�1
11 ju01i: (9)

Using the definition that c�hv0
1jH1i�hv0

2jH2i, we obtain

c � hv0
1jH1i � hv0

2j�21�
�1
11 jH1i

� c
hv0
2ju02i � hv0

2j�21�
�1
11 ju01i�;

or, equivalently,

c � hv0
1jH1i � hv0

2j�21�
�1
11 jH1i

1� 
hv0
2ju02i � hv0

2j�21�
�1
11 ju01i�

: (10)

Substituting this result back to Eq. (9), we obtain H2 with
computational complexity solely depending on �21�

�1
11 .

Note that we only needs to invert the matrix (I �Q) once
and for all. Upon specifying the boundary nodes, one needs
to reshuffle the rows and columns of the matrix as well as
vectors—a relatively efficient operation. This operation
groups the source nodes and sink nodes in one block to
make easy the computation of ��1

11 .
Let us emphasize that our final expression is written in a

rather general setting so that it can be applied to cases when
P is either row normalized or column normalized. In the
case of column-normalized P, we will have ju0col: norm:i ��hv0

row norm:j�T and hv0
col: norm:j � �ju0row norm:i�T . The solu-

tion structures (9) and (10), however, do not change.
Although an exact Green’s function method with

Dirichlet boundary condition using spectral analysis (ei-
genvalues and eigenvectors) has been established by
Chung and Yau [7], we find our method more convenient
for computational purpose. With our method, the Greens
function � is computed once and can be used for all
different BC. This is immensely more efficient than finding
all the eigenvalues and eigenvectors for every BC needed
for each individual. Furthermore, it would not be practical
to find all the eigenvectors of matrices resulting from net-
works of millions of nodes.

To apply our method, one may either choose to fully
invert (I �Q) or take its approximate form. The direct
inversion of (I �Q) may still be computationally chal-
lenging for a matrix of size millions by millions. In terms
of approximations, we find the use of �I �Q��1 	
limM!1��M� particularly useful, with

2



ht
tp

://
do

c.
re

ro
.c

h
��M� 	 
I � P� � � � � PM �Mju0ihv0j�: (11)

This approximation gets better for larger M. This is be-
cause the larger M is, the smaller the difference between
PM and ju0ihv0j. One may then use �21�M���1

11 �M� in
place of �21�

�1
11 . The quality of this approximation may

be verified by comparing the exact solution (9) and (10)
versus the approximate one (i.e., replacing �21�

�1
11 by

�21�M���1
11 �M� in the exact solution).

The convergence of the approximate solution to the
exact solution [Eqs. (9) and (10)] was first tested on an
artificially generated random network of 100 nodes. Aside
from the condition that the nodes do not form disjoint
clusters, a pair of nodes has probability p � 0:1 to be
connected. One then randomly selects a sink node and a
source node that are not directly linked. We expect to get
very similar shape of the temperature profile as in the exact
case. This is because for the row-normalized matrix, the
ju0i vector being a column vector with 1 in each entry may
induce a small but uniform offset in the approximate
solution. In Fig. 1, we plot the ‘‘temperature profile’’ of
the 15 hottest nodes from the exact solution and the tem-
perature profile of the same nodes using our approximation
solution of various M. A good agreement between the
exact solution and the approximate solution is reached at
about M � 10.

To test the usability of our approach in the real world, we
use the movielens database. MovieLens (movielens.um-
n.edu; grouplens.org) ratings are recorded on a five stars
scale and contain additional information, such as the time
at which an evaluation was made. The data set we down-
loaded contains N � 6040 users �M � 3952 movies.
However, only a fraction �M � 0:041 of all possible votes
were actually expressed. To be able to perform the calcu-
lation in reasonable time, we decide to further reduce the
data size in each dimension by roughly 50%. To preserve
the statistical properties of the original data, the pruning is

done randomly without bias. In particular, we tried to
maintain the probability distribution of the number of votes
per users, as well as the sparsity and the N=M ratio. We
want to stress that this is crucial when testing the perform-
ance of predictive algorithms on real data in an objective
way. In fact, many recommender systems can be found in
the literature that rely on dense voting matrices [8,9], at
least in the training data set. Typically, users who have
judged too few items are struck out, as well as items that
have received too few votes. We did not comply to such
convention and made an effort to keep the filtering level as
low as possible, although this makes predictions much
more difficult.

