# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *trans*-Tetracarbonylbis(triphenylphosphane-*кP*)molybdenum(0)

#### Greyson W. Waldhart and Neal P. Mankad\*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA Correspondence e-mail: npm@uic.edu

Received 3 January 2014; accepted 6 January 2014

Key indicators: single-crystal X-ray study; T = 300 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.022; wR factor = 0.058; data-to-parameter ratio = 13.6.

The well known title compound, *trans*- $[Mo(C_{18}H_{15}P)_2(CO)_4]$ , has not been studied previously by X-ray crystallography, unlike its *cis* isomer. The complex possesses crystallographically imposed inversion symmetry, with the Mo atom residing on an inversion centre (1*a* Wyckoff position). The two triphenylphosphane groups are arranged in a staggered orientation. Each of the phenyl groups exhibits significantly different Mo-P-C-C torsion angles ranging from 2.6 (2) to 179.4 (1)°, most likely due to steric interactions based upon their positions relative to the carbonyl ligands.

#### **Related literature**

For the synthesis of the title compound and a structural study of its *cis* isomer, see: Cotton *et al.* (1982). For ligand dissociation and thermal reactivity of similar compounds, see: Darensbourg & Kump (1978). For an IR analysis of metal carbonyls, see: Haas & Sheline (1967). For kinetic investigations of metal-phosphanes, see: Darensbourg & Bischoff (1993).





```
\begin{bmatrix} Mo(C_{18}H_{15}P)_2(CO)_4 \end{bmatrix} \\ M_r = 732.52 \\ Triclinic, P\overline{1} \\ a = 9.3443 (13) Å \\ b = 10.2267 (15) Å \\ c = 10.7258 (16) Å \\ \alpha = 64.794 (4)^{\circ} \\ \beta = 69.417 (4)^{\circ} \end{bmatrix}
```

#### Data collection

Bruker SMART X2S benchtop diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2012) T<sub>min</sub> = 0.70, T<sub>max</sub> = 0.85

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$   $wR(F^2) = 0.058$  S = 1.112907 reflections 214 parameters V = 867.2 (2) Å<sup>3</sup> Z = 1Mo K $\alpha$  radiation  $\mu = 0.51$  mm<sup>-1</sup> T = 300 K  $0.62 \times 0.45 \times 0.33$  mm

 $\gamma = 83.699 \ (4)^{\circ}$ 

7865 measured reflections 2907 independent reflections 2770 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.020$ 

 $\begin{array}{l} \text{61 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.25 \text{ e } \text{ } \text{A}^{-3} \\ \Delta \rho_{min} = -0.28 \text{ e } \text{ } \text{A}^{-3} \end{array}$ 

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The Department of Chemistry and the College of Liberal Arts & Sciences at UIC are acknowledged for purchasing a Bruker SMART X2S bench-top diffractometer, and for providing supplies and equipment for the inorganic teaching lab that motivated this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: PJ2007).

#### References

- Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Darensbourg, D. J., Klein, S. & Kolthammer, B. W. (1982). Inorg. Chem. 21, 294–299.
- Darensbourg, D. J. & Bischoff, C. J. (1993). Inorg. Chem. 32, 47-53.
- Darensbourg, D. J. & Kump, R. L. (1978). Inorg. Chem. 17, 2680-2682.
- Haas, H. & Sheline, R. K. (1967). J. Chem. Phys. 47, 2996-3022.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.



# supporting information

## Acta Cryst. (2014). E70, m36 [doi:10.1107/S1600536814000300]

## *trans*-Tetracarbonylbis(triphenylphosphane-*kP*)molybdenum(0)

## Greyson W. Waldhart and Neal P. Mankad

### S1. Comment

We initiated this study as part of an undergraduate teaching lab using the Bruker *SMART* X2S bench-top diffractometer. Students use FT—IR spectroscopy to propose whether unknown samples are either the *cis*- or *trans*-isomer, and then use crystallography to test their hypotheses. To our surprise, the *trans*-isomer had not been reported in the CSD. In our hands, dissolving the *trans*-isomer in dichloromethane causes reversion to the *cis*-isomer. Crystallization from chloroform, on the other hand, provides the *trans* arrangement cleanly.

