Cre

organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Ethyl-5-methyl-4-phenyl-5H-1,2,4triazol-3(4H)-thione

Kong Wai Tan, M. Jamil Maah* and Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

Received 30 July 2010; accepted 30 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.065; wR factor = 0.186; data-to-parameter ratio = 14.6.

The five-membered ring of the title compound Δ^{1} -1,2,4triazoline-5-thione, C₁₁H₁₃N₃S, is almost planar (r.m.s. deviation = 0.009 Å); the phenyl ring is aligned at 84.6 (2)° with respect to the five-membered ring. The crystal studied was a racemic twin with an approximate 20% minor twin component. Weak intermolecular C-H···N hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of this and other Δ^1 -[1,2,4]-triazoline-5thiones, see: Kabashima et al. (1991); Landquist (1970); Tripathi & Dhar (1986). For the crystal structure of the related compound 5,5-dimethyl-4-phenyl-1,2,4-triazol-3-thione, see: Katritzky et al. (1984).

Experimental

Crystal data C11H13N3S $M_r = 219.30$

Tetragonal, $P\overline{4}2_1c$ a = 17.962 (4) Å

c = 6.9992 (14) Å V = 2258.2 (6) Å³ Z = 8Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.927, \ T_{\max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.186$ S = 1.071987 reflections 136 parameters H-atom parameters constrained $0.30 \times 0.05 \times 0.05$ mm

 $\mu = 0.26 \text{ mm}^{-1}$

T = 100 K

10418 measured reflections 1987 independent reflections 1546 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.087$

 $\Delta \rho_{\text{max}} = 0.69 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 837 Friedel pairs Flack parameter: -0.2 (2)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9A\cdots N2^{i}$	0.98	2.56	3.519 (9)	165
Symmetry code: (i) -v -	+1 x - 7 + 2			

ry (1) - y + 1, x, -z +

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the University of Malaya (UMRG RG090 10AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5008).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kabashima, S., Okawara, T., Yamasaki, T. & Furukawa, M. (1991). J. Heterocycl. Chem. 28, 1957-1960.
- Katritzky, A. R., Faid-Allah, H. M., Aghabozorg, H. & Palenik, G. J. (1984). Chem. Scr. 23, 134-138.
- Landquist, J. K. (1970). J. Chem. Soc. C, pp. 63-66.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tripathi, M. & Dhar, D. N. (1986). Synthesis, pp. 1015.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925

supporting information

Acta Cryst. (2010). E66, o2224 [https://doi.org/10.1107/S1600536810030503] 5-Ethyl-5-methyl-4-phenyl-5*H*-1,2,4-triazol-3(4*H*)-thione

Kong Wai Tan, M. Jamil Maah and Seik Weng Ng

S1. Comment

3-Phenyl- Δ^1 -[1,2,4]-triazoline-5-thiones are synthesized by the heterocyclization of the Schiff base condensation product of the reaction between phenylthiosemicarbazide and a ketone in the presence of chlorocarbonylsulfenyl chloride (Kabashima *et al.*, 1991), chlorosulfonyl isocyanate (Tripathi & Dhar, 1986) and manganese dioxide (Landquist, 1970). In the present study, the oxidizing agent is 1,10-phenanthroline-5,6-dione, commonly known as phendione. 4-Phenyl thiosemicarbazide condensed with methyl ethyl ketone to form the initial Schiff base, which was then oxidized to the title compound by phendione (Scheme I, Fig. 1). Intermolecular weak C—H···N hydrogen bonding is present in the crystal structure (Table 1).

S2. Experimental

4-Phenyl thiosemicarbazide (2 mmol, 0.33 g) and 1,10-phenanthroline-5,6-dione (1 mmol, 0.21 g) were heated in a mixture of methyl ethyl ketone (5 ml) and ethanol (10 ml). The yellow precipitate that formed was removed by filtration. Slow evaporation of the orange filtrate afforded the title compound.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

Thermal ellipsoid plot (Barbour, 2001) of C₁₁H₁₃N₃S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

5-Ethyl-5-methyl-4-phenyl-5H-1,2,4-triazol-3(4H)-thione

Crystal data

 $C_{11}H_{13}N_3S$ $M_r = 219.30$ Tetragonal, $P\overline{4}2_1c$ Hall symbol: P -4 2n a = 17.962 (4) Å c = 6.9992 (14) ÅV = 2258.2 (6) Å³ Z = 8F(000) = 928

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.087$ Graphite monochromator ω scans Absorption correction: multi-scan $h = -21 \rightarrow 20$ (SADABS; Sheldrick, 1996) $k = -21 \rightarrow 21$ $T_{\rm min} = 0.927, \ T_{\rm max} = 0.987$ $l = -8 \rightarrow 5$