Once filtered, we cast the data set in a vote matrix V,
with number of users N � 3020 and number of movies
M � 1976. In this reduced vote matrix, the matrix element
V�;i represents the number of stars assigned to movie i by
user � and is set to zero for unexpressed votes. The total
filling fraction of V is �M � 0:0468. The votes in V are
then sorted according to their relative time stamps. The last
ntest � 104 expressed votes are collected to form our test
set, while the rest of the expressed votes form our training
set. We denote by V�t� the vote matrix information up to
time t. That is, in V�t� all the unexpressed votes up to time t
are set to have zero star.

For the purpose of rating prediction, one will need a
movie—movie network. To accomplish this task, one may
compute the correlation coefficient Cij�t� between movie i
and movie j using the expressed votes up to a certain time t
in the training set. Specifically, we denote �i�t� 	 1

N �PN
��1 V�;i�t� and �2

i �t� 	 1
N

PN
��1
V�;i�t� ��i�t��2. The

correlation coefficient reads

Cij�t� 	
P

�
V�;i�t� ��i�t��
V�;j�t� ��j�t��
�i�t��j�t� : (12)

With a specified cutoff Ccut, one obtains an adjacency
matrix A�t�, with Aij�t� � ��Cij�t� � Ccut�t��. The value
of Ccut�t� is set so that the average degree per node k�t�
for the movie—movie network has the same number of
nonzero entries as 
V�t��T
V�t��.

Keeping the test set data fixed, we progressively fill the
vote matrix the training set data over time (using the
relative time stamps), say up to time t. We then use A�t�
to construct the propagator D�t� based on the information
accumulated up to t. For each viewer (user), the BC is
simply given by the votes expressed by the user up to time
t. In the event that a user only has one vote (or none) up to
time t, the BC for that user is given by randomly choosing
one (or two) movie(s) and use the average rating(s) of the
movie(s) up to that time as the boundary values [10]. We
then use our algorithm to make predictions on the entire
test set.

This test protocol is intended to reproduce real applica-
tion tasks, where one aims to predict future votes—which
is, of course, much harder than predicting randomly picked
evaluations. It is somewhat less realistic to fix the test set

FIG. 1. Comparison between the exact solution (bold line)
Eqs. (9) and (10) and our approximation. For both cases we
plot the ‘‘hottest’’ nodes. For better visualization we shifted the
profiles such that the first nodes coincide in the graph. We
observe a good agreement between the exact solution and the
approximation for M � 10 in our artificial network.

3



ht
tp

://
do

c.
re

ro
.c

h

once and for all, but this has the advantage to allow for
more objective comparisons of the results. Many different
accuracy metrics have been proposed to assess the quality
of recommendations (see Ref. [11]), we choose the root
square mean error (RSME):

RSME �
�������������������������������������������������������X
��;j�2test

�V 0
�;j � V�;j�2=ntest

s
; (13)

where V 0
�;j represents the predicted vote from our algo-

rithm, V�;j represents the actual vote (rated by user � on
movie j) in the test set, and the sum runs over all expressed
votes in the test set. In our experiments, the RSME is cal-
culated, at different sparsity values �, on a unique test set.

Figure 2 summarizes the performance comparison of our
model with the mean predictor (the prediction is simply
given by the objects mean value) and the widely used
Pearson correlation based method [12,13]. Our model out-
performs both after enough votes (of the order of
N1=2M5=6) have been expressed. Since the dimensions of
the vote matrix V is known in a real application, given
the number of expressed votes, it is relatively easy to see
where one stands in terms of information content and
whether our method will perform well using the given
partial information.