The 0 1 0 and 0 0 1 reflections were omitted from final refinements because of the suspicion that they were affected by the beamstop. Hydrogen atoms were placed at calculated positions 0.93 angstroms from the phenyl carbons and refined using the standard riding model with  $U_{iso}(H)$  set to 1.2 times  $U_{eq}(C)$ .



#### Figure 1

Thermal ellipsoid plot of the title compound (50% probability).

trans-Tetracarbonylbis(triphenylphosphane-*kP*)molybdenum(0)

## Crystal data

[Mo(C<sub>18</sub>H<sub>15</sub>P)<sub>2</sub>(CO)<sub>4</sub>]  $M_r = 732.52$ Triclinic,  $P\overline{1}$  a = 9.3443 (13) Å b = 10.2267 (15) Å c = 10.7258 (16) Å a = 64.794 (4)°  $\beta = 69.417$  (4)°  $\gamma = 83.699$  (4)° V = 867.2 (2) Å<sup>3</sup> Z = 1 F(000) = 374  $D_x = 1.403 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6345 reflections  $\theta = 2.2-25.1^{\circ}$   $\mu = 0.51 \text{ mm}^{-1}$ T = 300 K Block, yellow  $0.62 \times 0.45 \times 0.33 \text{ mm}$  Data collection

| <ul> <li>Bruker SMART X2S benchtop<br/>diffractometer</li> <li>Radiation source: XOS X-beam microfocus<br/>source</li> <li>Doubly curved silicon crystal monochromator</li> <li>Detector resolution: 8.3330 pixels mm<sup>-1</sup></li> <li>ω scans</li> <li>Absorption correction: multi-scan<br/>(<i>SADABS</i>; Bruker, 2012)</li> <li><i>Refinement</i></li> </ul> | $T_{\min} = 0.70, T_{\max} = 0.85$<br>7865 measured reflections<br>2907 independent reflections<br>2770 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.020$<br>$\theta_{\max} = 24.7^{\circ}, \theta_{\min} = 2.3^{\circ}$<br>$h = -10 \rightarrow 10$<br>$k = -12 \rightarrow 12$<br>$l = -12 \rightarrow 12$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$                                                                                                                                                                                                                                                                                                                                                    | Secondary atom site location: difference Fourier                                                                                                                                                                                                                                                                  |
| Least-squares matrix: full                                                                                                                                                                                                                                                                                                                                             | map                                                                                                                                                                                                                                                                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.022$                                                                                                                                                                                                                                                                                                                                        | Hydrogen site location: inferred from                                                                                                                                                                                                                                                                             |
| $wR(F^2) = 0.058$                                                                                                                                                                                                                                                                                                                                                      | neighbouring sites                                                                                                                                                                                                                                                                                                |
| S = 1.11                                                                                                                                                                                                                                                                                                                                                               | H-atom parameters constrained                                                                                                                                                                                                                                                                                     |
| 2907 reflections                                                                                                                                                                                                                                                                                                                                                       | $w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 0.3878P]$                                                                                                                                                                                                                                                                 |
| 214 parameters                                                                                                                                                                                                                                                                                                                                                         | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                    |
| 61 restraints                                                                                                                                                                                                                                                                                                                                                          | $(\Delta/\sigma)_{max} = 0.001$                                                                                                                                                                                                                                                                                   |
| Primary atom site location: structure-invariant                                                                                                                                                                                                                                                                                                                        | $\Delta\rho_{max} = 0.25$ e Å <sup>-3</sup>                                                                                                                                                                                                                                                                       |
| direct methods                                                                                                                                                                                                                                                                                                                                                         | $\Delta\rho_{min} = -0.28$ e Å <sup>-3</sup>                                                                                                                                                                                                                                                                      |

