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Abstract
 

The reduction of S02 atmospheric pollution in the early nineties caused sulfur-deficiency problems in the 

agriculture of northern Europe. Sulfur is essential for plant development and sulfur containing compounds 

such as sulfur rich antifungal proteins, phytoalexins and glucosinolates play an important role in plant 

defense against pathogens. Sulfur starved Brassica napus with no visible symptoms showed a strong 

decrease in total sulfur and glutathione content and an increased susceptibility to the blackleg fungus 

Leptosphaeria maculans, to the generalist necrotroph Botrytis cinerea and to the oomycete Phytophthora
brassicae. To test the cause of this increased susceptibility, a methanol extract containing secondary 

metabolites and a water extract of soluble proteins of plants grown with and without sulfur fertilization 

were used in fungal growth inhibition tests. MeOH extract of normally grown plants showed strong 

antifungal activity and this activity was almost totally lost in extracts of S-starved plants. Plants 

preinoculated with B. cinerea did not contain an increased antifungal potential indicating that 

phytoalexins do not contribute to this activity. The loss of antifungal activity correlated with a strong 

reduction of the glucosinolate content of the methanol extract suggesting that the reduced level of 

glucosinolates might be the cause of the reduction of the antifungal potential. However, no causal link 

could yet be demonstrated. The general loss of fitness of sulfur-starved plants could play an additional 

important role in the reduction of resistance. 

 

Plant secondary metabolism significantly contributes to defense against adverse environmental cues. To 

investigate stress-induced alterations at the transcriptional level, a DNA array (MetArray) harboring gene-

specific probes was established, which combined Arabidopsis thaliana effector gene families encoding 

enzymes acting consecutively in secondary metabolism and defense reactions. It contained the complete 

set of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes 

along with 62 cytochrome P450 monooxygenases and 28 ABC transporters. Their transcriptome was 

monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, 

endogenous stress hormones, and pathogen infection. A principal component analysis based on the 

transcription of these effector gene families defined distinct responses. Methyl jasmonate and ethylene 

treatment was separated from a group combining reactions towards two sulfonylurea herbicides, salicylate 

and an avirulent strain of Pseudomonas syringae. The responses to the herbicide bromoxynil and UV-B 

radiation were separate from both groups. A few genes were diagnostic in their specific response to two 

herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the 

applied stress hormones. In addition, small groups of comprehensively induced effector genes may be part 

of defense mechanisms activated by several converging pathways. The differentiating expression patterns 

detected by the MetArray provide a framework of information regarding the function of individual genes 

and argue against widely redundant functions within the large gene families analyzed.  

 

Plant glutathione S-transferases are multifunctional enzymes encoded by a large gene family containing 

47 members in Arabidopsis thaliana. A member of the Phi class GST, AtGSTF8 (At2g47730), is 

upregulated by various treatments including oxidative stress and exhibits GSH-peroxidase activity. The 

chloroplastic localisation of GSTF8 was demonstrated by expressing a fusion protein consisting of the 

predicted GSTF8 signal pepetide and GFP in transgenic Arabidopsis. Analysis of the GST family 

indicated that GSTF8 is the only chlorplastic GST in Arabidopsis, making it a promissing candidate for 

functional analysis. To this end, GSTF8 over-expressing transgenic lines were produced and a T-DNA 

insertion knock out mutant was isolated from the SALK-collection. However, no change in phenotype 

could be seen under normal growth condition and under conditions of oxidative stresses conditions like 

treatments with hydrogen peroxide and the herbicide paraquat. This indicates that GSTF8 is either not 

involved in protection from oxidative stress in chloroplasts or, alternatively, that in addition to GSTF8 

other mechanisms contribute to this protection. 
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Resumé
 
La réduction de la pollution atmosphérique due au dioxyde de soufre a provoqué au début des années nonante 

des problèmes de carence de soufre dans les champs principalement au nord de l’europe. Le soufre est un 

macroélément essentiel pour le développement de la plante. Des composés soufrés tels que des protéines riches 

en soufre, des phytoalexines et des glucosinolates, jouent un rôle important dans les mécanismes de défense. 

Des plants de colza carencés en soufre, mais ne montrant aucun symptôme visible, présentaient une forte 

réduction de leur teneur en soufre total et en glutathion. Ces plantes montraient aussi une augmentation de leur 

susceptibilité au pathogène de la nécrose du collet, Leptosphaeria maculans, au nécrotrophe généraliste 

Botrytis cinerea ainsi qu’à l’oomycète Phytophthora brassicae. Dans le but d’analyser les causes de cette 

augmentation de susceptibilité nous avons testé le potentiel antifongique d’un extrait protéique et d’un extrait 

au méthanol contenant des métabolites secondaires. Ces extraits ont été obtenus à partir de colza cultivé avec et 

sans soufre, et préalablement induit ou non au moyen d’une inoculation avec Botrytis cinerea. L’extrait 

méthanolique obtenu à partir de plantes normales avait une activité antifongique qui était presque entièrement 

perdue dans le même extrait obtenu à partir de colza carencé en soufre. Cette perte d’activité antifongique 

corrélait avec une forte réduction du contenu en glucosinolates de l’extrait. Ceci suggère que la réduction du 

contenu en glucosinolates pourrait être la cause de la réduction du potentiel antifongique. Toutefois aucun lien 

de causalité n’a encore pu être démontré. L’affaiblissement général des plantes carencées pourrait aussi jouer 

un rôle additionnel dans la diminution de leur résistance aux pathogènes fongiques. 

 

Le métabolisme secondaire des végétaux contribue significativement à la défense de la plante contre divers 

stress environnementaux. Pour étudier les changements transcriptionels des gènes d’Arabidopsis thaliana
impliqués dans les mécanismes de détoxification nous avons développé un « DNA array » (MetArray) 

contenant des sondes spécifiques pour chaque membre des familles de gènes impliquées dans les étapes 

successives de détoxification. Le MetArray contient des sondes pour la totalité des gènes codant pour des 

glycosyltransférases, pour 63 enzymes utilisant du glutathion ainsi que 62 cytochrome P450 monooxygénases 

et 28 ABC transporteurs. Leur expression a été analysée dans les différents organes de la plante ainsi que dans 

les feuilles suite à divers traitements tel que herbicides, irradiation avec des UV-B, hormones endogènes liées à 

la réponse au stress et infection avec un pathogène. Une analyse en composante principale basée sur le 

transcriptome de ces familles de gènes détermine des réponses distinctes. Les traitements avec le méthyl-

jasmonate et l’éthylène forment un groupe. Le traitement avec l’acide salicylique deux herbicides sulfonylurée 

et l’inoculation avec une souche avirulente de Pseudomonas syringae en forment un autre. Enfin la réponse au 

bromoxynil un herbicide, et le traitement avec des UV-B forment un troisième groupe clairement séparé. Il faut 

relever un groupe de gènes qui était induit par le pathogène P. syringae mais qui ne montrait aucune réponse 

aux trois hormones liées aux voies de signalisation. De plus un petit groupe de gènes qui pourrait jouer un rôle 

dans les mécanismes de défense était régulé par diverses voies de signalisation convergentes. La régulation 

différenciée des divers gènes contredit l’hypothèse d’une grande redondance fonctionnelle dans ce quatre 

grandes familles de gènes. 

 

Les glutathion S-transférases (GST) sont des enzymes multifonctionnels qui sont codés par une famille de 

gènes. Le génome d’Arabidopsis thaliana contient 47 glutathion S-transférases. Une GST de la classe phi, 

GSTF8 (At2g47730) est induite par divers traitements dont le stress oxydatif et possède une forte activité GSH-

peroxydase. Nous avons montré que GSTF8 était localisée dans le chloroplaste en fusionnant le peptide signal 

de GSTF8 avec une protéine fluorescente (GFP). Comme GSTF8 est la seule GST présente dans le chloroplaste 

et qu’elle possède une activité GSH-peroxidase, elle constitue un candidat idéal pour une analyse fonctionnelle. 

Pour ce faire, une lignée transgénique surexprimant GSTF8 a été produite et un mutant insertionel (T-DNA) a 

été isolé. Toutefois aucun changement phénotypique n’a été observé aussi bien en croissance normale qu’après 

traitements avec du peroxyde d’hydrogène et du paraquat, induisant tout deux un stress oxydatif. Ceci indique 

que GSTF8 n’est soit pas impliqué dans la protection contre le stress oxydatif, soit qu’en plus de GSTF8 

d’autres mécanismes contribuent à cette protection.  
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General Introduction
 

 

1.1 The importance of sulfur for plant nutrition 
 

Sulfur is one of the six macronutrients needed for proper plant development. Even if sulfur is only 3% 

to 5% as abundant as nitrogen in plants, it plays essential roles in various important mechanisms such 

as Fe/S clusters in enzymes, vitamin cofactors, glutathione in redox homeostasis and detoxification of 

xenobiotics (Leustek et al., 2000; Saito, 2000). Reduced sulfur incorporated in cysteine and 

methionine amino acids plays essential roles in catalytic centers and disulfide bridges of proteins 

(Hell, 1997). Sulfur is taken up from the soil by plants in form of sulfate by specific transporters. This 

sulfate is then reduced to be incorporated in cysteine and subsequently in methionine. Organic bound 

sulfur is mainly reduced to sulfide, but oxidised sulfur is also found in plants, a good example being 

the sulfolipids of the chloroplast membranes (Hell, 1997). Plant posses different specific 

sulfotransferases that catalyse the esterification of sulfate with secondary compounds and proteins. 

 

Sulfur is a mobile nutrient that can move rapidly downward through the soil, especially through sandy 

surface layers. This easy leaching ability of sulfate leads to problems because an important part of the 

sulfur present in fertilizers may end up in ground water where it causes environmental problems such 

as eutrophication of aquatic ecosystems or a reduction in the quality of drinking water. In humid 

regions most of the sulfur in the surface soil is associated with organic matter. Sulfur deficiencies are 

less frequent in high organic matter soils, because the sulfur constantly mineralizes from the organic 

matter. However, under intensive crop production, the breakdown of organic matter and subsequent 

release of sulfate by microorganisms may not be rapid enough to meet the increased demands driven 

by high yields. Furthermore, the mineralization efficiency is dependent on environmental factors such 

as soil type, microorganisms present, temperature and humidity. 

 

 

1.2. Reduction of sulfur dioxide pollution and occurence of sulfur deficiency in crops 
 

The breeding of higher yield crop plants lead to increased need for sulfur in farming. This went 

unnoticed for a long time because during the same period sulfur deposition caused by atmospheric 

pollution by the burning of S-containing fossil fuels increased steadily (Hell and Hillebrand, 2001). In 

the second part of the 20th century atmospheric pollution with sulfur dioxide became a problem for 

industrialised countries. The major anthropogenic sources of the emission of sulfur dioxide were 

thermal power plants producing electricity from high sulfur containing coal or heating oils, industrial 

boilers and non ferrous metal smelters. Natural source of sulfur dioxide such as volcanoes or marine 

algae can account for 25% to 65% of the total emission (www.ourplanet.com). Domestic coal burning 

and vehicles can also contribute to high local ambient concentrations of sulfur dioxide. Atmospheric 

pollution with sulfur dioxide has two main consequences: acid rain and health problems. Acid rains 

has negative effects on aquatic ecosystems and lead to the so called “forest die back” in the eighties. 

During the London fog of 1952, the so called “peasouper” smog, levels of SO2 reached 3500μ/m3 

(average over 48 hours) in the city centre, and remained high for a period of 5 days leading to the 

death of 4’000 people. Furthermore, in 2000 in large Chinese cities smog caused the premature death 

of about of 50’000 people. A recent study in Hong Kong demonstrated that pollution resulting from 

sulfur-rich fuels has an effect on death rates, especially respiratory and cardiovascular deaths (Hedley 

et al., 2002). In response to these pollution problems in the mid-eighties, international treaties legally 

enforced the drastic reduction of SO2 emissions (Helsinki protocol 1979). Heavy investments by 
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power station operators in desulfurization equipment and use of S-poor fuels have cut sulfur pollution 

in Europe and North America by as much as 80 percent. As an unforeseen consequence of the 

reduction of sulfur dioxide pollution in recent years, an increased frequency of sulfur deficiency has 

been observed in several crops mainly in northern Europe. It was realised that sulfur may become a 

factor limiting yield and crop quality in agriculture (Dämmgen et al., 1998; Eriksen and Mortensen, 

1999). A solution to the S-deficiency in agricultural crop production is the application of fertilizer 

containing sulfur. As sulfate is easily leached out by rain the tendency could be to over fertilize with 

sulfur which in turn would lead to ground water pollution. 

 

Sulfur is used in agriculture since the antiquity for its protective effect against pests and diseases. 

Foliar application of sulfur was observed to boost the growth of crops (Pezet et al., 1986; Schnug, 

1996). Positive correlation between S-fertilisation and enhanced disease resistance against fungal 

pathogens was observed in the field (Davidson and Goss, 1972; Schnug, 1996). However, for a long 

time sulfur was not regarded as a limiting factor for crop production. 

 

 

1.3 Oilseed rape as model plant 
 

The Brassicaceae family consists of hundreds of species containing important cultivated crops and 

wild species. The genome of Brassica napus contains n=19 chromosomes which is a combination of 

the parental genomes of Brassica rapa (n=10) and Brassica oleracea (n=9). B. napus is mainly 

known as oilseed rape (B. napus subspecies oleifera) but also as the horticultural crop rutabaga or 

swede (B. napus subspecies rapifera) (Cheung et al., 1997). Breeding for B. napus varieties

containing no erucic acid (0 varieties) and low glucosinolate content in seed (00 = double low 

varieties) was performed in the seventies to avoid the antinutritional and goitrogenic effect of seed 

meal on mammals. Erucic acid  was believed to cause cardio-vascular diseases. Hydrolysis of 

progoitrin and epi-progoitrin gives rise to dagradation products, oxazolidine-2-thiones which have a 

wide range of adverse effects such as goitrogenic effects and liver toxicity making its use in pork and 

poultry feeding unsuitable (Fenwick et al., 1983; Fahey et al., 2001). On the other hand in the last 20 

years new evidence of the putative protective role of glucosinolate against cancer has accumulated 

(Fahey et al., 2001). Glucosinolates, are thioglucosides reported to be part of the plant defense 

mechanism against fungi and insects (Osbourn, 1996; Blake-Kalff et al., 1998). Isothiocyanates 

derived from the degradation of many glucosinolates discourage feeding by generalist insects, attract 

specislist insects and are toxic to bacterial and fungal pathogens (Mithen et al., 1986; Giamoustaris 

and Mithen, 1997; Manici et al., 1997) 

 

The production of oilseed rape has increased significantly in the last twenty years (Howlett et al., 

2001). In Switzerland the production of oilseed rape has increased in the nineties and stabilised in 

recent years to about 50’000t/year (www.agirinfo.com). Oilseed rape is an ideal model to study sulfur 

deficiency in plants because of its high demand for sulfur (making it particularly sensitive to S-

deficiency) and its genetic proximity to Arabidopsis thaliana (Zhao et al., 1997; Blake-Kalff et al., 

1998; Schmidt et al., 2001).  

 

 

1.4 Description of the pathogens used in the study
 

Of the phytopathogenic fungi known to affect rapeseed, the loculoascomycete fungi Leptosphaeria
maculans (Desm.) Ces. & de Not (anamorph: Phoma lingam) (Tode ex Fr.) (Desm.) causes the 

highest economic losses of this crop worldwide (Howlett et al., 2001). Since chemical protection is 
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difficult and costly, genetic resistance has become an important measure of disease control. Disease 

caused by L. maculans is initiated when sexual ascospores or asexual pycnidiospores land on a 

susceptible oilseed rape plant (Howlett et al., 2001). The disease is usually monocyclic and epidemics 

are generally initiated by airborne ascospores. Infection can also arise from infected seed, stubble and 

rain splashed conidia (West et al., 2001). When the ascospore or pycnidiospore germinates, hyphae 

infect the plant through stomate openings or through wounds. After colonizing intercellular spaces in 

the spongy mesophyll of the leaf lamina, the fungus reaches the vascular bundle and spreads down 

the petiole eventually invading the stem cortex and causing the stem canker symptom. The initial 

infection and the intercellular systemic phase of growth occurs in a biotrophic mode but behind the 

expanding hyphal front the interaction becomes necrotrophic (Hammond et al., 1985; Hammond and 

Lewis, 1986, 1987). The lifecycle is completed when new ascospores are generated in the 

necrotrophic regions caused by the fungus (Bohman, 2001). Only partial resistance exist in the 

important oilseed crops, B. napus, B. rapa, and in the different cabbage crops (B. oleracea) (reviewed 

in (Howlett et al., 2001) and (West et al., 2001)). Little is presently known about underlying 

molecular mechanisms that make plants resistant to L. maculans. Some studies have been performed 

of the response of B. napus to L. maculans inoculations and Hammond and Lewis (1986) reported the 

deposit of lignin-like structures and calcium accumulation. Additionally, (Roussel et al., 1999) 

showed that avirulent isolates induce HR and that the lumen of vessels in the HR area was occluded 

by fibrillar-like material. Further experiments have shown that pathogenesis related proteins 

accumulate differently in resistant and susceptible plants (Dixelius, 1994).  

 

Botrytis cinerea Pers.: Fr.: (teleomorph Botryotinia fuckeliana (de Bary) Whetz. is an ascomycete, 

classified among the inoperculated Discomycetes, order of Leotiales and the Sclerotiniaceae family. 

B. cinerea, commonly named grey mould, is a characteristic necrotrophic pathogen that has a very 

broad host range with more than 250 potential host plants (MacFarlane, 1968) including economically 

important crops such as cereal crops, fruits, vegetables, and flowering plants. Phytophthora brassicae 

(previousely P. porri) is an oomycete infecting a wide range of Brassicacea plants including Brassica
napus and Arabidopsis thaliana (Roetschi et al., 2001). Phytophthora species cause agronomically 

important diseases including the well known potato late blight and soybean root rot (Kamoun, 2003).  