In summary, we have devised a recommendation mecha-
nism analogous to heat conduction. The innovation of our
method is its capability to compute the Green’s function
needed just once to accommodate all possible BC. In terms
of generalization, it is apparent that our method can be
applied to network with weighted edges, with Aij � wij �
0. Whether such a generalization will improve the perform-
ance will be investigated in a separate publication. Finally,
we stress that our study is not aimed to extract statistical

properties out of networks through constructing model
networks mimicking the real world networks [14,15]; nor
are we pursuing analysis of slowly decaying eigenmodes
[16] in the absence of boundary conditions. Instead, our
goal is to provide a framework that is capable of providing
individualized information extraction from a real world
network.

Y. C. Z. and M. B. were partially supported by Swiss
National Science Foundation Grant No. 205120-113842.
Y. C. Z. acknowledges hospitality at Management School,
UESTC, China, where part of the work is done. The
research of Y. K. Y. was supported by the Intramural
Research Program of the National Library of Medicine at
the NIH.

*yi-cheng.zhang@unifr.ch
†Corresponding author.
yyu@ncbi.nlm.nih.gov

[1] S. Maslov and Y. C. Zhang, Phys. Rev. Lett. 87, 248701
(2001).

[2] M. Blattner, Y. C. Zhang, and S. Maslov, Physica
(Amsterdam) 373A, 753 (2006).

[3] G. Adomavicius and A. Tuzhilin, IEEE Trans. Know. Data
Eng. 17, 734 (2005).

[4] W. Press, S. Teukolsky, B. Flannery, and V. Vetterling,
Numerical Recipes in C (Cambridge University Press,
New York, 1992).

[5] G. Korniss, M. Hastings, K. Bassler, M. Berryman,
B. Kozma, and D. Abbott, Phys. Lett. A 350, 324 (2006).

[6] F. Wu, J. Phys. A 37, 6653 (2004).
[7] F. Chung and S. Yau, J. Comb. Theory Ser. A 91, 191

(2000).
[8] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins,

Information Retrieval 4, 133 (2001).
[9] A. Waern, User Modeling and User-Adapted Interaction

14, 201 (2004).
[10] This is to avoid the artifact of null information retrieval:,

e.g., assume only one boundary node with a specified
temperature, all nodes will reach the same temperature
upon thermal equilibrium.

[11] J. L. Herlocker, J. A. Konstan, K. Terveen, and J. T. Riedl,
ACM Trans. Inf. Syst. 22, 5 (2004).

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and
J. Riedl, in Proceedings of ACM 1994 Conference on
Computer Supported Cooperative Work (ACM, Chapel
Hill, North Carolina, 1994), p. 175.

[13] J. Herlocker, J. Konstan, and J. Riedl, Information
Retrieval 5, 287 (2002).

[14] M. Newman, SIAM Rev. 45, 167 (2003).
[15] J. Park and M. Newman, Phys. Rev. E 70, 066117 (2004).
[16] K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen,

Phys. Rev. Lett. 90, 148701 (2003).
[17] Assuming that the vote matrix is filled randomly, one can

show that the density needs to be � � N�1=2M�1=6 to have
in the movie-movie network a linking probability p �
M�1=3, which marks the onset of giant cluster formation.
See B. Bollobás, Random Graphs (Cambridge University
Press, New York, USA, 2001), Chap. 6.

FIG. 2. Prediction performance on the movielens database.
The heat conduction model outperforms the mean predictor
and the Pearson correlation based method as well. � denotes
the fraction of possible votes in the matrix. The vertical line, cor-
responding approximately to the giant cluster formation thresh-
old in the movie—movie network, has vote density � 
2N�1=2M�1=6 [17], where N is the number of users, M is the
number of movies.

4