### Special details

**Experimental**. For synthesis of the compound, see Cotton (1982). Yellow crystals of the title compound suitable for X-ray diffraction were obtained by layering methanol above a chloroform solution of the title compound and allowing the layers to mix gradually. This crystallization method was performed on the bench with reagent grade solvents and without use of an inert atmosphere.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|---------------|--------------|-----------------------------|--|
| Mo1 | 0           | 0             | 1.0          | 0.02814 (8)                 |  |
| P1  | 0.21394 (5) | 0.16894 (5)   | 0.79865 (5)  | 0.02888 (12)                |  |
| 01  | 0.0078 (2)  | 0.1374 (2)    | 1.21320 (19) | 0.0659 (5)                  |  |
| 02  | 0.2517 (2)  | -0.22032 (19) | 1.0879 (2)   | 0.0677 (5)                  |  |
| C1  | 0.0065 (2)  | 0.0886 (2)    | 1.1355 (2)   | 0.0396 (4)                  |  |
| C2  | 0.1594 (2)  | -0.1425 (2)   | 1.0585 (2)   | 0.0400 (4)                  |  |
| C5  | 0.2591 (2)  | 0.3109 (2)    | 0.8425 (2)   | 0.0360 (4)                  |  |
| C6  | 0.3274 (3)  | 0.2769 (3)    | 0.9478 (2)   | 0.0516 (5)                  |  |
| H6  | 0.3582      | 0.1834        | 0.99         | 0.062*                      |  |
| C7  | 0.3502 (3)  | 0.3800 (3)    | 0.9906 (3)   | 0.0643 (7)                  |  |
| H7  | 0.3976      | 0.3557        | 1.0602       | 0.077*                      |  |
| C8  | 0.3043 (4)  | 0.5164 (3)    | 0.9327 (3)   | 0.0750 (8)                  |  |
|     |             |               |              |                             |  |