 

 

1.5 The “green liver” concept 
 

The ability of plants to detoxify naturally occurring toxic substances and low molecular xenobiotics 

was modelled in the concept referred to as the “green liver” (Sandermann, 1992, 1994; Coleman et 

al., 1997). It comprises four sequential steps. In phase I the hazardous molecule is activated by either 

hydrolases or oxidases such as P-450 cytochrome oxidase. This activation results in the introduction 

of functional carboxyl- or hydroxyl-groups or in the exposition of such groups. Activated molecules 

are better available for further steps in the detoxification process. In phase II the activated molecules 

are conjugated to a highly polar molecule like glucose, malonate, sulfate or glutathione. This 

conjugation is catalyzed by enzyme families such as glucosyltransferases or glutathione S-

transferases. Tagging harmful molecules with glucose or glutathione changes their physico-chemical 

properties and often strongly reduces their toxicity. In phase III the conjugated molecule is exported 

by specific transporters in an energy dependant manner from the cytosol to the vacuole or the 

apoplast. Examples of these transporters are multi-drug-resistance-associated-proteins (MRPs) that 

are member of the superfamily of the ATB-binding-cassette (ABC) transporters (Kolukisaoglu et al., 

2002). Phase IV includes all the possible further processing, degradation and recycling reactions. For 

some compounds the detoxification process ends with the compartementation (step III) but for other 

molecules further metabolic steps take place in the vacuole.  
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1.6 The role of glutathione for plants in stress conditions
 

Glutathione is a tripeptide �-glutamyl-cysteinyl-glycine (GSH) containing a sulfhydryl group which is 

highly reactive (Rennenberg, 1982). GSH is synthesized from glutamate, cysteine and glycine in two 

sequential ATP-dependent reactions catalyzed by �-glutamylcysteine sythase and glutathione 

synthase. These enzymes are present both in the cytosol and in the chloroplast. GSH represent the 

major non-protein thiol in plant cells and is a storage form of reduced sulfur (Hell, 1997). GSH 

concentration is estimated to be between 300 and 1300 nmol/g FW in most tissues (Schnug et al., 

1995). Beside its role as a central compound in the sulfur metabolism, GSH plays various important 

roles in the plant such as direct antioxidant, regeneration of ascorbate, redox buffering and as a 

precursor of phytochelatins (Noctor and Foyer, 1998). Phytochelatins are small peptides formed by �-

glutamyl-cysteinyl repeats used by the plant to chelate and detoxify heavy metals (Cobbett and 

Goldsbrough, 2002). The high reactivity and water solubility of GSH makes it an ideal molecule to 

protect the plant against various stresses including oxidative stress, xenobiotic molecules and heavy 

metals (Xiang et al., 2001). Furthermore, GSH is used by glutathione S-transferases to tag 

electrophilic molecules including many xenobiotics (see 1.4 and 1.6).  

 

 

1.7 Glutathione S-transferases are multifunctional enzymes
 

Glutathione S-transferases (GSTs; EC 2.5.1.18) form a large and diverse family of multifunctional, 

dimeric enzymes that catalyze the conjugation of GSH to a large variety of lipophilic compounds 

with electrophilic centers. GSTs are present in bacteria, fungi, animals and plants. They were first 

discovered in animals due to their important role in drug metabolism and detoxification (Wilce and 

Parker, 1994). Their presence in plants was first recorded in maize where a GST was shown to be 

responsible for the detoxification of the herbicide triazine (Timmerman, 1989; Dixon et al., 2002). 

GSTs are abundant proteins and constitute more than one percent of the soluble proteins fraction in 

maize leaves (Marrs, 1996). GST protein have a molecular weight of an approximatively 25 kDa. 

Homo and heterodimers can form thus increasing the diversity of GST dimers to be found in planta.  
 

GSTs are typically encoded by large gene families (Marrs, 1996; McGonigle et al., 2000; Wagner et 

al., 2002). GSTs have been extensively studied in animals, and mammalian GSTs are classified in 

different families such as Alpha, Mu and Pi classes involved in drug detoxification (Wilce and 

Parker, 1994). Sigma class GSTs are implicated in prostaglandin synthesis (Rowsey et al., 2001). 

Theta and Zeta class have members both in plants and animals. A prokaryote-specific beta class was 

discovered in bacteria and a delta class is specific to insects (Rossjohn et al., 1998; Chelvanayagam et 

al., 2001). The most numerous plant GST classes Phi and Tau are plant specific and their sequences 

are significantly different from the animal GSTs. We can now take advantage of the full genome 

sequence of Arabidopsis thaliana to understand the organisation of the GSTs in higher plants. The 

Arabidopsis genome contains 47 GSTs genes divided in four classes Phi (F), Tau (U), Theta (T) and 

Zeta (Z) sharing only limited sequence similarity (Edwards et al., 2000; Wagner et al., 2002). GST are 

often present in the form of gene clusters or tandem repeats. This situation seems to result from gene 

duplication events during the evolution. Indeed, only a quarter of these genes are found to be single 

genes (Wagner, 2001). Expression and regulation studies of GSTs in plant have shown that their 

regulation is highly variable. Furtermore GST function does not correspond to the classification based 

on sequence similarity (McGonigle et al., 2000; Wagner et al., 2002).  

 

Plant GSTs were intensively studied with regard to their role in herbicide detoxification. The function 

of GSTs is generally believed to be the detoxification of both xenobiotics and endogenous toxic 
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compounds (Marrs, 1996). Surprisingly only few potential endogenous substrates have been found 

raising the questions of what is the real in vivo role of GSTs and what are their natural substrates. 

From an evolutionary point of view it is difficult to understand how enzymes could develop which are 

highly specific for xenobiotics of human origin that are present in the environment for only very 

limited time (Sandermann, 1994). One explanation is that GSTs have evolved to remove hazardous 

substances of natural origin, such as toxins from pathogens or allelopathic substances from 

competitor plants. From this point of view the xenobiotics from human origin might only be similar 

to those compounds and be detoxified by GSTs as a side activity. However, in recent years some 

experimental data described natural substrates of GSTs. The first report was that the aquatic plant 

Ceratophyllum demersum was able conjugate enzymatically glutathione to the toxin microcystin-LR, 

an inhibitor of protein phosphatases produced by Cyanobacteria (Pflugmacher et al., 1998). Further 

putative natural substrates for GSTs are the phytoalexins medicarpin (Li et al., 1997) and some 

isothiocyanates (Kolm et al., 1995). Some GSTs were also shown to catalyse the glutathione 

dependant isomerisation in the catabolism of tyrosine (Dixon et al., 2000). An interesting link 

between hormon metabolism and GSTs has been revealed by the observation that some auxin- and 

cytokinin-binding proteins are GSTs (Zettl et al., 1994; Bilang and Sturm, 1995; Gonneau et al., 

1998). Furthermore, GSTs can act as glutathione peroxidase (Cummins et al., 1999; Wagner et al., 

2002). Our knowledge of natural substrates of GSTs is still very limited but non transferase activities 

such as isomerase, peroxidase or binding of hormones can give insight in new roles for GST. 

 

 

1.8 Aim of the thesis
 

This thesis work was divided into three main topics. The first part was the investigation of the effect 

of sulfur-deficiency on plant resistance to fungal pathogens. Sulfur deficiency in the field leads to 

yield reduction and increased disease impact. We build a controlled test system for Brassica napus to 

demonstrate that sulfur starvation decreased the resistance of oilseed rape to three different fungal 

pathogens. Arabidopsis thaliana and Brassica napus are both members of the Brassicaceae family 

and exhibit extensive homology to each other at the DNA sequence level (Bancroft, 2001; Schmidt et 

al., 2001). One goal of our study was to grow Arabidopsis thaliana under S-starvation condition to 

take advantage of the tools available for this model plant and transfer the knowledge later to B. napus. 

However, we were not able to obtain nicely growing S-starved A. thaliana plants at rosette stage. 

When S-starved, A. thaliana plants always showed symptoms of senescence. Therefore the initial 

plan to use A. thaliana as a model plant was abandoned. In order to investigate the possible causes of 

the enhanced disease susceptibility of B. napus and to determine which compound could be 

responsible for it, we have investigated the antifungal potential of two plant extracts, a methanol 

extrac containing secondary metabolites and a protein containing extract. 

 

The second part was the study of the expression profiling of the whole set of Arabidopsis thaliana
glutathione S-transferases. Glutathione S-transferases are members of multigene families. To study 

the expression of the 47 GSTs of Arabidopsis thaliana we have developed a nylon membrane based 

macroarray with gene specific probes for each GST. This work was done in collaboration with three 

other groups and the so-called MetArray focused on the analysis of the transcriptome of three 

additional gene families all involved in secondary metabolism and detoxification: cytochrome P450 

monooxygenase, glycosiltransferases and ABC transporters. One goal was to learn more about the 

organ specific expression of the four gene families. In a second step we were interested to monitor 

their expression in leaves under different abiotic and biotic stress conditions and treatment with stress 

hormones. 
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The third part describes the functional analysis of GSTF8. We first wanted to confirm that GSTF8 

was as predicted from its sequence localized in the chloroplast and that it was the only chloroplastic 

GST in Arabidospsis thaliana. Information on the peroxidase activity of GSTF8 and its upregulation 

after oxidative stress lead to the hypothesis that GSTF8 could act as GSH-peroxidase in the 

chloroplast. Because of the functional redundancy in large gene families functional analysis of the 

GSTs is difficult (Wagner, 2001). Nevertheless because of its unique chloroplastic localisation, 

GSTF8 appeard to be a good candidate for functional analysis. 
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Abstract
 

The reduction of S02 atmospheric pollution in the early nineties caused sulfur-deficiency 

problems in the agriculture of northern Europe. Sulfur is essential for plant development and 

sulfur containing compounds such as sulfur rich antifungal proteins, phytoalexins and 

glucosinolates play an important role in plant defense against pathogens. Sulfur deficient plants 

with no visible symptoms showed a strong decrease in total sulfur and glutathione content and an 

increased susceptibility to the blackleg fungus Leptosphaeria maculans, to the generalist 

necrotroph Botrytis cinerea and to the oomycete Phytophthora brassicae. To test the cause of this 

increased susceptibility, a methanol extract containing secondary mrtabolites and a water extract 

of soluble proteins of plants grown with and without sulfur fertilization were used in fungal 

growth inhibition tests. The methanol extract of normaly fertilized plants had antifungal activity 

against a variety of fungal pathogens and this activity was almost totally lost in extracts of S-

starved plants. Plants preinoculated with B. cinerea did not contain an increased antifungal 

potential indicating that phytoalexins do not contribute to this activity. The loss of antifungal 

activity correlated with a strong reduction of the glucosinolate content of the methanol extract 

suggesting that the reduced level of glucosinolates might be the cause of the reduction of the 

antifungal potential. However, by testing different glucosinolates for antifungal activity no causal 

link could be demonstrated.  
 

 

 

 

 

 

 

 

Keywords: sulfur, nutrition, sulfur starvation, disease resistance, antifungal potential, glucosinolates, 

isothiocyanates, Brassica napus. 
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Introduction
 

Sulfur is one of the essential macroelements for plant life with numerous biological functions 

(Leustek et al., 2000). Sulfur is taken up by plants in its inorganic sulphate form from the soil or 

sulfur dioxide and hydrogen sulphide gases from the atmosphere. In the initial step of the biological 

sulfur cycle, plants assimilate and reduce sulphate to sulphide and then incorporate it into cysteine, 

the first organic molecule carrying reduced sulfur. Cysteine is further converted to methionine. Sulfur 

is contained in a variety of cellular components and plays critical biochemical roles in a number of 

cellular processes, such as redox cycle, detoxification of heavy metals and xenobiotics, and 

metabolism of secondary products. (Saito, 2000; Nikiforova et al., 2003).  

 

Intensive farming and yield raising in crop production has increased the demand for sulfur in the last 

decades, but this went unnoticed in industrialized contries because of pollution by atmospheric 

deposition of SO2 produced by burning of S-containing fossil fuels. In the second part of the 20th 

century air pollution with sulfur dioxide became a major concern. Thermal power plants burning high 

sulfur coal or heating oil are generally the main sources of anthropogenic sulfur dioxide emissions 

worldwide, followed by industrial boilers, and non ferrous metal smelters, although there are natural 

sources of sulfur dioxide (accounting for 25-65 percent of total SO2 emission) such as volcanoes 

(www.ourplanet.com). Emissions from domestic coal burning and SO2 from vehicles can also 

contribute to high local atmospheric concentrations of sulfur dioxide. Pollution resulting from sulfur-

rich fuels has an effect on death rates, especially respiratory and cardiovascular deaths (Hedley et al., 

2002) and was the major source of acid rains. In response to this problem in the mid-eighties 

governments of developed countries took policies to legally enforce the drastic reduction of SO2 

emissions (Helsinki protocol 1979). As an unexpected outcome of the reduction of sulfur dioxide 

pollution in recent years an increased frequency of sulfur deficiency has been observed in several 

crops mainly in northern Europe. Sulfur may become a factor limiting yield and crop quality in 

agriculture (Dämmgen et al., 1998; Eriksen and Mortensen, 1999). 

 

It has been known since the antiquity that sulfur has protective effects against pests and diseases. 

Most of the knowledge is however restricted to the external effect of foliar applied sulfur. Less is 

known about soil supplied sulfur which has a strong influence on plant resistance by directly 

stimulating biochemical processes in primary and secondary metabolism (Pezet et al., 1986; Schnug, 

1996). Field observations pointed at positive correlation between S-fertilisation and enhanced disease 

resistance against fungal pathogens (Davidson and Goss, 1972; Schnug, 1996). This lead to the 

question, whether sulfate availability could be a limiting factor for the ability of plants to respond to 

fungal infection. 

 

In recent years oilseed rape (Brassica napus L.) has become the major oil crop in the EU and one of 

the major three oil crops worldwide (Howlett et al., 2001). Oilseed rape is particularly sensitive to S 

deficiency because it has a high demand for S. Oilseed rape produces seeds with a large yield of 

protein with relatively large quantities of S-containing amino acids (Zhao et al., 1997; Blake-Kalff et 

al., 1998) and the plants require S for the synthesis of glucosinolates, a group of thioglucoside 

compounds reported to be part of the plant defense mechanism against fungi and insects (Blake-Kalff 

et al., 1998). In Switzerland the production of oilseed rape has increased in the nineties and stabilises 

in recent years to about 50’000t/years (www.agirinfo.com).  

 

Of the phytopathogenic fungi known to affect rapeseed, Leptosphaeria maculans (anamorph: Phoma
lingam) causes the highest economic losses of this crop worldwide (Howlett et al., 2001). Botrytis
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cinerea (teleomorph Botryotinia fuckeliana ) commonly named grey mould, is a characteristic 

necrotrophic pathogen that has a very broad host range with more than 250 potential host plants 

(MacFarlane, 1968) including economically important crops such as cereals, fruits, vegetables, and 

flowering plants. B. cinerea is not a problem on rape but it was used in our study as a non specialized 

ubiquitous pathogen to compare it to the specialized L. maculans. Phytophthora brassicae (formerly 

P. porri) is an oomycete infecting a wide range of Brassicacea plants including B. napus and 

Arabidopsis thaliana. In our study we have used a strain expressing a green fluorescent protein as a 

quantitative marker (Si-Ammour et al., 2003).  

 

The effect of S-starvation on the resistance of oilseed rape to three different pathogens was analysed. 

Taken together our results show a clear influence of the S-nutritional status of the plant on its 

resistance to disease. To find out which mechanism could be responsible for the decrease resistance 

of sulfur deficient plants, the antifungal potential of a MeOH extracts containing secondary 

metabolites and extracts of water-soluble proteins were tested. The MeOH extract of normal plants 

showed antifungal activity against a number of phytopathogenic fungi. This activity was lost in 

extracts of S-deficient plants. The loss of antifungal activity correlated with a strong reduction in 

glucosinolates conten., However, we were not able to link the reduction of antifungal activity to the 

reduction of a particular glucosinolate or derived isothiocyanate. 
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Materials and Methods
 

 

Organisms and growth condition 

 

Seeds of Brassica napus cv Bienvenu (0) and cv Express (00) were obtained from the Swiss federal 

agricultural research station of plant production of Changins. Seeds were sown on vermiculite and 

watered first with tap water and after 10 days once with half strength Hoagland nutritive solutions 

containing sulfur (Hoagland and Martin, 1950). After 15 days the seedlings were transferred to pots 

containing quartz sand (diameter 12 cm) and further watered with 0.5x Hoagland solution with or 

without addition of sulfate in form of MgSO4. For the S-deficient plants the MgSO4 was replaced by 

equimolar amount of MgCl2, and among micro salts CuCl2, MnCl2 and ZnCl2 were used instead of 

CuSO4, MnSO4 and ZnSO4. Plants were grown in a growth chamber at 20°C 16h light / 18°C 8h dark 

cycle. 

 

Leptosphaeria maculans (anamorph: Phoma lingam) and Cladosporium sp isolates were obtained 

from the Swiss federal agricultural research station of plant production of Changins and grown on 

Potato Dextrose Agar (PDA, Difco, Detroit, USA) containing 25 μg/ml of aureomycin 

(chlortetracycline hydrochloride, Rectolab SA, Servion, Switzerland). L. maculans’ pycnidiospores 

production was induced by growing colonies for 14 days at 15°C under 12h black light (OSRAM 

L3673 BLB)/12h dark cycle. Pycnidiospores were harvested according to (Hammond et al., 1985). 

The ascomycete Botrytis cinerea isolates BMM and Pellier were isolated from geranium and vine, 

respectively and grown on Potato Dextrose Agar (Difco, Detroit USA). Conidia from 14 days old 

well sporulating colonies were harvested in distilled water containing 0.2% (v/v) Tween-20. The 

oomycete Phytophthora brassicae isolate 155 expressing constitutively a green fluorescent protein 

(GFP) was grown on V8 agar (Si-Ammour et al., 2003).  

 

Inoculation protocols 

 

Leaves of 5 to 6 week old plants, at growth stage 2.4 - 2.5 of the scale devised by (Harper and 

Berkenkamp, 1975), were inoculated with the different pathogens. For L. maculans 10 μl of a spore 

suspension (106 spores/ml) in water with 0.2% Tween-20 was applied to the leaves after wounding 

with a needle. Plants were incubated for 5 days in 100% HR in a glass chamber, and then the lids 

were removed. Lesion size was measured at 12 and/or 21 dpi. For B. cinerea 10 μl of a spore 

suspension (104 spores /ml) in water with 0.2% Tween-20 was applied to the leaves after wounding 

with a needle. Plants were incubated at 100% HR and lesions size was measured at 4 or 5 dpi. Agar 

plugs taken from the margins of an expanding colony of P. brassicae were applied to the leaves after 

wounding with a needle. Plants were then incubated in 100% HR for 7 days for lesions size 

measurement. Four days after infection GFP fluorescence was determined (Si-Ammour et al., 2003). 

The experiments were repeated threetimes. For each repetition 32 independent measurements were 

done for L. maculans, and 16 independent measurements for B. cinerea and P. brassicae.  

 

Measurement of total sulfur and glutathione 

 

For total S content, leaves of 6 week old B. napus cv Bienvenu plants were dried for 48h at 65°C and 

then ground to fine powder with a mixer (Moulinex, type Y91). Two independent batches of plants 

were then mixed for analysis. Total S was determined using a Philips PW2400 X-ray fluorescence 

(X-RF) spectrometer under constant Helium flux, at the University of Lausanne according to (Schnug 
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and Haneklaus, 1992). Total GSH content of 6 week old B. napus plants cv Bienvenu was determined 

according to (Harms et al., 2000). Frozen leaf material (60mg) was homogenised to a fine powder and 

extracted for 15 min in 600 μl 0.1 N HCl at 4°C. After centrifugation (20 min, 14000g, 4°C), 120 μl 

of the supernatant were added to 200 μl of 0.2 M 2-(cyclohexylamino) ethanesulfonic acid (pH 9.3). 