 $D_{\rm x} = 1.290 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 926 reflections $\theta = 2.5 - 18.5^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 100 KPrism, orange $0.30 \times 0.05 \times 0.05$ mm

10418 measured reflections 1987 independent reflections 1546 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.186$	$w = 1/[\sigma^2(F_o^2) + (0.0992P)^2 + 1.8759P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
1987 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
136 parameters	$\Delta \rho_{\rm max} = 0.69 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 837 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.2 (2)
map	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.47452 (8)	0.23341 (7)	1.2411 (2)	0.0351 (4)
N1	0.4463 (3)	0.2810 (3)	0.8841 (6)	0.0351 (11)
N2	0.4094 (3)	0.3589 (3)	1.1143 (7)	0.0531 (15)
N3	0.3934 (3)	0.3924 (3)	0.9623 (8)	0.0511 (14)
C1	0.4778 (3)	0.2198 (2)	0.7806 (6)	0.0237 (10)
C2	0.5518 (3)	0.2275 (3)	0.7230 (8)	0.0353 (13)
H2	0.5801	0.2706	0.7530	0.042*
C3	0.5823 (3)	0.1677 (3)	0.6175 (9)	0.0441 (15)
Н3	0.6323	0.1704	0.5738	0.053*
C4	0.5409 (4)	0.1065 (3)	0.5785 (8)	0.0480 (17)
H4	0.5623	0.0671	0.5066	0.058*
C5	0.4687 (4)	0.1003 (3)	0.6404 (8)	0.0435 (15)
H5	0.4406	0.0568	0.6136	0.052*
C6	0.4381 (3)	0.1576 (3)	0.7413 (9)	0.0351 (12)
H6	0.3881	0.1537	0.7846	0.042*
C7	0.4431 (3)	0.2869 (3)	1.0741 (7)	0.0371 (14)
C8	0.4127 (3)	0.3477 (3)	0.7940 (8)	0.0398 (14)
C9	0.4652 (4)	0.3911 (3)	0.6695 (9)	0.0525 (17)
H9A	0.5098	0.4041	0.7429	0.079*
H9B	0.4407	0.4367	0.6254	0.079*
H9C	0.4794	0.3607	0.5590	0.079*
C10	0.3418 (3)	0.3257 (4)	0.6851 (9)	0.0528 (18)
H10A	0.3210	0.3707	0.6231	0.063*
H10B	0.3554	0.2902	0.5828	0.063*
C11	0.2824 (4)	0.2911 (5)	0.8070 (11)	0.073 (2)
H11A	0.2391	0.2789	0.7276	0.109*
H11B	0.2675	0.3262	0.9072	0.109*
H11C	0.3017	0.2455	0.8659	0.109*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S1	0.0531 (8)	0.0347 (6)	0.0174 (6)	-0.0009 (6)	-0.0038 (7)	0.0016 (7)

supporting information

N1	0.051 (3)	0.033 (2)	0.021 (2)	0.014 (2)	-0.004 (2)	-0.001 (2)
N2	0.069 (4)	0.058 (3)	0.033 (3)	0.025 (3)	-0.008 (3)	-0.007 (3)
N3	0.058 (3)	0.048 (3)	0.047 (3)	0.010 (3)	-0.015 (3)	-0.009 (3)
C1	0.035 (2)	0.024 (2)	0.012 (2)	0.0085 (19)	-0.006 (2)	0.000(2)
C2	0.042 (3)	0.031 (3)	0.032 (3)	-0.009 (2)	-0.009(3)	0.000 (3)
C3	0.036 (3)	0.055 (4)	0.041 (4)	0.012 (3)	0.015 (3)	0.008 (3)
C4	0.088 (5)	0.034 (3)	0.022 (3)	0.023 (3)	0.001 (3)	0.002 (3)
C5	0.072 (4)	0.029 (3)	0.029 (3)	-0.006 (3)	-0.010 (3)	-0.003 (2)
C6	0.038 (3)	0.038 (3)	0.030 (3)	-0.001 (2)	0.006 (3)	0.001 (3)
C7	0.053 (4)	0.042 (3)	0.016 (3)	0.019 (2)	-0.002(2)	-0.008(2)
C8	0.044 (3)	0.039 (3)	0.037 (4)	0.006 (2)	-0.001 (3)	-0.001 (3)
C9	0.059 (4)	0.048 (3)	0.051 (4)	-0.006 (3)	-0.019 (3)	0.021 (3)
C10	0.047 (4)	0.066 (4)	0.046 (4)	0.004 (3)	-0.003 (3)	-0.009 (3)
C11	0.045 (4)	0.101 (6)	0.072 (6)	-0.004 (4)	-0.009 (4)	-0.012 (5)

Geometric parameters (Å, °)