| H8  | 0.3201     | 0.5855       | 0.9619       | 0.09*       |
|-----|------------|--------------|--------------|-------------|
| C9  | 0.2344 (4) | 0.5514 (3)   | 0.8306 (4)   | 0.0842 (9)  |
| H9  | 0.2014     | 0.6445       | 0.7915       | 0.101*      |
| C10 | 0.2122 (3) | 0.4496 (3)   | 0.7848 (3)   | 0.0604 (6)  |
| H10 | 0.1654     | 0.4753       | 0.7146       | 0.072*      |
| C11 | 0.3989 (2) | 0.0886 (2)   | 0.7434 (2)   | 0.0375 (4)  |
| C12 | 0.3988 (3) | -0.0338 (2)  | 0.7195 (3)   | 0.0527 (6)  |
| H12 | 0.3059     | -0.0751      | 0.7371       | 0.063*      |
| C13 | 0.5324 (3) | -0.0962 (3)  | 0.6703 (3)   | 0.0684 (7)  |
| H13 | 0.5289     | -0.1772      | 0.6529       | 0.082*      |
| C14 | 0.6677 (3) | -0.0407 (4)  | 0.6475 (3)   | 0.0800 (9)  |
| H14 | 0.7578     | -0.0844      | 0.6167       | 0.096*      |
| C15 | 0.6720 (3) | 0.0795 (4)   | 0.6694 (4)   | 0.0992 (12) |
| H15 | 0.7659     | 0.119        | 0.6516       | 0.119*      |
| C16 | 0.5381 (3) | 0.1452 (3)   | 0.7183 (4)   | 0.0735 (8)  |
| H16 | 0.5431     | 0.2271       | 0.7339       | 0.088*      |
| C17 | 0.1953 (2) | 0.27353 (19) | 0.61689 (19) | 0.0348 (4)  |
| C18 | 0.3120 (3) | 0.3699 (2)   | 0.5024 (2)   | 0.0542 (6)  |
| H18 | 0.4008     | 0.3822       | 0.5174       | 0.065*      |
| C19 | 0.2971 (3) | 0.4474 (3)   | 0.3666 (3)   | 0.0668 (7)  |
| H19 | 0.3751     | 0.5128       | 0.2912       | 0.08*       |
| C20 | 0.1676 (4) | 0.4284 (3)   | 0.3421 (2)   | 0.0657 (7)  |
| H20 | 0.1576     | 0.4813       | 0.2506       | 0.079*      |
| C21 | 0.0550 (3) | 0.3322 (3)   | 0.4515 (3)   | 0.0659 (7)  |
| H21 | -0.0316    | 0.3174       | 0.4346       | 0.079*      |
| C22 | 0.0681 (3) | 0.2555 (2)   | 0.5893 (2)   | 0.0485 (5)  |
| H22 | -0.0109    | 0.1909       | 0.6641       | 0.058*      |
|     |            |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| Mo1 | 0.02853 (13) | 0.02430 (12) | 0.02774 (12) | -0.00060 (8)  | -0.00954 (9)  | -0.00693 (9)  |
| P1  | 0.0288 (3)   | 0.0261 (2)   | 0.0290 (2)   | -0.00119 (18) | -0.00896 (19) | -0.00910 (19) |
| O1  | 0.0699 (12)  | 0.0822 (12)  | 0.0664 (11)  | 0.0004 (9)    | -0.0223 (9)   | -0.0497 (10)  |
| O2  | 0.0675 (11)  | 0.0606 (10)  | 0.0694 (11)  | 0.0316 (9)    | -0.0346 (10)  | -0.0197 (9)   |
| C1  | 0.0355 (11)  | 0.0402 (11)  | 0.0406 (11)  | -0.0005 (8)   | -0.0115 (9)   | -0.0150 (9)   |
| C2  | 0.0432 (12)  | 0.0351 (10)  | 0.0358 (10)  | 0.0027 (9)    | -0.0130 (9)   | -0.0100 (8)   |
| C5  | 0.0347 (10)  | 0.0355 (10)  | 0.0353 (10)  | -0.0054 (8)   | -0.0057 (8)   | -0.0156 (8)   |
| C6  | 0.0599 (14)  | 0.0485 (12)  | 0.0477 (12)  | -0.0108 (10)  | -0.0196 (11)  | -0.0170 (10)  |
| C7  | 0.0701 (17)  | 0.0782 (18)  | 0.0525 (14)  | -0.0245 (14)  | -0.0167 (12)  | -0.0311 (13)  |
| C8  | 0.088 (2)    | 0.0738 (19)  | 0.0778 (19)  | -0.0188 (15)  | -0.0106 (16)  | -0.0531 (16)  |
| C9  | 0.110 (3)    | 0.0520 (16)  | 0.115 (3)    | 0.0194 (16)   | -0.046 (2)    | -0.0537 (17)  |
| C10 | 0.0742 (17)  | 0.0479 (13)  | 0.0787 (17)  | 0.0172 (12)   | -0.0379 (14)  | -0.0379 (13)  |
| C11 | 0.0330 (10)  | 0.0387 (10)  | 0.0354 (10)  | 0.0038 (8)    | -0.0102 (8)   | -0.0122 (8)   |
| C12 | 0.0471 (13)  | 0.0524 (13)  | 0.0599 (14)  | 0.0043 (10)   | -0.0101 (11)  | -0.0314 (11)  |
| C13 | 0.0693 (18)  | 0.0652 (16)  | 0.0713 (17)  | 0.0220 (13)   | -0.0159 (14)  | -0.0399 (14)  |
| C14 | 0.0568 (17)  | 0.099 (2)    | 0.087 (2)    | 0.0381 (16)   | -0.0221 (15)  | -0.0508 (19)  |
| C15 | 0.0332 (14)  | 0.136 (3)    | 0.151 (3)    | 0.0142 (17)   | -0.0281 (18)  | -0.085 (3)    |
|     |              |              |              |               |               |               |