Reduction of total disulfides was performed by adding 10 μl 9 mM bis-2-mercaptoethylsulfone in 200 

mM Tris-HCl, 5 mM EDTA (pH 8). After 40 min at room temperature, free thiols were labelled with 

20 μl 15 mM monobromobimane in acetonitrile and incubated for 15 min in the dark at room 

temperature. The reaction was stopped by adding 250 μl 15% HCl. The samples were analysed by 

HPLC (Harms et al., 2000). 

 

Plant extractions and glucosinolates analysis 

 

MeOH extracts (Griffiths et al., 2001) were used to quantify the glucosinolates content of the plant 

and in growth inhibition tests. For glucosinolate determination 20 μl aliquots were analysed by 

HPLC. The analytical column used was equipped with a Lichrospher (100 RP 18, 5 μm, 4 x 250 

mm). The binary mobile phase system was composed of distilled water (A) and water : acetonitrile, 

80 : 20 (B). The analysis was run with the following gradient program: 0 to 45 min linear gradient 0 

to 100% B and then held for 5 min on 100% B. The flow rate was 1 ml/min and the detection of 

desulfoglucosinolates was monitored with an UV/VIS detector at 230 nm. 

 

For protein extraction rape leaves (5g fresh weight) were ground in liquid nitrogen with a mortar and 

pestle. The resulting powder was extracted with 2.5 vol of 50 mM Tris/HCl pH 7.5 containing 1 mM 

phenylmethylsulfonyl fluoride (PMSF). Insoluble material was removed by centrifugation at 10’000g 

for 20 min. Protein were precipitated with ammonium sulfate (95% saturation) at 0°C for 2 h. The 

proteins were collected by centrifugation (20’000g, 20 min) and resuspended in 2 ml 10mM Tris/HCl 

pH 7.5. The extracts were desalted using Sephadex G-25 columns and filtered successively through a 

0.45 and 0.22  μm membrane filters prior to application in the bioassays. For bioassays of plants after 

induction of defense mechanisms, detached leaves of six week old plants were wounded with a needle 

and inoculated with B. cinerea at a concentration of 3 x 103 spores/ml. After 60 hours the leaves were 

extracted with MeOH as described previously. 

 

Bioassays 

 

Fungal spores were harvested from well sporulating colonies on PDA plates and were resuspended in 

half-strength PDB (potato dextrose broth, Difco, Detroit, USA). The concentration of the spores 

suspensions was adjusted to 2 to 4 x 105 spores/ml. 0.5 ml from the freshly prepared spores’ 

suspensions was spread on 9 cm PDA Petri dishes. The plates were incubated 24h at 18°C to allow 

the spores to germinate. At this time, 5 mm diameter sterile paper filter discs were laid on the agar 

surface and 40 μl of the solution to be tested was applied to the discs. After additional 48 to 72 hours 

incubation at 18°C the inhibition zones were measured and pictures were taken from the plates. For 

each treatment three repetitions with 5 replicates were done with two different extracts. For pure 

molecule bioassays 40μl of isothiocyanate (Fluka, Buchs, Switzerland) at concentration of 1mM and 

10μM were applied to Petri dishes inoculated with Cladosporium sp. For sinigrin degradation 

products 10mM sinigrin (Carl Roth AG, Karlsruhe, Germany) in 0.33M KPO4 buffer was incubated 

with 5 units myrosinase (thioglucoside glucohydrolase, Sigma Chemicals, St Louis, USA) 1 hour at 

25°C. For each treatment three repetitions with 5 replicates were done. Pathogen growth inhibition 

tests in microtiter plates were done according to (Berrocal-Lobo et al., 2002).  
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Results
 

In the field sulfur deficient plants often show only weak or no obvious visible symptoms at all but the 

effect of this S-deficiency on yield and disease resistance can nevertheless be important. To produce 

controlled sulfur deficiency, two rape varieties, Brassica napus cv Bienvenu and B. napus cv Express, 

were sawn on vermiculite and watered once after 10 days with sulfur containing Hoagland nutritive 

solution. After 15 days they were transferred to quartz sand and watered during 3 to 4 weeks with 

Hoagland nutritive solution with or without addition of sulfur. After 5 to 6 weeks at the time of 

pathogen inoculation the S-starved plants did not show any visible sign of S-deficiency and looked 

healthy. At this time point plant grown on full nutritive solution (Figure 1A) looked very similar and 

were impossible to distinguish from S-starved plants (Figure 1B). However, when starved for eight 

weeks younger leaves started to exhibit strong S-deficiency symptoms (Figure 1C). The chlorosis 

spread over intercostal areas with anthocyan accumulation while the zones along the veins remainded 

green (Haneklaus and Schnug, 1992). 

 

 

A B

C

 
Figure1. Growth phenotype of S-deficient B. napus.
A) Six week B. napus plants grown on quartz sand
fertilized with Hoagland solution containing MgSO4
and B) without sulfate fertilization. No S-deficiency
symptoms are visible at this point. C) After 8 weeks
of S-starvation plants showed clear symptoms of S-
deficiency.

 

 

To confirm that plants fertilized with the solution without sulfur were indeed S-deficient, total sulfur 

and glutathione content were measured at the time of inoculation (Table 1). Sulfur starved plants even 

if they showed no visible symptoms, contained only 9.8% of total sulfur and 6.3% of GSH compared 

to normal plants. Plants grown on soil were included in our analysis to as comparison for plants 

growing in normal field conditions. Plants grown on sulfur containing Hoagland nutritive solution 

showed about 20% reduction in total sulfur content and about 60% reduction in total GSH content. 
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With the XRF analysis method used to determine total sulfur content it was also possible to obtain the 

plant content for Fe, Ca, Mg, K and P. We observed no significant difference for Ca, Mg and P. K 

was reduced in sulfur starved plants by about 40% and Fe was below detection level in all samples 

(data not shown). 

 

 
Table 1. Total sulfur and GSH content of leaves of six week old B. napus and five week old A.
thaliana plants grown on soil or on quartz sand with or without S fertilization. 

 
  B. napus A. thaliana

Total S  GSH total  Total S  GSH total  
 

(% of DW) (nmol/gFW ±SE) (% of DW) (nmol/gFW ±SE) 

Soil 1.30 140.0 ± 18.3 0.79   54.0 ± 2.6 

Sand/Hoagland +S 1.02 59.1 ± 7.5 0.74 154.9 ± 5.6 

Sand/Hoagland -S 0.10   3.7 ± 1.0 0.75   147.9 ± 14.9 

 

 

At the beginning of our study we have tried to grow Arabidopsis thaliana plants under the same 

conditions as rape to take advantage of the tools available for this model plant and then transfer the 

knowledge to B. napus. However, we were not able to obtain nicely growing sulfur deficient 

Arabidopsis plants. A. thaliana was very efficient in obtaining nutriment and showed a normal S 

content under the same S-starving condition as rape (Table 1). It only exhibited a 25% growth 

reduction in biomass production. After intensive washing of the quartz sand S-deficient Arabidopsis 

plants were obtained, but these plants did not grow properly. Already after 2 weeks, they started to 

show clear signs of senescence in form of yellowing and anthocyan production. Thus, Arabidopsis 

proved to be unsuitable for our experimental goals. 

 

To study the effect of sulfur nutrition on plant disease resistance three pathogens were tested. 

Leptosphaeria maculans a specific pathogen of Brassica which is considered as a facultative 

necrotroph since the pathogen initially grows biotrophically, in the intercellular space without causing 

cell death. In a later phase, it promotes necrosis and can live saprophytically on dead plant material 

(Hammond et al., 1985; Hammond and Lewis, 1987). Botrytis cinerea is a very broad host range 

necrotrophic ascomycete. The hemibiotrophic oomycete Phytophthora brassicae is able to infect 

many crucifers including B. napus. Five different isolates of L. maculans and two isolates of 

B. cinerea exhibiting diverse aggressiveness were screened to find for both fungi a moderate 

aggressive isolate on normal plants. Cultivar Bienvenu was challenged with both L. maculans and B.
cinerea. However due to its high resistance level to L. maculans cultivar Express was only inoculated 

with B. cinerea.  

 

 

 

Figure 2A shows pictures of typical lesions triggered by each pathogen on leaves of B. napus grown 

with and without sulfur fertilization. For all three pathogens lesion size is clearly affected by the 

sulfur status of the plant. With both L. maculans and B. cinerea on control plants the necrotic lesion 

was surrounded by a black circle which defined clearly the end of the lesion. In S-starved plants this 

black circle was generally missing and the lesion expanded broadly.  
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Figure 2. Disease resistance tests of fertilized and S-deficient B. napus plants. A) 
Disease symptoms on leaves of 6 week old B. napus caused by inoculation with
Leptosphaeria maculans (21dpi), Botrytis cinerea (4dpi) and Phytophthora brassicae
(7dpi). B) Summary of statistical analysis of the lesions size measurement. The
experiments were repeated threefold and 32 independent measurements were done
for L. maculans, and 16 independent measurements for B. cinerea and P. brassicae.
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Figure 2B shows the effect of the sulfur status of B. napus cv Express and cv Bienvenu on disease 

susceptibility against the three pathogens. At 21 dpi lesions caused by L. maculans on S-deficient B.
napus cv Bienvenu leaves were 1.9 times larger than in normally fertilised plants. In control plants 

lesion size remained the same between 12 dpi and 21 dpi whereas it still continued to increase in S-

starved plants (data not shown). More pronounced differences were observed with B. cinerea in both 

B. napus cv Express and cv Bienvenu. In the cultivar Express lesions were at 4 days post inoculation 

about 24 times larger in sulfur starved plants compared to the controls. In the cultivar Bienvenu this 

difference was reduced to about 3.7 fold. Finally compared to control plants the disease lesions 

caused by Phytophthora brassicae were 3.3 times larger in the plants that lack adequate S-nutrition. 

 

To quantify the fungal development by another method, we have used an isolate of P. brassicae that 

is expressing green fluorescent protein (GFP) as a quantitative marker (Si-Ammour et al., 2003). This 

fluorescent isolate makes it possible to quantify the pathogen biomass by measuring GFP 

fluorescence. Figure 3 shows that uninfected leaves (black area) had a base line fluorescence due to 

chlorophyll autofluorescence of 467 relative units for the control plants and 317 relative units for the 

S-starved plants. This reduction in autofluorescence indicates a reduction in chlorophyll content of S-

starved plants. The fluorescence level was only slightly increased to 644 relative units in control 

plants inoculated with P. brassicae expressing GFP (black area) indicating that P. brassicae did 

hardly colonize these plants. In contrast, in inoculated S-deficient plants the fluorescence strongly 

increased to 1172 relative units. After subtraction of the background fluorescence there was a 4.8 fold 

increase in GFP fluorescence levels between normally fertilized plants and S-deficient plants 

indicating that S-deficient plants were much more susceptible towards P. brassicae.  
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Figure 3. GFP fluorescence of differently fertilized B. napus cv 

Express infected with P. brassicae constitutively expressing 

GFP. Black area shows the level of autofluoresence of the 

chloroplasts. White area shows the GFP fluorescence caused by 

the spread of the P. brassicae.  
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Our results demonstrate that S-deficiency negatively affects disease resistance of B. napus. The 

increase in susceptibility could be caused by the specific effect of S-deficient on the accumulation of 

one or more S-containing defense compounds. To further analyse this hypothesis, we have tested 

extracts from normal and S-deficient plants for their antifungal potential.  

 

A total methanol extract used to quantify the glucosinolates from control plants was found to inhibit 

the in vitro growth of the four fungal pathogens. L. maculans, B. cinerea, Cladosporium sp and 

Penicillium sp as indicated in form of growth inhibition zones around the applied extract (Figure 4A). 

A similar extract from plants suffering S-deficiency had no or very little effect on all four fungi 

tested. Figure 4B shows that the inhibition zone caused by extracts from S-fertilised plants is in 

comparison to S-deficient plants 6.6 times larger for L. maculans, 6.8 times larger for B. cinerea, 12 

times larger for Cladosporium and 25 times larger for Penicillium. Figure 4C shows the effect of the 

MeOH extracts on the growth of the phytopathogenic bacterium Pseudomonas syringae pv tomato, of 

B. cinerea and of Penicillium sp assayed in liquid culture in microtiter plates. Growth was measured 

as an increase in absorbance at 490 nm. Methanol extracts from S-deficient plants had 5.4 times lower 

antibacterial activity than extracts from control plants. The reduction in antifungal potential was 2.2 

fold for B. cinerea and 2.5 fold for Penicillium. To test if the antifungal potential was increased 

following inoculation due to induced metabolites such as phytoalexins, MeOH extracts of B. cinerea 

inoculated B. napus leaves were analysed in fungal growth inhibition test. The plants were extracted 

60 hours after inoculation. Figure 5 shows no significant difference in antifungal potential between 

extracts of inoculated or control plants leading to the conclusion that the antifungal potential is due to 

phytoanticipins and not phytoalexins. Furthermore, no inhibition was observed with protein extracts 

from both control and S-starved plants, challenged or not with B. cinerea as a pathogen to induce 

defense responses. 

 

Figure 6 shows the quantification of four groups of GSL: alkene-, indolyl-, thioalkyl- and aromatic-

GSLs. Table 2 shows the list of individual GSLs measured and the group to which they belong. The 

alkene GSLs group contains progoitrin, sinigrin, napoleiferin, gluconapin and glucobrassicanapin. 

The indolyl GSLs group includes glucobrassicin and neoglucobrassicin. The thioalkyl GSLs group 

comprises glucoiberin, sulphoraphene and glucoiberverin. The aromatic GSLs group contains 

gluconasturiin. The reduction of GSLs content in S-deficient plants is 14 times for indolyl GSLs, 18 

times for aromatic GSL, 21 times for thioalkyl GSLs and 85 times for alkene GSLs. Thus, S-deficient 

had a dramatic negative effect on the glucosinolate content. There is a good correlation between 

reduced glucosinolates levels and reduced antifungal and antibacterial activity of the glucosinolate 

containing MeOH extract. To test the hypothesis that GSLs could be responsible for the antifungal 

potential of the MeOH extract, eight different commercially available isothiocyanates (ITC): methyl-

ITC, ethyl-ITC, allyl-ITC, tert-butyl-ITC, phenyl-ITC, methoxyphenyl-ITC, 2-phenylethyl-ITC, 

benzyl-ITC and the degradation product of the GSL sinigrin were tested for their antifungal potential 

on agar plates against Cladosporium (Table 2). None of the eight ITC and sinigrin degradation 

products show antifungal activity even at very high concentration of 1mM (data not shown). It 

remains an open question whether the degradation products of the many other GSLs of B. napus 

possess direct antifungal activity. 
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Figure 4. Antimicrobial activity of MeOH extracts from fertilized and S-deficient B.
napus plants. A) Growth inhibition of Leptosphaeria maculans (Lm), Botrytis cinerea
(Bc), Cladosporium sp (C. sp) and Penicillium sp (P. sp). 1 and 2 are extracts of 
plants grown without sulfur fertilization; 3 and 4 are extracts of plants grown with
sulfur fertilization. 2 and 4 are 10-times diluted compared to 1 and 3, respectively. 5
corresponds to a control. B) Quantitative analysis of the growth inhibition tests. C) 
Inhibitory effect of the MeOH extracts on the growth of the bacteria P. syringae pv
tomato and on B. cinerea and Penicillium sp. The test organisms were grown in
liquid culture in microtiter plates. Quantification was done by measurement of
absorbance at 490 nm. Each value is the average of five measurements. The
experiments were repeated threefold.
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Figure 6. Quantification of glucosinolate concentration in MeOH 

extracts of normal and S-deficient B. napus. The analysed individual 

glucosinolates were grouped into 4 groups according to their chemical 

features (see Table 2). Each group of GSL shows strong reduction in of 

S-deficient plants. Reduction is 85x for alkene, 14x for indolyl, 21x for 

thioalkyl and 18x for aromatic GSL. 
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Table 2. List of glucosinolates measured in B. napus cv Express leaves and isothiocyanates 

(ITC) tested in bioassays. The individual GSLs analysed were grouped according to their 

structural similarities: A = alkene, B = aromatic, I = indolyl and T = thioalkyl. 

 

Glucosinolates analysed

common name chemical name group

progoitrin 2(R)-2-hydroxy-3butenyl D
sinigrin 2-propenyl D
napoleiferin 2-hydroxy-4-pentenyl D
gluconapin 3-butenyl D
glucobrassicanapin 4-pentenyl D
gluconasturtiin 2-phenylethyl G
glucobrassicin indole-3-ylmethyl I
neoglucobrassicin 1-methoxyindol-3-ylmethyl I
glucoiberin 3-(methylsulfinyl)propyl A
sulforaphene 4-methylsulfinyl-3-butenyl A
glucoberverin 3-methylthio)propyl A

ITCs tested in bioassays corresponding GSL

allyl-ITC allyl-GSL
benzyl-ITC glucotropaeolin
ethyl-ITC glucolepidiin
3-methoxyphenyl-ITC methoxyphenyl-GSL
methyl-ITC glucocapparin
phenylethyl-ITC gluconasturtiin
phenyl-ITC phenyl-GSL
ter-butyl-ITC butyl-GSL
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Discussion
 

Sulfur is part of a wide variety of cellular components and plays critical roles in a number of cellular 

processes, such as structural and regulatory roles via protein disulfide bridges, or biochemical roles 

like electron transport in Fe/S-clusters, redox cycle, detoxification of heavy metals and xenobiotics, 

and metabolism of secondary products (Hell, 1997; Saito, 2000). The major part of reduced sulfur is 

channelled from cysteine into methionine, Fe/S clusters, vitamin cofactors and proteins (Hell and 

Hillebrand, 2001). Under S-deficient growth conditions plants try to acclimate by synthesizing high-

affinity sulfate transporters that function in the efficient uptake of external sulfur and reallocation of 

internal sulfur sources (Takahashi et al., 1997; Leustek et al., 2000; Saito, 2000). In recent many 

products of the plant’s response to pathogen turned out to be S-containing compounds like the 

phytoalexins and glucosinolates of crucifers or the sulfur rich antifungal peptides (Vignutelli et al., 

1998; Tierens et al., 2001). The reduction of atmospheric sulfur pollution lead to S-deficiency in the 

field and had a negative impact on yield and pathogen resistance. In this study we focused on the 

effect of S-deficient on plant disease resistance. 

