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We investigate a set of complex heart rate time series from healthy human in different behaviour states with the
detrended fluctuation analysis and diffusion entropy (DE) method. It is proposed that the scaling properties are
influenced by behaviour states. The memory detected by DE exhibits an approximately same pattern after a
detrending procedure. Both of them demonstrate the long-range strong correlations in heart rate. These findings
may be helpful to understand the underlying dynamical evolution process in the heart rate control system, as
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well as to model the cardiac dynamic process.

The analysis of time series of physiological sig-
nificance currently attracts many research groups in
physical and biomedical regions. The experts focus
not only on the unique physiological functions embed-
ded in the signals, but also on the complex physical
characteristics which can help us to understand the
underlying mechanism of systems. Recently, several
works[! 9! have revealed that heart rate variability of
healthy human shares the general principles of other
complex systems, like long-range correlations, critical
phenomena in nonequilibrium systems, as well as mul-
tifractal scaling properties. These complex dynamics
of heart rate remains unaltered even after eliminat-
ing known behavioral modifiers.['%'" It is suggested
that the origin of heart rate complexity exists in the
intrinsic dynamics of the physiological regulatory sys-
tem. In this Letter, the detrended fluctuation analysis
(DFA)!*?l and diffusion entropy (DE) method('3:14] are
applied to detect the scaling behaviour and memory
embedded in heart rate of healthy human.

We analyse three sets of experimental data of heart
rate variability from 7 healthy subjects (mean age
25.3 yr, named as samples 1, 2, ..., 7) without any dis-
ease affecting the autonomic control of heart rate.[°!
Each one was collected in different behaviour states,
usual daily activity, experimental exercise, and sleep.
The data set consists of the interbeat intervals be-
tween consecutive heartbeats measured over 24 h, in
which the subjects were initially asked to ride on a
bicycle ergometer for 2.5h, as the exercise state, and
maintain their heartbeat intervals at 500-600 ms. Af-
ter the exercise, the data were continuously measured
during usual daily activity in the daytime and sleep
at night, with regular sleep schedules.'” A represen-

tative record of heart interbeat intervals for a healthy
subject is shown in Fig. 1, which is classified into four
behaviour states: (a) constant exercise, (b) usual daily
activity after the exercise, (c¢) sleep, and (d) usual
daily activity the next morning.

The quantitative methods applied in this study are
DFA and DE. In order to keep our description as self-
contained as possible, we review the DFA and DE
method briefly. Firstly, we describe the operational
process of DFA as follows:

(1) We consider a time series p;, (1,...,N) and N
is the length of the series. Determine the ‘profile’

where
1 N
W =5 Y w (2)

(2) Divide profile y(i) into non-overlapping boxes
with equal size t (scale of analysis).

(3) Calculate the local trend yg in each box of size
t by a least-square fit of the series, and the detrended
fluctuation function is given by

Y(k) = y(k) — s (k). 3)

(4) For a given box size t, we compute the rms
fluctuation
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and repeat the above computation for different box
sizes t (different scales) to provide a relationship be-
tween F(t) and t.
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Fig.1. A representative example of heart interbeat in-
terval fluctuation of healthy human during four physical
states: (a) constant exercise, (b) usual daily activity af-
ter the exercise, (c) sleep, and (d) usual daily activity the
next morning.

We plot F(t) ~ t* in different box size t, and ob-
tain the scaling exponent «, representing the corre-
lation degree of the signal. If a = 0.5, there is no
correlation and the signal is an uncorrelated signal
(white noise); if & < 0.5, the signal is anti-correlated;
if & > 0.5, there is positive correlation in the signal.

Successively, we briefly review the DE method in-
novated by the authors in the literature.['3-14 It means
that a time series is converted into a diffusion process
described by the probability distribution p(x,t) of the
diffusing variable x. It is expected to fit the scaling

property
1 x

p(z,t) = Zglr<zg) (5)
with the ‘degree of anomaly’ measured by the distance
of the scaling parameter ¢ from the ordinary value
0.5. Here § deviating from 0.5 also suggests that the
waiting time of process does not decay in an expo-
nential form, indicating that the memory exists in the
system.[*16] The memory of the system determines the
long-range correlations of output. It is straightforward
to prove that the Shannon entropy of a process fitting
the scaling condition of Eq. (5) reads

+oo
S(t) = —/ P(z,t)log,o[P(z,t)]dx. (6)

— 00

A simple algebraic leads to
S(t) = A+ dlogyo(t), (7)

where

+oo

A=— F(y)logyo[F(y)ldz,y = t% (8)

— 00

and its explicit form is not related to the scaling esti-
mation. The DE method may be more efficient than
the calculation of the second moment of the probabil-
ity distribution. In particular, when the distribution
density under study departs from the ordinary Gaus-
sian case and the function F(y) has slow tails with
an inverse power-law nature, the second moment is a
divergent quantity.l'®% Diverging quantity is made
to be finite by the unavoidable statistical limitation
because of the finite records of empirical data. In this
case, the second moment analysis would yield mislead-
ing results, determined by the statistical inaccuracy,
while the method based on Eq. (7) yields a correct re-
sult. It has a theoretic relation § = with scaling
(20]

_1
3—2a
exponent a.