# supporting information

| C16 | 0.0379 (13) | 0.0846 (19) | 0.114 (2)   | 0.0031 (12)  | -0.0185 (14) | -0.0620 (19) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C17 | 0.0421 (11) | 0.0287 (9)  | 0.0281 (9)  | 0.0027 (8)   | -0.0091 (8)  | -0.0094 (7)  |
| C18 | 0.0534 (14) | 0.0503 (13) | 0.0410 (12) | -0.0077 (10) | -0.0067 (10) | -0.0080 (10) |
| C19 | 0.0797 (19) | 0.0506 (14) | 0.0345 (12) | -0.0025 (13) | 0.0013 (12)  | -0.0006 (10) |
| C20 | 0.092 (2)   | 0.0577 (15) | 0.0327 (12) | 0.0155 (14)  | -0.0212 (13) | -0.0079 (11) |
| C21 | 0.0777 (18) | 0.0697 (16) | 0.0470 (13) | 0.0055 (14)  | -0.0362 (13) | -0.0097 (12) |
| C22 | 0.0520 (13) | 0.0496 (12) | 0.0361 (11) | -0.0042 (10) | -0.0186 (10) | -0.0062 (9)  |

Geometric parameters (Å, °)

| Mo1—C1                               | 2.034 (2)   | C11—C16     | 1.373 (3)   |
|--------------------------------------|-------------|-------------|-------------|
| Mo1—C1 <sup>i</sup>                  | 2.034 (2)   | C11—C12     | 1.380 (3)   |
| Mo1—C2 <sup>i</sup>                  | 2.035 (2)   | C12—C13     | 1.376 (3)   |
| Mo1—C2                               | 2.035 (2)   | C12—H12     | 0.93        |
| Mo1—P1 <sup>i</sup>                  | 2.4879 (5)  | C13—C14     | 1.343 (4)   |
| Mo1—P1                               | 2.4879 (5)  | С13—Н13     | 0.93        |
| P1—C5                                | 1.8341 (19) | C14—C15     | 1.353 (4)   |
| P1—C11                               | 1.8430 (19) | C14—H14     | 0.93        |
| P1—C17                               | 1.8430 (19) | C15—C16     | 1.395 (4)   |
| O1—C1                                | 1.143 (3)   | C15—H15     | 0.93        |
| O2—C2                                | 1.141 (2)   | C16—H16     | 0.93        |
| C5—C10                               | 1.376 (3)   | C17—C22     | 1.370 (3)   |
| C5—C6                                | 1.389 (3)   | C17—C18     | 1.390 (3)   |
| C6—C7                                | 1.378 (3)   | C18—C19     | 1.381 (3)   |
| С6—Н6                                | 0.93        | C18—H18     | 0.93        |
| C7—C8                                | 1.354 (4)   | C19—C20     | 1.374 (4)   |
| С7—Н7                                | 0.93        | C19—H19     | 0.93        |
| C8—C9                                | 1.367 (4)   | C20—C21     | 1.352 (4)   |
| C8—H8                                | 0.93        | С20—Н20     | 0.93        |
| C9—C10                               | 1.386 (3)   | C21—C22     | 1.390 (3)   |
| С9—Н9                                | 0.93        | C21—H21     | 0.93        |
| C10—H10                              | 0.93        | C22—H22     | 0.93        |
|                                      |             |             |             |
| C1-Mo1-C1 <sup>i</sup>               | 180.00 (11) | C5-C10-H10  | 119.8       |
| C1-Mo1-C2 <sup>i</sup>               | 89.09 (8)   | C9-C10-H10  | 119.8       |
| C1 <sup>i</sup> —Mo1—C2 <sup>i</sup> | 90.91 (8)   | C16-C11-C12 | 117.4 (2)   |
| C1—Mo1—C2                            | 90.91 (8)   | C16—C11—P1  | 124.63 (17) |
| C1 <sup>i</sup> —Mo1—C2              | 89.09 (8)   | C12—C11—P1  | 117.92 (16) |
| C2 <sup>i</sup> —Mo1—C2              | 180.0       | C13—C12—C11 | 121.8 (2)   |
| C1-Mo1-P1 <sup>i</sup>               | 89.67 (6)   | C13—C12—H12 | 119.1       |
| $C1^{i}$ —Mo1—P1 <sup>i</sup>        | 90.33 (6)   | C11—C12—H12 | 119.1       |
| $C2^{i}$ —Mo1—P1 <sup>i</sup>        | 87.97 (6)   | C14—C13—C12 | 120.3 (3)   |
| C2-Mo1-P1 <sup>i</sup>               | 92.03 (6)   | C14—C13—H13 | 119.9       |
| C1—Mo1—P1                            | 90.33 (6)   | С12—С13—Н13 | 119.9       |
| C1 <sup>i</sup> —Mo1—P1              | 89.67 (6)   | C13—C14—C15 | 119.4 (3)   |
| C2 <sup>i</sup> —Mo1—P1              | 92.04 (6)   | C13—C14—H14 | 120.3       |
| C2—Mo1—P1                            | 87.97 (6)   | C15—C14—H14 | 120.3       |
| P1 <sup>i</sup> —Mo1—P1              | 180.0       | C14—C15—C16 | 121.2 (3)   |