 

Taken together our results showed clearly that oilseed rape plants grown under S-deficiency 

conditions exhibited enhanced disease susceptibility (Figure 2). This was true for all pathogens tested, 

for the specialized L. maculans and the ubiquitous pathogens B. cinerea and P. brassicae and for the 

two B. napus cultivars Express and Bienvenu. The enhanced disease susceptibility is apparently 

caused by a general mechanism because the change in susceptibility was not pathogen or cultivar 

specific. Field experiments pointed at a positive correlation between S-fertilisation and disease 

resistance of oilseed rape against fungal pathogens but no causal link was demonstrated (Schnug, 

1996). There are two main ways to explain why S-deficient plants become more susceptible to 

pathogens. First, the increased susceptibility is caused by the specific effect of S-deficiency on the 

accumulation of S-containing defense compounds such as phytoalexins, glucosinolates and cysteine-

rich antifungal polypeptides which play a determinant role in pathogen resistance. Second, S-

deficiency leads to a general fitness reduction and a global weakening of the plant that causes general 

susceptibility to stress. 

 

In our study MeOH extracts of control plants showed antifungal activity with four different fungal 

pathogens and this activity was almost completely lost in MeOH extracts of S-deficient plants. 

Furthermore, the antifungal potential was not increased by activation of induced defense mechanism. 

This means that the responsible compounds are phytoanticipins present in healthy plants before 

infection and not phytoalexins induced after infection. Interestingly, the reduced antifungal activity of 

extracts from S-deficient plants correlated with a strong reduction in GSLs content. Upon tissue 

damage GSLs enter in contact with the enzyme myrosinase (thioglucoside glucohydrolase, EC 

3.2.3.1) and the unstable alglycone generated by the action of myrosinase may then form various 

degradation products, including isothiocyanates, nitriles and thiocaynates, all of which are highly 

reactive compounds (Mithen et al., 1986; Osbourn, 1996). The major breakdown products generated 

in leaves of Brassica are isothiocyanates. GSL hydrolysis products have been demonstrated to be 

toxic towards a range of fungi in vitro, including pathogens and non-pathogens of Brassica. The 

mechanism of toxicity is not known (Mari et al., 1993; Manici et al., 1997; Hashem and Saleh, 1999). 

A number of pathogens of Brassica, such as L. maculans (Mithen et al., 1986) Peronospora
parasitica (Greenhalgh and Mitchell, 1976) Mycosphaerella brassicae (Hartill and Sutton, 1980) and 

Alternaria sp (Milford et al., 1989), have been shown to be sensitive to at least some glucosinolate 

breakdown products. It has also been suggested that indolyl GSLs breakdown products may function 

as precursors to a class of indole phytoalexins that are induced in Brassica (Rouxel et al., 1989). 
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However, it is unclear whether there is any relationship between resistance of fungi to GSLs and 

ability to cause disease. Although inoculation with L. maculans elicited changes in the leaf indolyl-

GSL profiles, no correlation was found between degree of resistance to the fungus and the level of 

GSLs (Wretblad and Dixelius, 2000). The role of GSLs in blackleg resistance has previously been 

studied, but the relevance of these coumpunds remained still unclear. Early studies correlated sinigrin 

content with resistance to L. maculans (Mithen et al., 1987). High GSL levels have been associated 

with resistance of oilseed rape and Indian mustard to L. maculans (Mithen and Magrath, 1992) and 

with resistance of cabbages to P. parasitica (Greenhalgh and Mitchell, 1976). However, in studies of 

crosses of B. napus lines with high and low GSLs levels in their leaves, resistance to L. maculans and 

GSLs profiles did not cosegregate (Mithen and Magrath, 1992). Further studies with B. napus lines 

that had contrasting GSLs profiles indicated that high levels of GSLs are unlikely to confer greater 

resistance to L. maculans in oilseed rape (Giamoustaris and Mithen, 1997). Furthermore P. lingam 

was shown to efficiently degrade the aliphatic GLSs sinigrin, progoitrin and gluconapin as well as 

aromatic GSLs sinalbin (Wu and Meijer, 1999). This high number of GSLs in B. napus makes it 

difficult to assess the antifungal activity of individual GSL. In addition, the nature of the breakdown 

products depends on the structure of the GSLs, the type of myrosinase present, and other factors, like 

pH, temperature, metal ion concentrations, and protein cofactors (Osbourn, 1996). It is therefore 

difficult, simply by assessing the relative amounts of specific GSLs present in the host plant, to 

predict which toxic products a pathogen is likely to encounter. Our tests with a limited number of 

pure isothiocyanates and the degradation products of sinigrin showed that none of the tested GSLs 

derived molecules exhibited antifungal activity. Apparentely some other compounds including other 

GSLs appear to be responsible for the antifungal activity present in MeOH extracts of S-fertilized 

plants. This means that some other molecules, not tested yet, are responsible for the antifungal 

activity.  

 

In conclusion we demonstrated that sulfur deficiency increases the susceptibility of oilseed rape 

plants to fungal pathogens. S-deficient plants appear to lack one or more antifungal phytoanticipins. 

The increase in susceptibility correlates with the reduction of GSLs, but no causal relationship was 

demonstrated because none of the isothiocyanates or degradation products of sinigrin tested showed 

antifungal activity. The second hypothesis of a general weakening of the plant could still play an 

additional important role in the decrease of resistance of S-starved oilseed rape. 
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Summary
Plant secondary metabolism significantly contributes to defensive measures against adverse 

environmental cues. To investigate stress-induced alterations at the transcriptional level of 

underlying genes, a DNA array (MetArray) harboring gene-specific probes was established, 

which combined Arabidopsis thaliana effector gene families encoding enzymes acting 

consecutively in secondary metabolism and defense reactions. It contained the complete set of 

genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes 

along with 62 cytochrome P450 monooxygenases and 28 ABC transporters. Their transcriptome 

was monitored in different organs of unstressed plants and in shoots in response to herbicides, 

UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component 

analysis based on the transcription of these effector gene families defined distinct responses. 

Methyl jasmonate and ethylene treatment was separated from a group combining reactions 

towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae. 

The responses to the herbicide bromoxynil and UV-B radiation were separate from both groups. 

A few genes were diagnostic in their specific response to two herbicide classes used. 

Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress 

hormones. In addition, small groups of comprehensively induced effector genes may be part of 

defense mechanisms activated by several converging pathways. The differentiating expression 

patterns detected by the MetArray provide a framework of information regarding the function of 

individual genes and argue against widely redundant functions within the large gene families 

analyzed.  
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Introduction
 

Plants feature an enormous variety of small organic, secondary metabolites, which possess diverse 

protective, defensive or signaling functions. Accordingly, many enzyme activities encoded by 

large gene families are involved in the biosynthesis, modification and compartmentation of these 

compounds. These gene families are assumed to have evolved to provide a broad diversification of 

similar biochemical reactions and flexibility of plant responses to different environmental 

conditions (Pichersky and Gang, 2000). Our laboratories are aiming at elucidating the function of 

selected gene families related to plant secondary metabolism, in particular with respect to their role 

as effector genes in plant xenobiotic metabolism and pathogen defense. This study is focused on 

analyzing the transcriptome of four gene families that cover different steps in secondary 

metabolism: oxidation by cytochrome P450 monooxygenases (CYP), conjugation with UDP-

activated carbohydrates by secondary metabolite glycosyltransferases (UGT), conjugation with the 

tripeptide glutathione by glutathione transferases (GST), and eventually compartmentation via 

ATP-binding-cassette transporters (ABC transporters). Importantly, these enzyme classes are often 

acting consecutively in the synthesis of secondary compounds and in detoxification reactions. 

Products of CYP-catalyzed reactions are substrates for transferases such as UGTs and GSTs thus 

leading to tagged molecules, which may be transported to the vacuole or excreted by ATP-driven 

export pumps (Coleman et al., 1997; Jones and Vogt, 2001; Kreuz et al., 1996; Martinoia et al., 
2002; Sandermann, 1994; Wagner et al., 2002).  
 

CYP genes form one of the largest families with 246 genes and 26 pseudo-genes annotated in 

Arabidopsis (Werck-Reichhart et al., 2002). Catalytic functions of CYPs are extremely diverse and 

usually result from the activation of molecular oxygen and insertion of one oxygen atom into a 

lipophilic substrate to produce a compound that can be further processed (Mansuy, 1998; Werck-

Reichhart and Feyereisen, 2000). Plant CYPs are involved in the synthesis of precursors of polymers, 

pigments, signaling and defense molecules and the hydroxylation or dealkylation of exogenously 

applied compounds (Chapple, 1998; Kahn and Durst, 2000; Werck-Reichhart et al., 2002; Schuler 

and Werck-Reichhart, 2003).  
 

CYPs are defined by a common structural fold and only three strictly conserved amino acids (Graham 

and Peterson, 1999; Werck-Reichhart and Feyereisen, 2000). Sequence identity among plant CYPs is 

variable ranging from below 20% to higher than 95% in highly duplicated sub-families forming 

clusters of up to 13 genes at the same locus. By far the largest CYP clade is usually referred to as 

plant specific class A including mainly enzymes of secondary metabolism. Four to six other clades, 

referred to as Non-A CYPs, are related to animal or microbial enzymes involved in lipid, sterol or 

large isoprenoid metabolism (Paquette et al., 2000; Werck-Reichhart et al., 2002). The function of 

more than 80% of the Arabidopsis CYP genes is unknown.  
 

Limited information is available on the expression of CYP genes, except for a few genes with a 

characterized function (Bell-Lelong et al., 1997; Mizutani et al., 1997; Kubigsteltig et al., 1999; 

Mathur et al., 1998; Mikkelsen et al., 2003; Nair et al., 2002). Several CYPs were transcriptionally 

activated with dual developmental and stress responsive control (for review: Werck-Reichhart et al., 
2002). The first attempt at a more systematic analysis of CYP expression in Arabidopsis using 

microarray technology was recently reported (Xu et al., 2001). This analysis highlighted the problems 

caused by the use of non-gene-specific probes that was to be circumvented in our analysis.  
 

UGTs transfer carbohydrate residues onto small organic compounds to regulate their activity, toxicity 

or amenability to transport. Many of these compounds such as phytoalexins, cell wall precursors and 
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plant hormones are important for plant defense, cellular homeostasis and signaling. UGTs constitute a 

large gene family of 120 members including eight putative pseudogenes annotated in A. thaliana 
Columbia (Paquette et al., 2003). They are defined via a conserved amino acid domain in the C-

terminal region. Based on a phylogenetic alignment 14 A. thaliana UGT groups A to N were 

compiled (Jones and Vogt, 2001; Li et al., 2001). There is only very limited information on the 

function of individual UGTs. A systematic analysis of the substrate properties using recombinantly 

expressed proteins has been initiated. In vitro, Group E and L UGTs were shown to glucosylate 

indole-3-acetic or salicylic acid as well as hydroxycinnamate derivatives (Jackson et al., 2001; Lim et
al., 2001, 2002; Milkowski et al., 2000). UGTs may display a reduced substrate specificity and rather 

be regioselective accepting certain chemical substructures (Jones and Vogt, 2001). Importantly, 

interfering side-activities towards xenobiotic substrates have been described for recombinant 

Arabidopsis group E and L enzymes (Messner et al., 2003). The function of several UGTs in 

flavonoid glycosylation has been studied in other plant species (for review: Jones and Vogt, 2001). 

Information on the expression patterns or transcriptional regulation of Arabidopsis UGTs is almost 

completely lacking. Indole-3-acetic acid glucosyltransferase AtUGT84B1 was found to be 

preferentially expressed in apical regions, whereas AtUGT73B5 was induced during superoxide-

dependent cell death (Jackson et al., 2001, 2002; Mazel and Levine, 2002).  
 

Similarly to UGTs, GSTs have been implicated in the detoxification of endogenous and xenobiotic 

compounds and in plant secondary metabolism (Edwards et al., 2000; Marrs, 1996). GSTs are a 

family of multifunctional, dimeric enzymes that catalyze the conjugation of the tripeptide glutathione 

to a large variety of lipophilic compounds with electrophilic centers. Plant GSTs are encoded by large 

and diverse gene families. The 47 Arabidopsis GSTs are divided on the basis of sequence similarity 

into the phi, tau, theta and zeta classes (Dixon et al., 2002; Edwards et al., 2000; McGonigle et al., 
2000; Wagner et al., 2002). A fifth class of GST-like genes (lambda), which does not possess 

glutathione transferase activity (Dixon et al., 2002), was not included in this study. Considering the 

high number of plant specific phi and tau GSTs, relatively little is known about their roles in the 

metabolism of plants. Some members have demonstrated roles in herbicide detoxification (Edwards 

and Dixon, 2000; Marrs, 1996). Phi and tau GSTs catalyze the glutathione-tagging of secondary 

metabolites including phytoalexins and isothiocyanates, function as glutathione peroxidases and have 

non-catalytic roles as flavonoid-binding proteins (Dixon et al., 2002; Edwards et al., 2000). Some of 

these GSTs appear to have roles as auxin- and cytokinin-binding proteins, as components of UV-

inducible cell signaling pathways (Loyall et al., 2000) or as potential regulators of apoptosis 

(Kampranis et al., 2000; for review: Dixon et al., 2002). Theta and zeta GSTs have homologs in 

animals and fungi. Zeta GSTs catalyze an important glutathione-dependent isomerization step in the 

catabolism of tyrosine (Dixon et al., 2000). Theta GSTs may be mainly active as glutathione 

peroxidases reducing organic hydroperoxides produced during oxidative stress (Dixon et al., 1999; 

Edwards et al., 2000; Wagner et al., 2002). In agreement with their postulated function in stress 

protection, the expression of several GSTs is enhanced upon exposure of plants to various stress 

situations including exposure to ozone, hydrogen peroxide, signaling molecules, heavy metals, heat 

shock, dehydration, wounding, senescence, biotic elicitors and microbial infection (for review: Marrs, 

1996; Wagner et al., 2002).  
 

Because of the important nature of glutathione-dependent reactions in plant stress responses a 

complete set of additional glutathione-utilizing enzymes from Arabidopsis was included in this study: 

eight glutathione peroxidases (AtGPX), six glyoxalases (AtGLX) and two glutathione reductases 

(AtGR). GPXs catalyze the GSH-dependent reduction of hydrogen peroxide and organic 

hydroperoxides. GPX expression is induced in many stress situations and GPXs are important to 

protect cells against oxidative damage (Mullineaux et al., 1998; Roxas et al., 1997). The glyoxalase 
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system converts 2-oxoaldehydes into the corresponding 2-hydroxy acids via a glutathionated 

intermediate. The process involves two consecutive reactions mediated by glyoxalase I (GLXI, 

lactoylglutathione lyase) and glyoxalase II (GLXII, hydroxyacylglutathione hydrolase). The primary 

substrate appears to be methylglyoxal, a cytotoxic compound mainly formed as a by-product of 

glycolysis (Thornalley, 1990). GRs catalyze the conversion of oxidized to reduced glutathione using 

NADPH as an electron donor and play a major role in maintaining the reduced to oxidized 

glutathione balance (Noctor et al., 2002).  
 

Finally, ABC transporters are involved in compartmentation of both endogenous metabolites and 

catabolites and in detoxification of xenobiotic conjugates. They are characterized by the presence of 

specific transmembrane and signature ATP-binding cassette domains. Arabidopsis harbors 105 

predicted members, which is about twice the number found in the human genome (Martinoia et al., 
2002). 54 members are full-size transporters containing two ATPase and two transmembrane domains 

each. These include 15 MRPs (multidrug resistance related protein), 15 PDRs (pleiotropic drug 

resistance protein) and 22 PGPs (P-glycoprotein). AtAOH1 (ABC1 homolog) and AtPMP
(peroxisomal ABC transporter homolog) are distinct full-size members whereas there are 51 

additional half-size ABC transporters. The nomenclature of MRP, PDR, and PGP transporters is 

based on Martinoia et al. (2002); for AtAOH1 and half-size ABC transporters the classification by 

Sánchez-Fernández et al. (2001) was used. A few members have been localized to different 

membranes. AtMRP2 was inserted in the tonoplast, whereas PGP and PDR members were located to 

the plasma membrane (for review: Davies and Coleman, 2000; Martinoia et al., 2002; Sánchez-

Fernández et al., 2001).  
 

Studies with AtMRP1 to AtMRP4 (Tommasini et al., 1997; Sánchez-Fernández et al., 1998) showed 

that transcript levels of AtMRP3 are highly increased after the addition of primisulfuron and three 

other herbicides. Interestingly, AtMRP3 can also partially complement YCF1-deficient yeast for 

cadmium tolerance (Tommasini et al., 1998), and is enhanced after cadmium exposure (Bovet et al., 
2003). Furthermore, two stress-inducible PDR-type ABC transporters from Nicotiana species were 

identified. NtPDR1 was induced by elicitors as well as methyl jasmonate but not by ABA and 

salicylic acid (Sasabe et al., 2002). Expression of NpABC1 was enhanced by plant-derived fungicides 

that may be excreted by this transporter to attack a fungal invador (Jasinski et al., 2001). SpTUR2, 

another PDR-like transporter of Spirodela polyrrhiza was highly induced by ABA and low 

temperature (Smart and Fleming, 1996). Thus, these few biochemical and expression studies support 

the idea that ABC transporters might be involved in plant defense.  
 

The present study was to initiate the joint functional analyses of these gene families aiming at 

identifying differential recruitment of individual members and groups of co-regulated genes in 

response to abiotic and biotic stressors. These included herbicides belonging to two different classes, 

UV-B irradiation, the endogenous stress hormones salicylic acid, ethylene, and methyl jasmonate, as 

well as infection with the avirulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 

(avrRpt2). A DNA array, named MetArray, for parallel expression profiling of 265 members of these 

gene families was established by designing gene-specific probes from their 3´-regions.  
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Results & Discussion
 

Gene families and generation of probes
 

Genes belonging to large families are often highly homologous, particularly within their coding 

regions. Therefore, target sequences for hybridization to genes associated with secondary metabolism 

were selected from their 3´-ends including untranslated regions. Probes were designed and checked 

using a semi-automatic, web-based algorithm (Affenzeller et al., in preparation). Briefly, the 

specificity of probes was first tested via BLAST analyses against the whole A. thaliana genome 

sequence. In addition, FASTA sequence comparisons with all predicted A. thaliana ORFs of the 

MIPS database including 500 nt extensions at both ends were performed. These analyses identified 

any possible cross-hybridization with annotated genes. However, further analyses eliminated most of 

these potential conflicts when considering the relative orientation of genes and experimental cDNA 

sequences. Nevertheless, in a few cases it was not possible to exclude any cross-reactivity due to 

densely packed genes in tail-to-tail orientation or to the high homology of the genes. In agreement 

with Xu et al. (2001) probes exhibiting a homology of at most 70% over a stretch of 70 nt were 

regarded as highly specific; a considerable cross-hybridization was indicated for probes with more 

than 85% homology over 100 nt.  

 

Genome-wide sets of gene-specific probes for 109 Arabidopsis UGTs including five putative 

pseudogenes, all 47 GSTs, eight GPX, six GLX, and two GR were designed. In addition, two subsets 

were chosen from Arabidopsis genes encoding CYP and ABC transporters. A group of 62 genes out 

of 246 predicted CYP members was selected for this study. Genes were arbitrarily chosen to include 

members fulfilling any of the following criteria: known function, high EST frequency, a sample of A 

and non-A type CYP genes, and a sample of genes belonging to highly duplicated subfamilies. 