S1—C7	1.614 (5)	C5—C6	1.364 (8)	
N1—C7	1.335 (7)	С5—Н5	0.9500	
N1—C1	1.433 (6)	С6—Н6	0.9500	
N1-C8	1.483 (7)	C8—C9	1.502 (8)	
N2—N3	1.255 (7)	C8—C10	1.535 (8)	
N2—C7	1.456 (7)	С9—Н9А	0.9800	
N3—C8	1.466 (8)	С9—Н9В	0.9800	
C1—C6	1.355 (7)	С9—Н9С	0.9800	
C1—C2	1.396 (7)	C10—C11	1.502 (10)	
C2—C3	1.415 (8)	C10—H10A	0.9900	
С2—Н2	0.9500	C10—H10B	0.9900	
C3—C4	1.355 (9)	C11—H11A	0.9800	
С3—Н3	0.9500	C11—H11B	0.9800	
C4—C5	1.372 (9)	C11—H11C	0.9800	
C4—H4	0.9500			
C7—N1—C1	125.5 (5)	N2—C7—S1	122.3 (4)	
C7—N1—C8	110.0 (5)	N3—C8—N1	101.3 (4)	
C1—N1—C8	124.5 (4)	N3—C8—C9	109.3 (5)	
N3—N2—C7	110.9 (5)	N1—C8—C9	114.2 (5)	
N2—N3—C8	111.4 (4)	N3—C8—C10	110.1 (5)	
C6—C1—C2	121.7 (4)	N1-C8-C10	109.9 (5)	
C6-C1-N1	121.8 (5)	C9—C8—C10	111.5 (5)	
C2-C1-N1	116.5 (4)	С8—С9—Н9А	109.5	
C1—C2—C3	116.4 (5)	C8—C9—H9B	109.5	
С1—С2—Н2	121.8	H9A—C9—H9B	109.5	
С3—С2—Н2	121.8	С8—С9—Н9С	109.5	
C4—C3—C2	120.6 (5)	H9A—C9—H9C	109.5	
С4—С3—Н3	119.7	H9B—C9—H9C	109.5	
С2—С3—Н3	119.7	C11—C10—C8	114.4 (6)	
C3—C4—C5	121.4 (5)	C11—C10—H10A	108.7	

C3—C4—H4	119.3	C8—C10—H10A	108.7
C5—C4—H4	119.3	C11—C10—H10B	108.7
C6—C5—C4	119.0 (5)	C8—C10—H10B	108.7
С6—С5—Н5	120.5	H10A-C10-H10B	107.6
С4—С5—Н5	120.5	C10-C11-H11A	109.5
C1—C6—C5	121.0 (5)	C10-C11-H11B	109.5
C1—C6—H6	119.5	H11A—C11—H11B	109.5
С5—С6—Н6	119.5	C10-C11-H11C	109.5
N1—C7—N2	106.3 (5)	H11A—C11—H11C	109.5
N1—C7—S1	131.2 (5)	H11B—C11—H11C	109.5
C7—N2—N3—C8	0.9 (7)	C8—N1—C7—S1	-176.6 (5)
C7—N1—C1—C6	85.0 (7)	N3—N2—C7—N1	0.5 (7)
C8—N1—C1—C6	-95.6 (6)	N3—N2—C7—S1	175.9 (5)
C7—N1—C1—C2	-94.8 (7)	N2—N3—C8—N1	-1.9 (6)
C8—N1—C1—C2	84.7 (6)	N2—N3—C8—C9	-122.7 (6)
C6—C1—C2—C3	1.5 (7)	N2-N3-C8-C10	114.5 (6)
N1—C1—C2—C3	-178.8 (4)	C7—N1—C8—N3	2.2 (6)
C1—C2—C3—C4	-0.7 (8)	C1—N1—C8—N3	-177.3 (5)
C2—C3—C4—C5	-0.5 (9)	C7—N1—C8—C9	119.6 (6)
C3—C4—C5—C6	0.9 (9)	C1—N1—C8—C9	-60.0 (7)
C2-C1-C6-C5	-1.1 (8)	C7—N1—C8—C10	-114.3 (5)
N1-C1-C6-C5	179.1 (5)	C1-N1-C8-C10	66.2 (7)
C4—C5—C6—C1	-0.1 (9)	N3-C8-C10-C11	-50.8 (8)
C1—N1—C7—N2	177.8 (5)	N1-C8-C10-C11	60.0 (7)
C8—N1—C7—N2	-1.8 (7)	C9—C8—C10—C11	-172.4 (6)
C1—N1—C7—S1	2.9 (10)		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9A···N2 ⁱ	0.98	2.56	3.519 (9)	165

Symmetry code: (i) -y+1, x, -z+2.