| C5—P1—C11  | 104.37 (9)  | C14—C15—H15 | 119.4       |
|------------|-------------|-------------|-------------|
| C5—P1—C17  | 102.38 (9)  | C16—C15—H15 | 119.4       |
| C11—P1—C17 | 99.19 (9)   | C11—C16—C15 | 119.8 (3)   |
| C5—P1—Mo1  | 112.63 (6)  | C11—C16—H16 | 120.1       |
| C11—P1—Mo1 | 116.61 (6)  | C15—C16—H16 | 120.1       |
| C17—P1—Mo1 | 119.47 (6)  | C22—C17—C18 | 117.96 (19) |
| O1—C1—Mo1  | 178.84 (18) | C22—C17—P1  | 121.05 (14) |
| O2-C2-Mo1  | 178.21 (19) | C18—C17—P1  | 120.96 (16) |
| C10—C5—C6  | 117.94 (19) | C19—C18—C17 | 120.5 (2)   |
| C10-C5-P1  | 121.47 (16) | C19—C18—H18 | 119.8       |
| C6—C5—P1   | 120.24 (16) | C17—C18—H18 | 119.8       |
| C7—C6—C5   | 120.8 (2)   | C20-C19-C18 | 120.4 (2)   |
| С7—С6—Н6   | 119.6       | C20—C19—H19 | 119.8       |
| С5—С6—Н6   | 119.6       | C18—C19—H19 | 119.8       |
| C8—C7—C6   | 120.8 (3)   | C21—C20—C19 | 119.7 (2)   |
| С8—С7—Н7   | 119.6       | C21—C20—H20 | 120.2       |
| С6—С7—Н7   | 119.6       | С19—С20—Н20 | 120.2       |
| C7—C8—C9   | 119.3 (2)   | C20—C21—C22 | 120.3 (3)   |
| С7—С8—Н8   | 120.3       | C20—C21—H21 | 119.9       |
| С9—С8—Н8   | 120.3       | C22—C21—H21 | 119.9       |
| C8—C9—C10  | 120.7 (3)   | C17—C22—C21 | 121.2 (2)   |
| С8—С9—Н9   | 119.6       | C17—C22—H22 | 119.4       |
| С10—С9—Н9  | 119.6       | C21—C22—H22 | 119.4       |
| C5—C10—C9  | 120.4 (2)   |             |             |
|            |             |             |             |

Symmetry code: (i) -x, -y, -z+2.