Twenty-six out of 54 ABC transporters were randomly selected on the basis of known full-length 

members at the beginning of this project. The set contained nine MRP-, eight PGP-, eight PDR-type 

genes and the single ABC-1 homolog AtAOH1. Two different half ABC transporter genes were 

arbitrarily chosen (AtTAP1, AtWBC3). The phylogenetic relationships of the gene families 

represented on the MetArray are shown in Figure 1.  
 

Information concerning all probe sequences, bioinformatic analyses and specificity can be accessed at 

mips.gsf.de/proj/thal/primerDesign/index.html. The results are summarized in Suppl. Tab. 1; specific 

comments regarding 35 out of 271 probes are highlighted to indicate a possible cross-reactivity. Since 

these bioinformatic analyses pinpointed any potential conflict, e.g. the highly homologous pairs 

AtGSTF2/ AtGSTF3 and AtGSTF6/ AtGSTF7, a targeted examination by an independent technique 

can be specifically approached.  

 

Organ distribution of transcripts
 

The MetArray was used to obtain comprehensive information about the organ-specific expression 

patterns of these gene families in roots, rosette leaves, stems, inflorescences and immature siliques. 

This knowledge will provide a framework for assessing the functions and possible redundancies of 

these genes.  
 

Ubiquitously and often highly expressed genes were detected among all gene families (Fig. 1a-g). 

Most remarkable was the high and constitutive expression of most glyoxalases, glutathione reductases 

and glutathione peroxidases as well as many glutathione transferases (Fig. 1c, d, e). Among the 
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glutathione peroxidases AtGPX1 and AtGPX3 showed the highest transcription in all organs, whereas 

the closely related AtGPX6 could not be detected in any tissue (Fig. 1c). All glyoxalases except 

AtGLX-II.1 were expressed at a high level in all organs (Fig. 1d). A few out of 47 Arabidopsis 

glutathione transferases were highly and ubiquitously transcribed. This mostly pertained to members 

from closely related subgroups, such as the tau GSTs AtGSTU5, AtGSTU13, AtGSTU19, AtGSTU20
and the phi members AtGSTF2, AtGSTF8, AtGSTF9, and AtGSTF10. In contrast, transcripts of highly 

related members were not detected or differentially expressed (Fig. 1b). Among the CYP, UGT and 

ABC transporter genes only single members were constitutively expressed at a higher level, e.g.
AtCYP73A5, AtCYP51A2, AtCYP81H1, AtCYP98A9, AtUGT72B1, AtUGT74C1, AtUGT80A2, 

AtUGT83A1, AtUGT89B1, AtMRP11 or AtPDR8. These high and wide-spread expression patterns 

might indicate constitutive functions. Nevertheless, it was interesting to note that a few of these genes 

were further enhanced in response to different stimuli, e.g. AtGPX1, AtGPX3, AtGPX4, AtGR2, 

AtGSTF2, AtGSTF10, AtGSTU19, AtUGT80A2, AtCYP71B28, AtCYP73A5, or AtPDR8 (see below; 

Tab. 1, 2, 3).  

 

Assuming that gene products within highly homologous subfamilies have at least related biochemical 

functions, the expression analyses supported both potentially redundant functions by similar 

expression patterns and diversity by organ-specific transcription. Highly related members of the large 

UGT subgroup L (Ross et al., 2001; Fig. 1f: UGT74B1 – UGT84A4) showed widely overlapping 

expression patterns, which could indicate redundant functions. However, using recombinant enzymes 

many of these UGTs had been shown to exhibit differential substrate preferences (Jackson et al., 
2001; Lim et al., 2001, 2002). Similarly, the overlapping expression patterns of AtGSTU16/ 

AtGSTU17/ AtGSTU18, of AtGPX1/ AtGPX3 or of AtGR1/ AtGR2 (Fig. 1b, c, e) would be in 

agreement with redundant functions within the respective groups. However, they differed in their 

stress responsiveness (see below). Several genes belonging to highly related branches displayed non-

redundant expression patterns per se, e.g. AtUGT71C, AtUGT76E, and AtUGT79B branches, 

AtGSTF11/ AtGSTF12, theta AtGST and several tau AtGST subgroups, AtGPX2/ AtGPX7, or AtPDR1/ 

AtPDR6/ AtPDR7/ AtPDR8. Finally, at least a single member out of small UGT groups with at most 

three members was ubiquitously expressed in all tissues, e.g. AtUGT78D1 (group F), AtUGT83A1 (I), 

AtUGT86A2 (K), or AtUGT92A1 (M; groups according to Ross et al., 2001) (Fig. 1f).  

 

CYP genes seemed to have a much stronger on/off control than most other genes (Fig. 1a). This 

might reflect a tighter control of gene expression, possibly related to the higher substrate specificity 

and their functions as rate limiting steps in many pathways. Among the other gene families studied 

there were only a few examples that showed similar control. Restricted expression patterns were 

observed for AtUGT71C1, AtUGT72E2, members of the AtUGT76B subgroup, several AtGSTU
members, or AtPDR7 and AtPDR11 (Fig. 1).  

 

These observations support the functional significance of the diversity provided by many subgroups 

and individual members within these gene families and argue against true redundant functions. This 

analysis greatly extended the knowledge on the organ-specific expression within these genes families. 

In most cases previous information on the expression pattern of single genes was in agreement with 

the array expression analysis. However, when comparing the array data with other existing 

information it is important to bear in mind that developmental and environmental differences may 

contribute to discrepancies. A technical difference could account for the observation that the array 

expression levels in leaves tended to be lower. To exclude a dilution of the total RNA by ample 

organellar rRNAs, RNA samples were quantified prior to hybridizations based on 25S/ 18S rRNA 

fluorescence (Experimental procedures). Nevertheless, a considerable dilution of transcripts by high 
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amounts of photosynthetic gene mRNAs may still affect hybridization in a different way than RT-

PCR analyses.  

 

In accordance with Northern and promoter-reporter analyses (Bell-Lelong et al., 1997; Mizutani et
al., 1998) AtCYP73A5 was a highly expressed CYP gene showing highest levels in roots and stems. 

This pattern is in agreement with its essential role as cinnamate 4-hydroxylase acting upstream in the 

phenylpropanoid pathway in the biosynthesis of lignin, flavonoids and other phenolic compounds. 

Another CYP gene showing high constitutive expression in most plant organs was AtCYP51A2. It 

encodes 14_-demethylase having a housekeeping role in the biosynthesis of steroids. Interestingly, 

AtUGT80A2, which glucosylates sterols in vitro (Warnecke et al., 1997), appeared to be co-expressed 

as one of the highest and ubiquitously transcribed UGT genes. The prevalent expression and role of 

AtCYP51A2 over that of the related AtCYP51A1 is in agreement with the observation that AtCYP51A2
antisense plants were strongly compromised in their growth and development (Kushiro et al., 2001). 

AtCYP79Bs and AtCYP83B1 coding for enzymes catalyzing different steps in the synthesis of 

glucosinolates were co-ordinately expressed at their highest levels in roots. The expression profiles of 

AtCYP83B1 and AtCYP76C1 were in complete agreement with that previously observed by RNA blot 

analysis (Mizutani et al., 1998). High expression of AtCYP79B2 in roots was reported by Mikkelsen 

et al. (2000), however, the MetArray did not detect the lower levels in other organs.  

 

Knowledge of the organ-specific expression patterns of UGT and GST genes was almost completely 

lacking. The expression of an indole-acetic acid glucosyltransferase AtUGT84B1 in siliques was in 

agreement with RT-PCR analyses showing strong signals in siliques along with weak expression in 

inflorescences and roots (Jackson et al., 2001). A more extended comparison was possible with 

recently published RT-PCR analyses of the MRP and PDR subgroups of ABC transporters 

(Kolukisaoglu et al., 2002; van den Brûle and Smart, 2002). In a qualitative manner, the MetArray 

expression patterns matched most of the reported RT-PCR data. Variations in developmental stages 

and growth conditions as well as technical differences (see above) may account for quantitative 

discrepancies such as the high expression of AtMRP5 observed in immature siliques (Fig. 1g) in 

contrast to Kolukisaoglu et al. (2002). It might reflect slight developmental shifts since AtMRP5-

promoter reporter plants indicated that AtMRP5 was highly upregulated during the early stage of 

grain filling (Klein and Martinoia, unpublished).  

 

Additional examples comparing array data and independent analyses are provided as supplementary 

information (Suppl. Tab. 2).  

 

Principal component analysis of transcriptional responses to chemical, biological and physical
challenges
 

Gene families acting in secondary metabolism may be involved as effector genes in response to 

diverse environmental cues. Therefore, the MetArray was used to monitor transcriptional changes in 

response to a spectrum of abiotic and biotic stimuli and to elucidate both stress-specific responses and 

overlapping crosstalks. The analyses were focused on the reaction of A. thaliana leaves 24 hours after 

application of the stimuli. As chemical stressors two different classes of herbicides were chosen (Fig. 

2). Bromoxynil [BXN], a photosystem II targeting herbicide and two different sulfonylurea 

herbicides, primisulfuron [PRI] and prosulfuron [PRO], interfering with the biosynthesis of branched 

amino acids were sprayed at sublethal doses. UV-B irradiation [UVB] was used as a physical stressor 
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provoking oxidative damage and defense reactions (Surplus et al., 1998). Infection by the avirulent 

bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 (avrRpt2) [PSavir] was included as a 

biological stressor. Finally, plants were treated with the three plant stress hormones salicylic acid 

[SA], ethylene [ETH] and methyl jasmonate [MeJA] (Dong, 1998; Kunkel and Brooks, 2002). Only 

those genes were kept for further analyses, whose expression was detected in at least three treatments 

or showed a greater than 2-fold change in at least one condition. This measure reduced the number of 

genes from 265 to 134 (Suppl. Tab. 4). The complete set of data including replica experiments can be 

accessed as supplementary data (Suppl. Tab. 5, 6). 

 

To identify differences between and correlations among the transcriptional responses to the various 

stimuli the data were subjected to a principal component analysis (PCA; Fig. 3). Transcriptional 

reactions after treatment with the signal molecules MeJA and ETH gave one highly correlated group. 

Responses to SA were associated with an independent group that included genes induced by the 

avirulent P. syringae pv. tomato DC 3000 (avrRpt2) [PSavir]. Interestingly, this group also contained 

genes responsive to two different sulfonylurea herbicides, primisulfuron and prosulfuron. The 

response patterns established by treatment with another herbicide, bromoxynil or UV-B radiation 

were different from both groups (Fig. 3). Although the correlation of UVB and bromoxynil was less 

significant in the PCA, it could indicate the defense against oxidative damage, which is common to 

both stressors. The UVB experiment, however, differed from all other treatments because it was 

designed to analyze the long-term effects on plants grown in the presence of UV-B (Götz et al., in 

preparation).  

 

The separation of the ETH and MeJA response from the reaction to PSavir and SA was not surprising 

per se. Several genetic analyses and gene expression studies revealed a mutually antagonistic nature 

of the SA-dependent and jasmonate- or ethylene-dependent defense pathways but also substantial 

overlap between these different signaling pathways (for review: Kunkel and Brooks, 2002). However, 

it is important to emphasize that the correlations demonstrated here were based on a small, non-biased 

set of effector gene families related to secondary metabolism lacking classical marker genes for these 

pathways like pathogenesis-related proteins or components of signaling cascades (Dong, 1998; 

Kunkel and Brooks, 2002). Thus, the enormous genetic diversity of secondary metabolism may 

endow the plant with the ability to recruit differential consortia of effector genes in response to 

various stimuli. Nevertheless, responses to different biotic and abiotic stimuli may also converge as 

indicated by the co-induction of genes by several inputs (see below).  

 

A subset of genes was extracted from the PCA that most significantly contributed to the 

differentiation or association of stress responses (Fig. 4; Experimental procedures). Among these 

genes two small subgroups were co-induced by several stimuli indicating their involvement in 

comprehensive reactions. Both groups identify effector genes that are likely to be activated by 

converging, yet differentiating defense pathways.  

 

One group comprised genes that were not induced or even repressed by ethylene or methyl jasmonate 

but activated by several other stimuli (Fig. 4; yellow group). This group contained several distinct 

members of the CYP and UGT families as well as AtGLX-II.1, AtGSTF8, and AtGPX7. All genes 

except the putative salicylate-glucosyltransferase AtUGT74F2 (Lim et al., 2002) encoded enzymes of 

so far unknown biochemical or physiological functions. Another group combined genes that were 

widely induced by sulfonylurea herbicides, pathogen inoculation and the three stress hormones SA, 

MeJA and ETH. In contrast, no enhancement was found after BXN application and UV-B irradiation 

(Fig. 4, blue group). In addition to AtCYP98A9, AtCYP72A8, AtGSTZ1, AtUGT86A1, and AtPDR8, 

this group also contained AtCYP71B15, AtGSTF2, AtGSTF6, and AtGSTF7. The latter genes are 
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distinct members of subfamilies that were found to be associated with the yellow group. Therefore, 

these expression patterns do indicate different functions fulfilled by homologous members in a 

specific context instead of redundancy.  

 

The induction of AtGSTF2 and of the homologous AtGSTF6 and ATGSTF7 by several stress signals 

had been already described (Maleck et al., 2000: ERD11 = AtGSTF6, GST11 = AtGSTF7; Wagner et
al., 2002). Parallel RT-PCR analyses revealed that both AtGSTF6 and AtGSTF7 were regulated in a 

similar way whereas only AtGSTF2, but not the homologous AtGSTF3, was responsive to multiple 

stimuli (Tab. 4). The biological functions of these GSTs and most other genes of this group are not 

known. AtGSTZ1 encodes a maleylacetone isomerase catalyzing a key step in the catabolism of 

tyrosine that was induced by MeJA and pathogens (Dixon et al., 2000; Wagner et al., 2002). The 

activation in additional stress situations as demonstrated here could indicate its role in protein 

degradation during plant stress response. AtCYP71B15 that also fell into this group encodes a step in 

the biosynthesis of camalexin. Thus, elevation of this phytoalexin could be part of a general stress 

response. The inclusion of AtCYP72A8 and AtCYP98A9 as well as of an ABC transporter AtPDR8
within this group provided a first hint to their multiple involvements in plant stress responses.  

 

Differential response to herbicides
 

As indicated by the PCA the responses to two sulfonylurea compounds, primisulfuron and 

prosulfuron, were clearly distinct from the reaction to bromoxynil. A number of genes comprising 

members of all families were specifically induced by either herbicide class (Tab. 1; Suppl. Tab. 5).  

 

Several genes were induced by primisulfuron and prosulfuron but not responsive to bromoxynil. With 

the exception of the specifically induced AtGSTU24, AtUGT74E2, AtUGT75B1, and AtUGT86A1(see 

below), all other genes of this group were also responsive to other stressors. AtGR2 was activated by 

sulfonylureas in contrast to its isoform AtGR1 that is also expressed in leaves (Tab. 1, Fig. 1). 

Sulfonylureas enhanced the transcription of AtCYP71B15, involved in phytoalexin biosynthesis, and 

AtCYP76C2 (Tab. 1). Both CYPs had been previously characterized as pathogen-inducible genes 

(Godiard et al., 1998; Zhou et al., 1999). In addition to AtCYP81D8, AtUGT73C5, and AtUGT87A2, 

which were not known to be stress-related, this group also contained the stress-responsive genes 

AtGSTF2, AtGSTF6, AtGSTF7 and AtPDR8 (Tab. 1; Fig. 4). PDR-type ABC transporters might be 

involved in defense and detoxification, which had been indicated for three homologous members 

from other plant species (Jasinski et al., 2001; Sasabe et al., 2002; Smart and Fleming, 1996; van den 

Brûle et al., 2002). Similarly, the known induction of the ABC transporter AtMRP3 by sulfonylureas 

(Tommasini et al., 1997) was confirmed by this analysis.  

 

Only three genes were identified that are specifically induced by bromoxynil in comparison to 

sulfonylureas, the ABC transporter AtTAP1, the highly and ubiquitously expressed glutathione 

peroxidase AtGPX3 and the glucosyltransferase AtUGT75D1. Neither AtGPX3 nor AtUGT75D1 were 

responsive to treatment with the three stress hormones or pathogen infection (Suppl. Tab. 4). 

Interestingly, recombinant AtUGT75D1 was shown to glucosylate the xenobiotic compound 2,4,5-

trichlorophenol (Messner et al., 2003). AtGPX3 could be specifically involved in antagonizing 

oxidative damage that occurred as a result of inhibition of photosystem electron transport by BXN. 

Distinct members of this family were up-regulated by PSavir in both SA-dependent (AtGPX7) and 

SA-independent manners (AtGPX1, AtGPX4; Tab. 2, see below). No function has yet been assigned 

to AtTAP1 that shares homology with a mammalian ATP-dependent peptide translocator involved in 

antigen presentation (Sánchez-Fernández et al., 2001).  
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A single gene, AtUGT74F2, was found to be co-induced by both chemical classes of herbicides as 

well as by pathogen treatment and SA application (Tab. 1, 2, 4; Fig. 4). Furthermore, its wound-

inducibility has been recently described by Cheong et al. (2002; gene AAB64024). In vitro studies 

using recombinant enzymes showed that AtUGT74F2 is able to glucosylate SA by preferentially 

forming its glucose ester (Lim et al., 2002). A highly related second enzyme, AtUGT74F1 that 

specifically catalyzes the formation of SA-2-O-glucoside in vitro was neither induced by BXN nor 

the sulfonylureas (Suppl. Tab. 5). Thus, a specific pathway glucosylating SA might be induced by 

these herbicides. BXN is also an inhibitor of cinnamate 4-hydroxylase that may trigger the 

accumulation of SA (Schalk et al., 1997; Schoch et al., 2002). Thereby, the induction of AtUGT74F2
could be part of an SA detoxification mechanism.  

 

Genes directly involved in the detoxification of these xenobiotic compounds may be included among 

the induced transcripts. In particular, transferases genes that are not responsive to other treatments 

may be candidates. These include AtGSTU24, AtUGT74E2, AtUGT75B1 and AtUGT86A1 (Tab. 1; 

Suppl. Tab. 4). The role of the induced UGT genes deserves further investigation because 

glucosylation is known to be involved in the detoxification of both herbicide classes (Schaller et al., 
1992; Klein et al., 1996; Kreuz and Martinoia, 1999). Recombinantly expressed AtUGT75B1 

catalyzed the glucosylation of benzoic acid and hydroxy derivatives thereof (Lim et al., 2002).  

 

Finally, this analysis defined two groups of genes that are suitable to distinguish the response to 

sulfonylurea compounds and bromoxynil. Individual effector genes were associated with reactions of 

the plant towards different classes of exogenous chemicals.  