We compute a normalized time series with zero
mean and unit variance of sequential heart interbeat
intervals, b;, where 7 is the beat number. Then, the
scaling behaviour obtained with DFA in each of the
behaviour states is shown in Fig. 2. For the usual daily
activity [Figs. 2(b) and 2(d)], the scaling behaviour ap-
proximately conforms to monofractal scaling property
with a slope 1, which implies the 1/f scaling in the
power spectrum and long-range strong correlated be-
haviour in a wide range of scales. On the other hand,
a crossover scaling behaviour exists in the constant
exercise [Fig.2(a)] and sleep [Fig.2(c)] states, where
the scaling value decreases as the range of scales ¢
increases. It demonstrates a breakdown of the long-
range correlated behaviour in these states with higher
(exercise) and lower (sleep) heart rates.

In order to further confirm the underlying mem-
ory of the healthy human heart rate, we apply the
DE method to quantify the interbeat interval fluctua-
tions. As mentioned above, we consider a normalized
time series with zero mean and unit variance. To gen-
erate a diffusive process, we integrate the time series
bi, (1,...,N) with different sliding windows of size ¢

k+t
oe(t)=> b, k=1,2,...,N—t+1. (9
j=k

and obtain a diffusive trajectory with NV — t 4+ 1 par-
ticles in a fixed t, where @(t) is imagined as the po-
sition of particle. After pretreatment, we are ready
to estimate the entropy of this diffusive process. Fig-
ure 3 describes the result yielded by the DE method.
The heart interbeat interval fluctuation in four be-
haviour states exhibits approximate scaling behaviour
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with slope 1 at small scales. However, the effect of
nonstationary trend contributes to be indistinguish-

able scaling behaviour at large scales, where the en-
tropy increases more quickly than scales.
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Fig.2. The DFA results of seven Fig. 3. The DE results of seven Fig. 4. The DE results of seven

records from healthy subjects during
four physical states: (a) constant exer-
cise, (b) usual daily activity after the
exercise, (c) sleep, and (d) usual daily
activity the next morning.

records from healthy subjects during
four physical states: (a) constant exer-
cise, (b) usual daily activity after the
exercise, (c) sleep, and (d) usual daily
activity the next morning.

records from healthy subjects after de-
trending the nonstationary trend effect
during four physical states: (a) con-
stant exercise, (b) usual daily activity
after the exercise, (c) sleep, and (d)

To make these data suitable for the illustration
of the memory at all scales as follows, we introduce
a method based on the Fourier transform to detrend
the nonstationary trend in the whole but not the local
temporal domain.?2l The normalized temporal series
is transformed to Fourier space. We then use invert
Fourier transform to obtain temporal series with cutoff
coefficient of the Fourier space. We consider the cur-
tailed interbeat interval fluctuation as the trend and
subtract it from original series. The detrended heart
interbeat interval fluctuation is computed by the DE
method. In comparison with Fig.3, the scaling be-

usual daily activity the next morning.

haviour behaves distinctly and more accurately at the
large scales after detrending the nonstationary trend,
as shown in Fig. 4, but the scaling behaviour at small
scales does not change essentially, as well as with ap-
proximate slope 1. The explanation may be such that
nonstationary trend just effect the analytic result of
diffusion entropy at low frequency domain (large tem-
poral domain), and filtering procedure weakens the
trend effect.[3-25] In comparison with the DFA re-
sult, the scaling behaviour conforms to approximate
monofractal scaling property with slope 1. All the
four behaviour states suggest that the heart rate is a
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process where the memory is important.

0.6

04 @ o © @

0.6
(]

<

q > >

w 0.5 %5 ﬂ O

yAN

¥ 4 £ ¢

m] v
0.4-

Fig.5. The scaling exponents of seven records from
healthy subjects after randomly shuffling data during four
physical states: (a) constant exercise, (b) usual daily ac-
tivity after the exercise, (c) sleep, and (d) usual daily ac-
tivity the next morning.

Last but not least, to test that the long-range cor-
relations and memory is not caused by spurious arti-
fact but genuine properties of heart rate, we shuffle the
each point of interbeat interval fluctuation for seven
records from healthy subjects in four behaviour states.
The shuffling operation keeps the distribution of inter-
beat interval fluctuation unchanged, but destroys the
correlation and memory in the time series totally if
any. We measure the randomly shuffled data again.
They do not show any correlation or memory with
giving average exponent ~ 0.5, as shown in Fig. 5.

In conclusion, we have demonstrated the memory
exist in the heart rate of healthy human, which deter-
mines the long-range correlations of output of the sys-
tem. The healthy human heart rate exhibits variable
scaling behaviour between different behaviour states.
We have discussed relevant characteristics in the sig-
nificant behaviour states, showing the breakdown of
long-range correlations when the scale increases in

constant exercise and sleep states, while a 1/f tem-
poral scale-a hallmark of criticality—observed in the
whole scales in usual daily activity. It supports the
hypothesis that a healthy human heart rate is con-
trolled to converge continually to a critical state dur-
ing usual daily activity.[”) We also study estimation of
memory covered by the nonstationary trend at large
scales based on Fourier filter by the DE method. The
result suggests that the memory exist at all the scales
and exhibits an approximately same pattern in all the
behaviour states. These findings may be helpful to
understand the underlying dynamical evolution pro-
cess in the health human heart rate control system, as
well as to model the cardiac dynamic process.

The authors wish to thank Dr M. Ignaccolo for
helpful discussion.
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