 

Differential responses to plant stress hormones and bacterial infection
 

Inoculation by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 (avrRpt2) induces 

SA-dependent gene expression in A. thaliana (Maleck et al., 2000). PCA showed that this correlation 

was also reflected at the level of effector gene families related to plant secondary metabolism. It was 

clearly distinct from the reaction to ETH and MeJA (Fig. 3). The latter hormones are known to 

activate overlapping signaling pathways (Kunkel and Brooks, 2002; Penninckx et al., 1998; Xu et al., 
1994).  

 

The transcriptional changes of several genes were responsible for these correlations. The ABC 

transporter AtMRP3, the putative salicylic acid glucosyltransferase AtUGT74F2, and two genes with 

unknown roles, AtCYP71B28 and AtGPX7, were activated by PSavir and SA in contrast to ETH and 

MeJA, which could even repress the expression of the two latter genes (Tab. 2). On the other hand, 

the expression of three genes with unknown functions, AtUGT71C3, AtUGT85A5 and AtAOH1 was 

altered by ETH and MeJA but non-responsive to SA or pathogen infection (Tab. 2).  

 

However, a number of these effector genes exhibited other co-induction patterns. This provided 

further evidence for alternative crosstalks among defense signaling pathways (for review: Kunkel and 

Brooks, 2002) and identified specific effector genes as targets. First, AtCYP71B15, AtGSTF2, 

AtGSTF6, and AtGSTF7, which had been already identified as comprehensively induced effector 

genes, were coordinately enhanced (Tab. 2; Fig. 4). Second, the Pseudomonas-responsive 

AtCYP72A8, AtGSTZ1 and AtGSTF10 were co-induced by either ETH or MeJA but not by SA (Tab. 

2). Schenk et al. (2000) had previously described similar correlations among the different signaling 

pathways mostly based on known stress-responsive and signaling components. In contrast, the 

transcriptome of effector genes also reflected such responses and crosstalks in this study.  
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Interestingly, this compilation revealed a large group of genes from all families that was specifically 

induced in response to the PSavir. These genes indicated an induction or suppression by the bacterial 

pathogen that was independent from the response to the three stress hormones. Thara et al. (1999) had 

previously reported two tomato transcription factors that were induced by a virulent Pseudomonas
strain independent of ETH, SA and jasmonate. Thus, independently mediated or obligatorily 

synergistic signaling pathways may exist. Further experiments including signaling mutants and 

kinetic analyses will be required to confirm these observations. More than half of the genes within 

this group had no known physiological functions, such as e.g. AtCYP76C6, AtGSTU19, AtGPX4, 

AtUGT87A2, or AtPDR8. In vitro, AtUGT80A2 glucosylated sterols (Warnecke et al., 1997) and 

AtMRP5 was implicated in the regulation of ion fluxes (Gaedecke et al., 2001). However, a few 

genes of this group had known functions in plant defense: AtCYP73A5 encoding cinnamate 4-

hydroxylase and two CYP genes, AtCYP79B2 and AtCYP83B1 involved in the biosynthesis of indole 

glucosinolates (Bak et al., 2001; Mikkelsen et al., 2000). Using RT-PCR, Mikkelsen et al. (2003) 

could also demonstrate an induction of AtCYP79B2 by MeJA that was not detected by the array 

analysis.  

 

Correlation of responses to sulfonylurea herbicides and Pseudomonas
 

PCA revealed an interesting association of transcriptional responses to sulfonylurea herbicides with 

Pseudomonas inoculation and SA treatment (Fig. 3). Several comprehensively induced genes, 

AtCYP71B15, AtCYP72A8, AtGSTF2, AtGSTF6, AtGSTF7, AtGSTZ1, and AtMRP3 were contributing 

to this correlation (Tab. 3). A number of additional genes including members of all effector gene 

families specifically linked the responses to sulfonylureas and to the bacterial pathogen (Tab. 3). 

Interestingly, the majority of these genes had been already identified as PSavir-enhanced genes that 

were not induced by individual stress hormones (Tab. 2, 3).  

 

Their co-induction suggested that they might exhibit overlapping roles in reactions to the biotic and 

abiotic stressors. AtCYP73A5 encodes cinnamate 4-hydroxylase as a key enzyme in the 

phenylpropanoid biosynthesis that may be either co-regulated with or dissociated from the response 

of other genes of this pathway (Bell-Lelong et al., 1997; Mizutani et al., 1997; Jin et al., 2000). The 

highly and ubiquitously expressed AtGPX1 (Fig. 1c) had been shown to be responsive to oxidative 

stress (Sugimoto and Sakamoto, 1997). The pathogen-responsive, putative salicylate-

glucosyltransferase AtUGT74F2 was co-induced by sulfonylurea herbicides and BXN (Tab. 1, 3). For 

all other genes combined in this group except for AtMRP5 and AtPDR8 (see above), no function or 

relation to plant stress response had been described so far.  

 

A possible explanation for the correlated induction of effector genes by sulfonylurea and pathogen 

could be an impact on aromatic amino acid metabolism, which is evoked by the inhibition of the 

synthesis of branched amino acids by sulfonylurea herbicides. Consequently, plant responses 

involving compounds derived from aromatic amino acids, such as the reaction to pathogens, might be 

affected. Sulfonylurea application could therefore influence the susceptibility of plants towards 

pathogens and, vice versa, a prevailing infection could alter the sensitivity towards these herbicides.  

 

Independent controls of transcriptional alterations 
 

In most instances, the expression of GST, CYP, UGT, and ABC transporter genes previously reported 

in the literature was in agreement with the array expression analyses (see above for references and 

discussion). To further confirm the data obtained with MetArray, the transcript levels of selected 

genes were examined by semi-quantitative RT-PCR (Experimental procedures). These analyses 
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confirmed the co-induction of AtCYP71B15, AtCYP72A8, AtGSTF2, AtGSTF6, AtGSTF7, 

AtUGT74F2, and AtMRP3 by primisulfuron application and Pseudomonas infection, thus linking the 

responses to the abiotic and biotic stimuli (Tab. 4). In addition, these genes differentiated the reaction 

to primisulfuron and bromoxynil in agreement with the array analyses; AtUGT74F2 was confirmed to 

be induced by both herbicides (Tab. 1, 4). However, the quantitative induction values were markedly 

different for both types of analyses. In most cases, the array induction values were greater than RT-

PCR data, which is coherent with the fact that several array induction values were calculated using 

estimated, low control levels as denominators. Consequently, we never discussed a biological 

meaning of different induction values.  

 

The probes directed against the highly homologous pairs of phi GSTs, AtGSTF2/ AtGSTF3 and 

AtGSTF6/ AtGSTF7 were likely to cross-react with transcripts from both genes, respectively. Since 

the array analyses revealed their responsiveness to multiple stimuli, their induction was scrutinized by 

RT-PCR. The induction of AtGSTF6, AtGSTF7 and AtGSTF2 by PRI, PSavir, SA, MeJA, and ETH 

was confirmed by RT-PCR (Tab. 4; Suppl. Tab. 7). In contrast, AtGSTF3 was not detected by RT-

PCR, although the array induction values were similar due to cross-hybridizing AtGSTF2 transcripts 

(Tab. 4).  

Conclusions
 

A. thaliana effector genes involved in consecutive steps of plant secondary metabolism had been 

chosen for a combined analysis of transcriptional responses to abiotic and biotic stressors. Most of 

them are represented by large gene families. In order to distinguish between highly homologous 

members gene-specific probes derived from 3´-regions were designed. Both the organ-specific 

expression patterns and the differential stress-responsiveness among members of these gene families 

emphasize the functional importance of the enormous genetic diversity that has evolved in plants. 

Although there are highly homologous gene clusters at the sequence level, these differential 

transcriptional regulations argue against truly redundant functions. Nevertheless, this notion will need 

additional experimental approaches such as analyses of knock-out mutants. From an evolutionary 

point of view Pichersky and Gang (2000) linked the plasticity of plant responses to environmental 

challenges in particular to the diversification of plant secondary metabolism and the creation of an 

increasing number of genes with new properties and tasks by a genetic "snowball" effect. As one 

consequence of these non-redundant, diverse functions, the transcriptome of these effector gene 

families appears to monitor and differentiate plant responses to various environmental cues. This 

allowed distinguishing three different types of reactions towards the stimuli applied in this study. 

 

Of particular interest was the differentiation of plant responses towards two different exogenous 

chemicals. This differentiation probably reflects the different modes of action and potential side 

effects of these compounds. Thus, it highlights the potential of transcriptome analysis based on a 

focused collection of effector genes for a fast and straightforward analysis of new active compounds. 

Furthermore, an important overlap between abiotic and biotic stress responses was indicated by the 

correlation of Arabidopsis transcriptional reaction towards sulfonylurea herbicides and a bacterial 

pathogen. Such a crosstalk points to potential mutual interactions of pathogen defense and response to 

(herbicidal) chemicals. The MetArray is a tool to detect such interactions. 

  

Besides these general reactions of the effector gene transcriptome analyzed, this study generated 

plenty of information on the function of individual genes by associating them to specific or 

multiple plant responses. Thus, this analysis provides a framework for their further functional 

characterization and their regulation by different signaling pathways.  
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Experimental procedures 
 

Plant growth conditions and treatments  
Arabidopsis thaliana Col-0 were raised on soil with about ten plants per 5x5 cm2 pot using 16 h light 

periods at 23 _ 2°C. For pathogen infections plants were grown at lower density under short day light 

conditions to obtain larger leaves. Leaves of control experiments and treatments were harvested in 

parallel to exclude any diurnal effects. All treatments were done at the rosette stage 2 - 3 h after the 

onset of the light-period and lasted 24 h except the UV-B irradiation experiment. Biologically 

independent experiments were repeated three times or four times in two separate settings [UV-B] 

(Suppl. Tab. 5, 6). The UV-B experiment was conducted as a long term exposure in a sun simulator. 

After a precultivation period of five days, plants were exposed 19 days using a 14 h light period (PAR 

1030 μmol m-2 s-1) supplemented with 10 h UV-B irradiation at 120 mW m-2 (biologically effective 

weighting the spectrum according to Caldwell, 1971 and normalization at 300 nm). Control plants 

were grown under glass filters, which cut off UV-B radiation (Ibdah et al., 2002). For herbicide 

treatments three week-old Arabidopsis plants were sprayed with 750 μg m-2 primisulfuron-methyl, 1.5 

mg m-2 prosulfuron, and 1.5 mg m-2 bromoxynil octanoate. The herbicide stock solutions had been 

diluted 1 : 1000 with 0.05% (w/v) Silwet L-77 (Lehle Seeds, TX, USA) and sonified to get an even 

aqueous suspension. Control plants were treated in the same way with 0.05% Silwet. There were no 

visible damages at the harvest. For bacterial infections half the surface of 5 leaves from 5 week old 

Arabidopsis plants were syringe-infiltrated with P. syringae pv. tomato DC3000 (avrRpt2) at a titre of 

5.5 x 105 colony forming units ml-1 in water. Whole leaves of inoculated and water inoculated control 

plants were harvested after 24 h. Treatments with salicylic acid, methyl jasmonate and ethylene were 

done as described in Wagner et al. (2002). 

 

For analysis of organ-specific expression patterns plants were grown hydroponically (Gibeaut et al., 
1997) with the addition of 0.5 g l-1 2-[N-morpholino]ethanesulfonic acid, pH adjusted to 5.4 with 

phosphoric acid. Leaves and roots were harvested after 3 weeks, flowers and stems after 5 weeks, 

immature siliques after 6 weeks. 

 

Nucleic acids
 

Total RNA was isolated according to the method described by Chang et al. (1993; primisulfuron, 

bromoxynil treatments/ organ expression/ UV-B), by Zimmerli et al. (2000; pathogen infection/ 

signal molecules), or by Reymond et al. (2000; prosulfuron treatment). All procedures included a 

LiCl precipitation step. After spectrophotometric analyses the amounts of RNA were equalized 

according to the ethidium bromide fluorescence encompassing the region of 25S to 18S rRNA bands 

after gel electrophoresis.  

 

Gene-specific probes were designed and analyzed using ProbeDesign algorithm (Affenzeller et al., in 

preparation). Detailed information is accessible at mips.gsf.de/proj/thal/primerDesign/index.html 

(Suppl. Tab. 1). Probes were PCR-amplified from genomic DNA and cloned into pGEM-Teasy 

vector (Promega, Madison, USA). 

 

Array production, hybridization and data acquisition
 

Specific DNA probes were amplified using flanking vector DNA sequences (Suppl. Tab. 8). PCR 

products were concentrated using Multiscreen plates (Millipore, Bedford, MA, USA), resuspended in 
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water, and spotted in duplicate onto Hybond-N+ nylon membranes (Pharmacia, Freiburg, Germany) 

using the MicroGrid robot (400 μm pins; BioRobotics, Cambridge, UK). After spotting the filters 

were crosslinked (UV-Stratalinker 240, Stratagene, La Jolla, USA), denaturated and reference 

hybridized with 5´-[33P]-labeled T7 oligonucleotide as described by Hauser et al. (1998). 

 

For complex hybridizations total RNA was labeled by reverse transcription according to Hauser et al. 
(1998) using 30 μg RNA and 2.6 MBq of [_-33P]dATP (42.9 kBq pmol-1) or according to Ambion 

Strip-EZ kit using 10 μg RNA (Ambion, Huntingdon, UK). DNA arrays were hybridized at 68oC in 

5x SSC [750 mM NaCl, 75 mM trisodium citrate, pH 7], 5x Denhardt´s solution, 0.5% SDS, 100 μg 

ml-1 denaturated salmon sperm DNA. After final washings at 0.2x SSC/ 0.1% SDS primary data were 

acquired using a FLA-3000 image reader (Fuji, Düsseldorf, Germany) at a resolution of 50 μm and 

ArrayVision software (Imaging Research Inc., Haverhill, UK). About 300 additional probes 

encompassing other gene-specific probes and EST clones (Suppl. Tab. 9) were co-hybridized for 

normalization based on total gene expression in each experiment (see below). All subsequent 

statistical analyses such as PCA were solely based on the MetArray probe set. 

 

Data evaluation

Primary data from each hybridization were processed and normalized using the Haruspex algorithm 

(Thimm et al., 2001). The ratio of the expression values of corresponding pairs of treatment vs.
control were calculated and then averaged using the replicas comprising three biologically 

independent experiments. Ratios smaller than 0.5 and larger than 2.0 were regarded as significant 

changes (Tab. 1, 2, 3). Signals from an hybridization that were lower than the twofold, local 

background were regarded as not detectable. In order to approximate ratios of transcriptional 

responses for these experiments those values were replaced by the lowest signal measured on that 

filter. Thereby, changes could be approximated by division as above using these values. However, 

ratios were labelled n.d. (not detectable), if transcripts were not detected in both control and 

treatment. Any results, that showed contradicting changes in replicas, were eliminated and labeled 

"exp" (Suppl.Tab. 4, 5, 6). If transcription was detected only in one replication, a mean value was 

calculated using ratio 1.0 (no change) for the not detectable replicas unless the resulting mean values 

would indicate a significant change. In the latter case, values were not taken into consideration and 

labeled "o.o." (only once; Suppl.Tab.4, 5, 6). As long as all three replicas clearly indicated induction 

albeit at very different levels, data were kept for further analysis and labeled “ind.” (for statistical 

analysis replaced by 2.0 as a minimal induction level). Most of these higher variations included 

induction ratios that were based on approximated, low control values as denominators. Accordingly, 

the maximum induction values were generally limited to 16 (= 24) by assigning this value to all 

inductions higher than 16 and, importantly, no emphasis was placed on the level of inductions per se. 

For statistical analysis n.d., o.o., and exp. results were included as ratio 1.00 meaning no change; all 

values were log-transformed to the basis 2. 

 

For analysis of organ-specific expressions, individual sets of data were normalized as above. The 

mean values, representing relative gene activities, were calculated from three biologically 

independent experiments (Fig. 1; Suppl. Tab. 3). If no transcription above the twofold local 

background was detected in a single experiment, zero (no detectable expression) was used for 

calculation of the mean value. 
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Statistical analysis 
 

The analysis of MetArray expression data was designed to find a partitioning of genes to specific 

plant reactions and to explore their concomitant participation in groups of transcriptional responses. 

Principal component analysis (PCA) was used to analyze how microarray data are structured (Holter 

et al., 2000, Raychauduri et al., 2000, Landgrebe et al., 2002). PCA was applied to the pre-processed 

data to identify subsets of genes with large variation between transcriptional responses and to extract 

groups of correlated responses. In order to eliminate non-informative genes, those genes were 

excluded from the analysis that did not show a 2-fold deviation in expression ratios after any 

treatment. The resulting n x p data matrix (n = 134, p = 9) was preprocessed in order to focus the 

analysis on the differential gene expression for gene g (g = 1, …, n) and transcriptional response j (j = 

1, …, p). Therefore, data were standardized with respect to columns (response) and mean-centered 

with respect to rows (genes). This was done iteratively. Then PCA reduces the dimensionality of the 

multivariate data to represent the objects (genes) in a reduced space and groups of variables 

correlating with each other can be extracted. Such groups are represented by new variables, which are 

linear combinations of original variables. If there are non-zero correlations between the original data, 

PCA allows reducing dimensions while only slightly reducing information: a large proportion of the 

variance will be explained by a smaller number of new variables. In a two-dimensional reduced space 

used in this study the variance for each gene between responses is proportional to the distance to the 

origin of the plot. Since genes with great variances contribute more significantly to the differentiation 

of transcriptional responses the angular distance was used to select genes. It was arbitrarily set at 1.4 

resulting in a selection of 60 out of 134 genes. For each gene the angular distance from the x-axis 

describes the relation of this gene to both new variables. Therefore, this parameter was used to 

rearrange and cluster the data. Subsequently, the original ratios were substituted to create a color-

coded expression-profile tables of this set of most informative genes (Fig. 4). 

 

Verification of MetArray results by RT-PCR 
 

Total RNA samples from replica experiments were pooled and equal amounts (0.5 or 1 μg) were 

reverse transcribed. Subsequent semi-quantitative PCR was performed using a limited number of 

PCR cycles that was individually checked to remain in the exponential phase of amplification (Bovet 

et al., 2003; Weig et al., 1997). The gene for ribosomal protein AtS16 was amplified in parallel and 

used for normalization. Quantifications were based on ethidium bromide fluorescence or [_-33P]-

dAMP incorporation and phosporimaging (Bovet et al., 2003; Weig et al., 1997). Gene-specific 

primers and numbers of PCR cycles for AtGSTF2, AtGSTF3, AtGSTF6, AtGSTF7, AtUGT74F2, 

AtMRP3, and AtS16 are accessible as Suppl. Tab. 8. The expression of AtCYP71B15 and AtCYP72A8
was examined by real-time PCR using GeneAmp 5700 sequence detection system (Applied 

Biosystems, Courtaboeuf, France) with SYBR Green I (Roche, Mannheim, Germany). Amplification 

consisted of 40 cycles (95°C/ 15 s, 60°C/ 60 s). The actin2 gene was used as an internal, 

constitutively expressed standard of each cDNA sample. Primers are listed in Suppl. Tab. 8. 

Quantification of gene expression was performed using the cycle threshold method relatively to a 

calibrator (defined for each target with cDNA dilutions). All analyses were run at least in duplicate. 

Mean values were calculated for relative expression ratios.  
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Tables and figures 
 

 

Table 1 Genes differentially responsive to sulfonylurea herbicides and bromoxynil in A.thaliana 

leaves. Numbers indicate expression ratios after treatments vs. controls (Experimental procedures). 

Significant inductions are displayed on white background, non-responsive situations are underlaid in 

dark-grey, unclear results in grey. 
 

Gene PRI24 PRO24 PRI36 BXN24

Responsive to sulfonylurea
CYP71B15 16.0 ind. 16.0  0.69* 

CYP81D8 5.2 7.8 9.1  1.2* 
GSTF61

GSTF7
16.0 

5.2 

11.2 

16.0 

2.4 

2.2 

0.74 

0.67 

UGT73C5 2.9 6.9 2.1 1.5 
UGT74E2 12.5 7.4 4.1 n.d. 
UGT87A2 4.0 2.9 2.8 1.5 
GR2 3.4 12.6 2.1 1.0 
MRP3 10.2 16.0 7.0 0.51 

CYP76C2 6.3 2.9 n.c.  1.3* 
GSTF2 6.6 ind. 1.7 0.59 

GSTU24 3.7 9.8 n.d.  n.d. 
UGT75B1 3.2 2.8 1.1 1.7 
UGT86A1 3.9 2.1 n.d.  n.d. 
PDR8 6.4 6.2 1.6  1.0* 

Responsive to sulfonylurea and BXN
UGT74F2 8.0 4.0 n.c. 4.3 

Responsive to BXN

GPX3 0.65 0.54 1.13 2.5 

UGT75D1 0.86 1.0 0.94 3.7 

TAP1  1.4*  n.d. n.c. 8.2 

 
1
 the highly homologous AtGSTF6/AtGSTF7 may cross-hybridize/ independent analyses showed that both genes are 

responsive to sulfonylureas 

* mean expression value includes replica where no expression was detected; n.d. not detected; n.c. not clear due to 

conflicting data in replica hybridizations; ind. unambiguous induction but strong difference in replica experiments, see 

Supplementary data and Experimental procedures. 
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Table 2 Genes responsive to ethylene, methyl jasmonate, salicylic acid and bacterial infection. 

Numbers indicate expression ratios after treatments vs. controls  (Experimental procedures). 

Significant inductions are displayed on white background, non-responsive situations are underlaid in 

dark-grey, reductions in black, and unclear results in grey. 
 

 

1
 probe may cross-hybridize with homologous 

member, which showed similar reaction. 
2
 the highly homologous AtGSTF6/ AtGSTF7 

may cross-hybridize. 

* mean expression value includes replica where 

no expression was detected; n.d. not detected; 

n.c. not clear due to conflicting data in replica 

hybridizations. 

 

Gene ETH MeJA SA PSavir

Responsive to PSavir/ SA vs. ETH/ MeJA
CYP71B28 0.20 0.26 5.4 3.6 

GPX7 0.88 0.40 3.1 7.0 

MRP3 1.6 0.69 2.4 5.4 

UGT71C3/C41 2.3 2.0 0.81  0.87* 

UGT85A5 0.31 0.46 0.80 n.d. 

AOH1 3.0 2.3 1.5  1.2* 

Coordinate induction
CYP71B15 11.4 13.6 6.7 16.0 

GSTF2 4.9 4.5 2.7 15.1 

GSTF62

GSTF72
3.3 

2.3 

2.4 

1.6 

6.9 

3.3 

16.0 

9.7 

Responsive to PSavir and ETH/ MeJA
CYP72A8 4.9  1.7*  1.2* 4.2 

GSTZ1 2.6 1.3 1.6 4.3 

GSTF10 1.9 2.7 1.1 2.3 

Responsive to PSavir, not to ETH, MeJA, SA
CYP73A5 1.1 0.88 1.5 2.9 

CYP76C6/C41 0.58 0.85 1.6 4.3 

CYP79B2  n.d.  n.d. n.d. 16.0 

CYP81D8 1.2 0.82 0.90 2.2 

CYP83B1 1.5 1.9 1.5 2.4 

GSTU16 1.6 0.55 1.3 3.5 

GSTU19 1.8 1.1 1.3 9.2 

GLX-II.3 1.1 0.92 0.73 4.6 

GPX1 1.2 1.2 1.5 14.6 

GPX4 1.4 0.91 1.4 3.9 

UGT74F2 n.c. 1.6 1.9 4.2 

UGT80A2 1.1 0.75 0.83 3.1 

UGT85A1 1.6 0.82 0.78 8.1 

UGT87A2 1.9 1.2 1.9 5.3 

UGT88A1 1.3 0.58 1.7 0.49 

UGT89B1 1.6 0.64 0.95 0.39 

MRP5 n.d. n.d. n.d. 4.2 

PDR8 1.3 1.5 1.4 8.7 

TAP1  0.82*  0.75*  0.99* 2.1 
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Table 3 Correlated responses to sulfonylurea herbicides and bacterial infection. Numbers indicate 

expression ratios after treatments vs. controls  (Experimental procedures). Significant inductions are 

displayed on white background, non-responsive situations are underlaid in dark-grey, and unclear 

results in grey. 

Gene PRI24 PRO24 PSavir SA

Comprehensively induced genes 
CYP71B15 16.0 ind. 16.0 6.7 

CYP72A8 5.9 2.0 4.2 1.2* 

GSTF2 6.6 ind. 15.1 2.7 

GSTF61

GSTF71
16.0 

5.2 

11.2 

16.0 

16.0 

9.7 

6.9 

3.3 

GSTZ1 9.9 n.d. 4.3 1.6 

MRP3 10.2 16.0 5.4 2.4 

Co-induction by sulfonylurea and PSavir
CYP71B192 8.2 0.79 ind. 1.8 

CYP73A5 1.0 3.2 2.9 1.5 

CYP81D8 5.2 7.8 2.2 0.90 

GSTU4/U33 4.3 n.d. 2.8 0.90 

GSTU16 2.1 0.73* 3.5 1.3 

GSTU19 2.0 10.9 9.2 1.3 

GLX-II.3/.53
2.9 n.d. 4.6 0.73 

GPX1 16.0 n.c. 14.6 1.5 

GPX4 2.0 3.1 3.9 1.4 

GPX7 3.5  n.d. 7.0 3.1 

UGT74F2 8.0 4.0 4.2 1.9 

UGT76B1 6.4 n.d. 7.6 1.5 

UGT87A2 4.0 2.9 5.3 1.9 

MRP5 3.8 n.d. 4.2 n.d. 

PDR8 6.4 6.2 8.7 1.4 

1
 the highly homologous AtGSTF6/ AtGSTF7 may cross-hybridize, however, see independent controls. 

2
probe may crossreact with closely related AtCYP71B16, AtCYP71B17, and AtCYP71B20. 

3 
probe may also detect homologous member, which showed similar reaction. 

* mean expression value includes replica where no expression was detected; n.d. not detected; n.c. not clear due to 

conflicting data in replica hybridizations; ind. unambiguous induction but strong difference in replica experiments, see 

Supplementary data, Experimental procedures. 
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Figure legends

Fig. 1. Organ-specific transcription patterns. Expression in root (R), stem (ST), leaf (L), inflorescence 

(I) and immature (green) silique (SI) tissue was examined for CYP (a) GST (b), GPX (c), GLX (d), 

GR (e), UGT (f) and ABC transporter (g) gene families in A. thaliana. Normalized gene expression 

values (Experimental procedures) were underlayed by grey scales to visualize differences, black and 

white representing no detectable and highest expression levels, respectively. Due to size limitations 

the phylogenetic distances in the trees were shortened where indicated by double slashes; see 

Supplementary data for the correct distances based on ClustalW analyses. 

 

Fig. 2. Herbicidal chemicals used for treatments. Herbicides were sprayed in sublethal doses onto 

three-week-old Arabidopsis plants: primisulfuron (a), prosulfuron (b), bromoxynil octanoate (c). 

Fig. 3. Principal component analysis. The statistical analysis was based on a subset of 134 genes, 

which responded at least in one treatment with a 2-fold change in expression; the two components 

reflect 41.3 % of the total variability of the data set (Experimental procedures).  

 

Fig. 4. Expression patterns in response to herbicides, endogenous signal molecules, UV-B irradiation 

and pathogen infection. The compilation is based on a principal component analysis. 60 out of 134 

genes showing the highest variance in distingushing transcriptional responses are displayed 

(Experimental procedures). Color coding of the original, log2-transformed expression ratios ranges 

from intense red (larger than 2) to intense green (lower than -2), black meaning no change (ratio 0). 

Numerical data and individual expression values are available as Supplementary data. 
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Chapter 4 

Subcellular localisation and functional analysis of the 
phi class glutathione S-transferase AtGSTF8
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Abstract
 
Plant glutathione S-transferases are multifunctional enzymes encoded by a large gene family 

containing 47 members in Arabidopsis thaliana. A member of the phi class GST, AtGSTF8 

(At2g47730), is upregulated by various treatments including oxidative stress and exhibits GSH-

peroxidase activity. The chloroplastic localisation of GSTF8 was demonstrated by expressing a fusion 

protein consisting of the predicted GSTF8 signal pepetide and GFP in transgenic Arabidopsis. 

Analysis of the GST family indicated that GSTF8 is the only chlorplastic GST in Arabidopsis, 

making it a promissing candidate for functional analysis. To this end, GSTF8 over-expressing 

transgenic lines were produced and a T-DNA insertion knock out mutant was isolated from the 

SALK-collection. Phenotypic analysis of the transgenic plants revealed no observable change under 

normal growth condition and under conditions of oxidative stress like treatments with hydrogen 

peroxide and the herbicide paraquat. GSTF8 appears to be either not involved in protection from 

oxidative stress in chloroplasts or, alternatively, that in addition to GSTF8 other mechanisms 

contribute to this protection. 
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Introduction
 
Glutathione S-transferases (GSTs; EC 2.5.1.18) constitute a family of soluble proteins with typical 

molecular masses of around 25 kDa. GSTs catalyse the transfer of the tripeptide glutathione (�-

glutamyl-cysteinyl-glycine, GSH) to a substrate (R-X) containing a reactive electrophilic centre to 

form a S-glutathionylated reaction product (R-SG) (Dixon et al., 2002). GSTs play critical roles in the 

detoxification of xenobiotics and the protection of tissues against oxidative damage. GSTs are 

important enzymes in plant responses to a number of environmental stresses including herbicides and 

pathogen attack. The 47 Arabidopsis GSTs are divided on the basis of sequence similarity into phi, 

tau, theta and zeta classes (Edwards et al., 2000; McGonigle et al., 2000; Dixon et al., 2002; Wagner 

et al., 2002). The most plant GSTs are members of the two plant specific phi and tau classes. In 

addition to the four classes of GSTs, A. thaliana contains two GST-like protein groups which contain 

the GSH binding domain, but have a cysteine in place of a serine at the active site (Dixon et al., 

2002). These two groups are the GSH dependent dehydroascorbate reductase (DHARs) with 4 genes 

and the Lambda GSTs (GSTL) with 2 genes. However, DHARs and GSTLs do not possess 

glutathione transferase activity (Dixon et al., 2002). 

 

The idea that GSTs have additional functions not directly linked to their ability to catalyze the 

formation of GSH conjugates has gained attention with studies demonstrating that several stress-

inducible GSTs protect plants from oxidative damage by functioning as glutathione peroxidases 

(Roxas et al., 1997; Cummins et al., 1999). Certain theta, phi and tau GSTs have been shown to have 

glutathione peroxidase activity, with the GSTs using glutathione to catalyse the reduction of organic 

hydroxyperoxides of fatty acids and nucleic acids to the corresponding monohydroxyalcohols 

(Bartling et al., 1993; Cummins et al., 1999; Edwards et al., 2000). This reduction plays a central role 

in preventing the degradation of organic hydroxyperoxides to cytotoxic aldehyde derivatives. 

Interestingly, a further link between GSTs and oxidative-stress tolerance has been established by the 

finding that when expressed in yeast, a tau GST from tomato can suppress apoptosis induced by the 

Bax protein (Kampranis et al., 2000). Another catalytic role that does not involved GSH conjugation 

has been demonstrated for the Arabidopsis zeta GSTs which catalyse the GSH-dependent 

isomerisation of maleylacetoacetate to fumarylacetoacteate, the second to last step in tyrosine 

catabolism (Dixon et al., 2000). GSTs may also function in stress tolerance through a role in cell 

signaling. Induction of genes encoding enzymes of flavonoid biosynthesis in parsley by ultraviolet 

light requires GSH and the expression of a specific tau GST (Loyall et al., 2000). Biochemical and 

immunological investigations point to a largely cytosolic localisation for soluble GSTs in plants 

(Edwards et al., 2000). Genomic analysis of the Arabidopsis GSTs reveals that only one phi GST 

(GSTF8) appears to contain a clear putative plastid targeting sequence. However, experimental data 

confirming this prediction is missing.  

 

GSTF8 (previously GST6, At2g47730) was first identified as a 215 amino acid protein (Chen et al., 

1996). Further studies showed that a 48 aa putative signal peptide was missing and that the protein 

was indeed 263 aa long (Wagner et al., 2002). GSTF8 expression is under tissue specific control and 

is induced by treatments with auxin, salicylic acid, ethylene, methyl-jasmonate, pathogens and H2O2 

(Chen et al., 1996; Chen and Singh, 1999; Wagner et al., 2002; Glombitza et al., 2004). The GSTF8 

promoter contains a stress induced 20 bp ocs element (Chen et al., 1996; Chen and Singh, 1999). The 

induction of GSTF8 expression by SA and H2O2 may suggest a role for GSTF8 in protection against 

oxidative stress and possibly in plant-pathogen interactions. Substrate specificity profiling showed 

that GSTF8 has a strong GSH-peroxidase activity and only poor GSH transferase activity (Wagner et 

al., 2002). 
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In this study a fusion protein between the signal peptide of GSTF8 and GFP was used to demonstrate 

that GSTF8 is targeted to the chloroplast. The expression of this gene is induced by oxidative stress 

and the encoded protein has GSH-peroxidase activity. We therefore hypothesized that GSTF8 

functions in the detoxification of products generated during oxidative stress in the chloroplast. 

Because GSTF8 was the only GST present in the chloroplast, it appeared to be a promising candidate 

for functional analysis without running into the problems of redundancy that hinders functional 

analysis of the large GST family. To this end transgenic Arabidopsis overexpressing GSTF8 and a T-

DNA insertion knock out mutant in GSTF8 were isolated and tested for phenotypic changes in 

response to oxidative stress.  

 

 

 

68



Materials and Methods.
 
Plant and bacterial growth condition 

 

Arabidopsis thaliana accession Columbia (Col-0) plants were grown in commercial potting soil under 

a 16h light cycle (18°C night and 22°C day temperature) and 60-70% relative humidity. 

Pseudomonas syringae pv tomato DC3000 was grown in Luria Broth at 28°C with 25 μg/ml 

rifampicin. For bacterial infection half the surface of leaves was syringe-infiltrated with at a titre of 7 

x 105 colony forming units per ml in water.  

 

Transformation vectors and transgenic lines 

 

The DNA sequence encoding the first 59 amino acids corresponding to the putative 48 aa signal 

peptide and the beginning of the predicted mature GSTF8 was amplified by PCR using the following 

primers containing an additional 5’-NcoI site: F-GSTF8S, 5’- gaaccatgggagcaattcaagctcg-3’ and R-

GSTF8S, 5’-gatccatggtgggaactccgtgaacc-3’. The resulting PCR product was cloned into pGEM®-T 

Easy (Promega, Madison, USA). The construct was sequenced for verification. The signal sequence 

was then excised as a NcoI fragment and inserted in the NcoI site of pMON30060 (Pang et al., 1996). 

The cassette including signal peptide and GFP was amplified by PCR using Expand High Fidelity 

PCR system (Roche, Basel, Switzerland) with primers containing the recombination sites attB1/B2 of 

the Gateway cloning system ( Invitrogen, Carlsbad, USA) F-sGFP-attB1, 5’-

ggggacaagtttgtacaaaaaagcaggctttccatgggagcaattcaagctcg-3’ and R-sGFP-attB2, 5’-

ggggaccactttgtacaagaaagctgggttcagatcttcacttgtagagttcat-3’. The purified PCR product was cloned by 

recombination into the binary vector pBENDER (http://www.mpiz-koeln.mpg.de/~weisshaa/BW-

research/Vectors.html) between the CaM35S promoter and the Nos terminator (35S::signalGSTF8-

GFP::nosT). For over-expression, the GSTF8 cDNA (AF288176) was amplified by PCR using 

Expand High Fidelity PCR system (Roche, Basel, Switzerland) with primers containing the 

recombination sites attB1/B2 of the Gateway cloning system (Invitrogen, Carlsbad, USA): F-GSTF8-

OE-attB1, 5’-ggggacaagtttgtacaaaaaagcaggctttatgggagcaattcaagctcg-3’ and R-GSTF8-OE-attB2, 5’-

ggggaccactttgtacaagaaagctgggtgtcactactgcttctggaggtc-3’. The purified PCR product was cloned by 

recombination in the binary vector pBENDER creating a 35S::GSTF8::nosT cassette. PCR was 

performed on a Biometra TRIO-Thermoblock™ thermocycler (Biolabo, Châtel-St-Denis, 

Switzerland) using following conditions: 94°C for 4 min followed by 32 cycles of 94°C for 15s, 55°C 

[60°C for attB site containing primers] for 30s and 72°C for 1 min. Binary vectors were 

electroporated into the Agrobacterium tumefaciens strain GM3101 (pMP90RK) (Koncz and Schell, 

1986). 

 

Transformation of Arabidopsis was performed by the vacuum infiltration method (Bechtold et al., 

1993). Transformants were selected on half strength Murashige and Skoog (MS) medium containing 

50 μg/ml kanamycin. For the localisation of GSTF8, kanamycin-resistant plants were transferred on 

soil and leaves were observed under the microscope after 3 weeks. For GSTF8 over expression, 

kanamycin-resistant plants were transferred to soil for further cultivation. Screening of seeds for 

kanamycin-resistant progeny was carried out in the same medium as above. A homozygous line was 

used for the phenotypic tests (line 5). 

 

A GSTF8 knock out mutant was identified in the SALK collection (SALK_039887) with the T-DNA 

inserted in the third exon. The seeds were obtained from the Arabidopsis Biological Resource Center 

(ABRC; www.arabidopsis.org/abrc/). T-DNA insertion location in GSTF8 was confirmed by PCR 
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according to the instructions of the SALK web site (http://signal.salk.edu/tdna_protocols.html) using 

gene specific primers for GSTF8 and a primer in the left border of the T-DNA. Homozygous GSTF8 

knock out plants were identified by PCR. 

 

Localisation of GFP expression 

 

For subcellular localisation, signalGSTF8-GFP transgenic plants were examined using a Leica DMR 

fluorescence microscope with following filter sets: 480/40nm illumination path, 527/30nm 

observation path for GFP fluorescence and 450-490nm illumination path, 515nm observation path for 

chloroplast autofluorescence and GFP fluorescence together. Pictures were acquired using a Zeiss 

Axiocam CCD camera and Axiovision 2.05 software. Confocal pictures were taken with a Leica 

DMR using Leica TCS 4D operating system with Scanware 5.0 software. 

 

Expression studies and phenotypic tests 

 

For expression studies three week old plants were sprayed with 5mM H2O2 or 100μM paraquat in 

water with 0.2% Tween 20. For high light stress plants were acclimated at 25°C and 1600 lux in a 

SANYO growth cabinet (SANYO Electrics, Gunma, Japan) and after 4 days the conditions were 

switched to 10°C and 12000 lux to induce photooxidative stress. Total RNA isolation and RNA blot 

analysis were done as described in (Zimmerli et al., 2000). A gene specific probe was used 211 

nucleotides containing 65 nuclotides of the end of the coding region and 146 nucleotides of the 3’-

untranslated region. This specific probe was used for the expression analysis of GSTF8 in order to 

avoid crosshybridation between GSTF8 and its closest homologues (Glombitza et al., 2004). For tests 

of phenotype, Arabidopsis seeds from Col-0, GSTF8 over expression (GSTF8-OE) and knock out 

lines (GSTF8-KO) were grown on half strength Murashige and Skoog (MS) solid medium for 8 days 

and then transferred to liquid 0.5 MS medium containing the different chemicals to be tested. 

Hydrogen peroxide solution was obtained from a 30% stock solution (Sigma Chemicals, St Louis, 

USA) and paraquat was provided by Novartis (Basel, Switzerland). 

 

Sequence analysis 

 

In silico analysis were done using TargetP V1.0 (Emanuelsson et al., 2000) and PREDOTAR 

(www.inra.fr/predotar) for protein localisation and with Clustal_X (1.81) (Thompson et al., 1997) and 

Blockshade 3.21 for sequence alignment (www.molbiol.net). For sequence alignment the following 

genes were used GSTF2 (At4g02520), GSTF4 (At1g02950), GSTF5 (At1g02940) and GSTF8 

(At2g47730). 
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Results
 
Alignment of the 47 members of the GST gene family shows that 3 GSTs, the GSTF4, GSTF5 and 

GSTF8 contain extended N-terminal sequences possibly corresponding to signal peptides. Figure 1 

shows an alignment of these three GSTs together with GSTF2 as a representative of the cytosolic 

GSTs to indicate the position of the translational start site of most GSTs. In silico analysis of the 

putative signal sequences indicated that only GSTF8 contains a putative signal peptide for 

chloroplastic or mitochondrial localisation.  

 

 

 
GSTF2    1 ------------------------------------------------MAGIKVFGHPAS
GSTF4    1 --------------------------MDCLQMVFKLFPNWKREAEVKKLG-YKVHGDPFS
GSTF5    1 -------------MGINASHVPETCYHHCNQTFESSRQCFKWCQELARKDEYKIYGYPYS
GSTF8    1 MGAIQARLPLFLSPPSIKHHTFLHSSSSNSNFKIRSNKSSSSSSSSIIMASIKVHGVPMS

GSTF2   13 IATRRVLIALHEKNLDFELVHVELKDGEHKKEPFLSRNPFGQVPAFEDGDLKLFESRAIT
GSTF4   34 TNTRRVLAVLHEKRLSYEPITVKLQTGEHKTEPFLSLNPFGQVPVFEDGSVKLYESRAIT
GSTF5   48 TNTRRVLAVLHEKGLSYDPITVNLIAGDQKKPSFLAINPFGQVPVFLDGGLKLTESRAIS
GSTF8   61 TATMRVLATLYEKDLQFELIPVDMRAGAHKQEAHLALNPFGQIPALEDGDLTLFESRAIT

GSTF2   73 QYIAHRYENQGTNLLQTDSKNISQYAIMAIGMQVEDHQFDPVASKLAFEQIFKSIYGLTT
GSTF4   94 QYIAYVHSSRGTQLLN--LRSHETMATLTMWMEIEAHQFDPPASKLTWEQVIKPIYGLET
GSTF5  108 EYIATVHKSRGTQLLN--YKSYKTMGTQRMWMAIESFEFDPLTSTLTWEQSIKPMYGLKT
GSTF8  121 QYLAEEYSEKGEKLIS--QDCKKVKATTNVWLQVEGQQFDPNASKLAFERVFKGMFGMTT

GSTF2  133 DEAVVAEEEAKLAKVLDVYEARLKEFKYLAGETFTLTDLHHIPAIQYLLGTPTKKLFTER
GSTF4  152 DQTIVKENEAILEKVLNIYEKRLEESRFLACNSFTLVDLHHLPNIQYLLGTPTKKLFEKR
GSTF5  166 DYKVVNETEAKLEKVLDIYEERLKNSSFLASNSFTMADLYHLPNIQYLMDTHTKRMFVNR
GSTF8  179 DPAAVQELEGKLQKVLDVYEARLAKSEFLAGDSFTLADLHHLPAIHYLLGTDSKVLFDSR

GSTF2  193 PRVNEWVAEITKRPASEKVQ------------
GSTF4  212 SKVRKWVDEITSREAWKMACDQEKSWFNKPRN
GSTF5  226 PSVRRWVAEITARPAWKRACD-VKAWYHKKKN
GSTF8  239 PKVSEWIKKISARPAWAKVIDLQKQ-------

Figure 1. Alignment of GSTF2 (At4g02520), GSTF4 (At1g02950), GSTF5 (At1g02940) and GSTF8 (At2g47730). The
black arrow indicates the translational start of most GSTs. The sequences of GSTF4, GSTF5 and GSTF8 exhibit a 
longer N-terminal sequence. Alignment was done with ClustalX (Thompson et al., 1997) and Blockshade 3.21
programs (www.molbiol.net). Residues identical and conserved between sequences are marked with black and grey,
respectively.

 
To experimentally confirm the chloroplastic localisation of GSTF8, a fragment of 177bp 

corresponding to 59 N-terminal amino acids of the GSTF8 (At2g47730) was PCR amplified and used 

to produce a fusion protein construct with green fluorescence protein as visible marker (see Figure 2 

and Material and Methods). Arabidopsis Col-0 transformed with pBender-GSTF8-signal-GFP were 

selected on Kanamycin and observed after 3 weeks. Figure 3 shows confocal microscopy pictures of 

transgenic plants. Comparison of GFP fluorescence (Figure 3A) and chloroplast autofluorescence 

(Figure 3B) demonstrated that GFP fluorescence is restricted to the chloroplasts.  
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A

 
 
Figure 2. Map of transformation constructs (A) and T-DNA insertion in the GSTF8 KO line (B). pBENDER-GSTF8-
signal-GFP shows the signal-GSTF8::GFP fusion protein construct used for the localisation of GSTF8. pBENDER-
GSTF8-OE shows the construct used for over-expressing GSTF8 gene in Arabidopsis Col-0. GSTF8 T-DNA KO 
shows the approximate localisation of the T-DNA insertion in exon 3 of the GSTF8 gene in SALK_039887 line. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Subcellular localisation of GSTF8. A) GFP fluorescence in leaves of Arabidopsis expressing the fusion
protein signalGSTF8::GFP and B) the corresponding autofluorescence of the chloroplasts. Pictures were taken with a
Leica DMR confocal microscope using a Leica TCS 4D operating system and Scanware 5.0 software.
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Figure 4A shows that the expression of GSTF8 was up regulated after treatment with 5mM H2O2 and 

100μM paraquat, a herbicide interfering with photosystem I (Ye and Gressel, 2000). Hydrogen 

peroxide induced a transient increase of GSTF8 already 2 hours after treatment. After treatment with 

paraquat the expression of GSTF8 increased after 2 hours and was sustained over a longer period. 

These results confirm that GSTF8 is up regulated under conditions of oxidative stress. However, 

GSTF8 was not upregulated after high light treatment that is predicted to cause photooxidative stress 

in the chloroplast. 
 

Figure 4B shows a RNA blot of GSTF8 expression in transgenic lines. Over-expressing GSTF8-OE 

plants showed diverse patterns. Some lines (lines 4, 5 and 7) show very strong expression and other 

only weak expression (lines 1, 2, 3 and 6). Lines such as line number 1 showing weaker expression 

than the control are indications for silencing of GSTF8 expression. For further studies we have used 

the homozygous line 5 which shows strong expression. For knock-out plants homozygous lines were 

isolated by PCR according to the instruction given on the SALK site 

(http://signal.salk.edu/tdna_protocols.html). All homozygous GSTF8-KO plants displayed in Figure 

4B (lines 8, 9 and 10) show no expression of GSTF8 24 hours after infection with Pseudomonas
syringae. Inoculation with P. syringae was previousely shown to induce a strong increase in GSTF8 

expression (Lieberherr et al., 2003; Glombitza et al., 2004). 

 

A 
Time course 

2h 4h 8h 

Ctrl 

H2O2

Paraquat 

High light 

B 

GSTF8-OE GSTF8-KO 

Ctrl 1 2 3 4 5 6 7 8 9 10

 
 
Figure 4. RNA blot analysis showing the expression of GSTF8 in stressed and in transgenic plants. A) Induction of 
GSTF8 after oxidative stress. Time course of expression of AtGSTF8 after treatment with 5mM H2O2, 100 µM 
paraquat and photooxidative stress (high light) by switching light from 1600 lux 25°C to 12000 lux 10°C. B) Expression
of GSTF8 in overexpressing and T-DNA  knock out lines (GSTF8-KO, SALK_039887). Ctrl shows the level of
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expression of Col-0 wild type plants. A gene specific probe was used in order to distinguish between GSTF8
expression and its closest homologues (Glombitza et al., 2004). 
 
Compared to wild type Col-0 GSTF8-OE and GSTF8-KO plants grown in normal condition 

displayed no visible phenotype neither in growth, flowering time and root length. Considering that 

GSTF8 is the only chloroplastic GST with GSH-transferase activity in Arabidopsis, that its 

expression is upregulated after oxidative stress and that it has a GSH-peroxidase activity, we 

hypothesized that GSTF8 could play a role in the detoxification of reactive oxygen species produced 

in the chloroplast. To test this hypothesis phenotype tests were carried out by inducing oxidative 

stress using hydrogen peroxide and paraquat. Figure 5 shows 8 day old wild type, GSTF8-OE (line 5) 

and GSTF8-KO (line 8) plants treated with different concentration of hydrogen peroxide or paraquat. 

Hydrogen peroxide at a concentration of 4 mM induced the necrosis of cotyledons and leaves. 

Paraquat at 50μM induced wilting of the leaves and small necrosis. No differences could be seen 

between the wild type and the two transgenic lines.  
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Discussion
 
Aerobic organisms and particularly plants have to deal with the production of reactive oxygen species 

not only in stress conditions but also under normal growth. Free radicals are natural by-products of 

biological redox reactions particularly in mitochondria and chloroplasts. Plants have evolved different 

mechanisms to neutralise free radicals before they can damage lipids, proteins or nucleic acids. To 

achieve this goal they use different antioxidant molecules such as ascorbate, glutathione (GSH), �-

tocopherol, carotenoids, polyamines and flavonoids (Foyer et al., 1994; Noctor and Foyer, 1998; Ye 

and Gressel, 2000). They also use different enzymatic systems to scavenge directly free radials or to 

recycle antioxidant molecules. Ascorbate peroxidase detoxifies mainly hydrogen peroxides. 

Superoxide dismutase catalyses the transformation of O2
- to H2O2. Glutathione reductase reduces 

oxidised glutathione to GSH and glutathione peroxidase detoxifies organic peroxides like lipid 

peroxides (Eshdat et al., 1997). Regeneration of oxidised ascorbate can be achieved by 

dehydroascorbat reductase, monodehydroascorbate reductase and ferredoxin. All these antioxidant 

molecules and enzymes are present in chloroplasts of higher plants 

 

GSTF8 was first isolated as a 215 aa long protein that starts at Met49 (Chen et al., 1996). But a longer 

cDNA (AF288176, (Wagner et al., 2002) suggested a 48 aa longer N-terminal sequence resulting in a 

263 aa protein. This N-terminal extension was predicted to be a putative signal peptide targeting the 

protein to the chloroplast. We demonstrated with the GSTF8 signal peptide fused to GFP that this 

signal peptide is indeed a chloroplast targeting sequence.  

 

The strong up regulation of GSTF8 two hours after treatment with H2O2 is consistent with previous 

results (Chen et al., 1996; Chen and Singh, 1999; Desikan et al., 2001; Wagner et al., 2002). In 

contrast to previous study in our work the expression of GSTF8 was monitored using a gene specific 

probe. Paraquat treatment induces oxidative stress by interacting with photosystem I leading to the 

formation of reactive oxygen species. These ROS induced the increase of the expression of GSTF8 

already after 2 hours and the expression increased further up to 8 hours post treatment. GSTF8 was 

shown to be induced by other stresses like SA, auxin, ethylene, MeJA, and pathogens (Chen et al., 

1996; Wagner et al., 2002). In our study treatment with high light did not induce the expression of 

GSTF8. (Rossel et al., 2002)Rossel et al. (2002) reported the induction of the expression of GSTF8 

already 10 minutes after high light treatment. They observed the highest expression one hour after 

treatment and two hours after treatment the expression decreased to a low level comparable to the 

level observed in our study.  

 

Substrate specificity profiling had shown that GSTF8 has a GSH-peroxidase activity and only limited 

glutathione S-transferase activity (Wagner et al., 2002). Taken together literature data and our results 

showed that GSTF8 is the only GST present in the chloroplast, that it possesses a strong GSH-

peroxidase activity and that it is up regulated by oxidative stresses including pathogen attack. Our 

hypothesis was that GSTF8 plays a role in the chloroplast by detoxifying reactive oxygen species 

mainly lipid peroxide by its GSH-peroxidase activity. 

 

However, GSTF8 knock out and GSTF8 over expressing plants showed no phenotype under normal 

growth condition. When stressed either with hydrogen peroxide or paraquat no phenotypic difference 

could be observed. The GST family is a large gene family that contains 47 members and one 

explanation could be a redundant function for some othe GST. Another member could take over the 

function of GSTF8, but to do so this GST has to be present in the chloroplast. We can exclude the 

best candidate GSTF5 (At1g02940) as it is not expressed in leaf tissue, roots, stem, inflorescence and 
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silique.(Glombitza et al., 2004). Its expression was not detected under various stresses like herbicides, 

plant hormones, pathogen attack, UV-B. Furthermore no cDNA was cloned to date and no EST was 

isolated. All these data suggest that GSTF5 is not expressed. Moreover GSTF5 possesses no clear 

predicted chloroplast targeting signal peptide. In conclusion it is highly unlikely that another GST 

may replace GSTF8 in the chloroplast. However, some GST-like proteins, two DHARs and one 

GSTL, possess a chloroplast targeting peptide and their putative role as antioxidant enzymes was 

described (Dixon et al., 2002). And furthermore, Milla et al. (2003) described a chloroplastic GSH-

peroxidase present in the chloroplast (GPX1, At2g25080). In addition, all the other antioxidant 

mechanisms present in the chloroplasts of higher plants described previously could make the 

antioxidative role of GSTF8. As an alternative GSTF8 could play another role not linked to protection 

against oxidative stress.  

 

In conclusion we demonstrated that GSTF8 is localized in the chloroplast. GSTF8 expression is 

upregulated by oxidative stress like treatment with hydrogen peroxide and the herbicide paraquat. 

GSTF8-OE and GSTF8-KO transgenic plants showed no phenotypic differences to wild type neither 

under normal growth conditions nor under conditions of oxidative stress. This indicates that GSTF8 is 

either not involved in protection from oxidative stress in chloroplasts or, alternatively, that in addition 

to GSTF8 other mechanisms contribute to this protection. The presence of various other mechanisms 

of detoxification of reactive oxygen species in the chloroplast can explain the absence of visible 

phenotype. 
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Chapter 5 

 

Concluding remarks 
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Concluding remarks
 

In the first part we have investigated the role of sulfur nutrition for plants in relation to disease 

resistance. Sulfur-deficiency of oilseed rape had a dramatic effect on plant resistance against 

various pathogens such as the specific Brassica pathogen Leptosphaeria maculans, a generalist 

pathogen like Botrytis cinerea and the oomycete Phytophthora brassicae infecting a wide range 

of Brassicas. This was confirming observations from the field that suggested at a link between 

sulfur supply and plant disease resistance. We have to keep in mind that sulfur is also very 

important for the quality of crop production (Haneklaus et al., 1995; Schnug, 1996). This leads to 

the conclusion that sulfur is a very important component of the plant nutrition and that we have to 

pay more attention to its sufficient supply in crop production by early detection of putative 

deficient soil and by adding fertilizer containing sulfur. The enhanced susceptibility of S-

deficient oilseed rape was linked to the loss of antifungal potential. The loss of antifungal 

potential correlated with a dramatic reduction in the glucosinolate content. Glucosinolate 

degradation products were shown to have antifungal activity (Osbourn, 1996). However all the 

isothiocyanate and degradation products of sinigrin tested in our study did not exhibit antifungal 

activity. To fulfil the study it could be very interesting to test the degradation products of all the 

glucosinolates present in oilseed rape leaves to find out if one or more glucosinolates are indeed 

responsible for the antifungal activity. An other interesting approach could be to fractionate plant 

extracts and in order to purify the compound(s) responsible for the antifungal activity. 

 

In the second part, the analysis of the transcriptome of four gene families of secondary 

metabolism under various stress conditions showed that the genes were differently regulated. The 

majority of the genes were neither strongly expressed nor strongly regulated. The differentiating 

expression patterns provided a wide set of information regarding the individual genes and argued 

against widely redundant functions among these quite large gene families. In conclusion the 

MetArray constitutes a powerful tool to study the specific expression of particular members of 

large gene families. However, an improvement of the technique could be to spot the gene specific 

probes on glass slides in order to avoid problems of unequal cDNA spotting and radiolabelling 

differences.  

 

In the third part, we could demonstrate that GSTF8 is the only GST localised in the chloroplast 

and that it expression is regulated by oxidative stress. However our hypothesis that it could play a 

role in defense against oxidative stress in chloroplasts turned out to be difficult to verify. Further 

interesting work would be to analyse if in GSTF8-KO and GSTF8-OE the expression levels of 

other enzymes involved in reactive oxygen species detoxification are modified in comparison to 

wild type. If this is the case this would be an indirect hint of a antioxidant role of GSTF8 in the 

chloroplast. 
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