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Abstract

Background: In order to measure the proficiency of person populations in various
domains, large-scale assessments often use marginal maximum likelihood IRT models
where person proficiency is modelled as a random variable. Thus, the model does not
provide proficiency estimates for any single person. A popular approach to derive these
proficiency estimates is the multiple imputation of plausible values (PV) to enable
subsequent analyses on complete data sets. The main drawback is that all variables that
are to be analyzed later have to be included in the imputation model to allow the
distribution of plausible values to be conditional on these variables. These background
variables (e.g., sex, age) have to be fully observed which is highly unlikely in practice. In
several current large-scale assessment programs missing observations on background
variables are dummy coded, and subsequently, dummy codes are used additionally in
the PV imputation model. However, this approach is only appropriate for small
proportions of missing data. Otherwise the resulting population scores may be biased.

Methods: Alternatively, single imputation or multiple imputation methods can be used
to account for missing values on background variables. With both imputation methods,
the result is a two-step procedure in which the PV imputation is nested within the
background variable imputation. In the single+multiple-imputation (SMI), each missing
value on background variables is replaced by one value. In the multiple+multiple-
imputation (MMI), each missing value is replaced by a set of imputed values. MMI is
expected to outperform SMI as SMI ignores the uncertainty due to missing values in
the background data.

Results: In a simulation study, both methods yielded unbiased population estimates
under most conditions. Still, the recovery proportion was slightly higher for the MMI
method.

Conclusions: The advantages of the MMI method are apparent for fairly high
proportions of missing values in combination with fairly high dependency between the
latent trait and the probability of missing data on background variables.

Keywords: Large-scale assessment; Missing data; Imputation; Simulation; Item response
theory
Background
Several large-scale assessment programs such as the National Assessment of Educa-

tional Progress (NAEP), the Trends in International Mathematics and Science Study

(TIMSS), and the Programme for International Student Assessment (PISA) employ

item response theory (IRT) methods to measure the achievement of populations of ex-

aminees in various domains, for example, reading and science, for the purpose of
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system monitoring. The central interest is not to obtain individual proficiency scores

but to obtain population and subpopulation estimates of person proficiency, denoted

by θ. In addition to the item responses, the estimation process includes background in-

formation for each person (often collected via questionnaires) comprising a multitude

of variables, such as demographic, social, or motivational variables. Because these vari-

ables may be associated with θ, they are of particular importance in the estimation of

subpopulation differences. Large-scale assessment programs are often confronted with

the problem of missing values in item responses or in background data. Planned miss-

ing data in the item responses are a direct consequence of multiple matrix sampling de-

signs (Frey et al. 2009; Gonzalez & Rutkowski 2010). Methods of item and person

parameter estimation which incorporate missing data in the item responses have long

been developed and have been proved to be suitable (Lord 1974, 1983; Mislevy et al.

1992). By contrast, a considerable amount of missing data in background variables may

lead to biased estimates of population parameters (Rutkowski 2011). Therefore, the

present article examines the problem of missing data in background information when

population estimates are of interest. We compared two methods that are based on im-

putation methods with regard to the bias and root mean square error (RMSE) of popu-

lation parameters. The results support the implementation of multiple imputation

methods in the treatment of missing data in background information.

Item and person parameter estimation

In large-scale assessments, the estimation of item and person parameters commonly uses

the marginal maximum likelihood (MML) method (Embretson & Reise 2000; Tuerlinckx

et al. 2004; Wilson & De Boeck 2004). Conceptually, the estimation process is composed

of two parts: the item response model, which results from an analysis of the response pat-

terns, and the population model, which results from incorporating background informa-

tion (Adams & Wu 2007). von Davier et al. (2009) refer to these two parts as the

likelihood function and the prior distribution function. A model that comprises both parts

is called a conditioning model or combined model (Adams & Wu 2007).

In the item response model, the categorical response patterns to a set of test items

are modeled as the dependent variable in a logistic regression with item difficulties

and person proficiencies as independent variables. Adams and Wu (2007) and Adams

et al. (1997) described the model in its generalized form. For the purpose of illustra-

tion, we will use the special case of a unidimensional model with dichotomous items

(Rasch model):

logit P Xni ¼ 1ð Þð Þ ¼ θn−bi; ð1Þ

where Xni represents the observed response of a person n for an item i, θn represents

the proficiency score of person n, and bi represents the difficulty of item i. The defin-

ition of the model in the MML formulation needs to specify a density for the latent

variable θ (Adams & Wu 2007). The default assumption is that persons are sampled

from a normal population with mean μ and variance σ2. Therefore, θ is a random effect,

and the population model is: θn = μ + En, with En ~N(0,σ2). If we assume that θ depends
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on background variables, the population model may be augmented to a regression

model with several predictors (Adams & Wu 2007):

θn ¼ Ynβþ En ð2Þ

where Yn is a vector of u fixed and known values for a set of u variables related to each
person, and β is the corresponding vector of regression coefficients to be estimated. En
is assumed to be independently and identically normally distributed with mean zero

and variance σ2; that is, En ~N(0,σ2). The population model now incorporates fixed and

random effects and provides a priori information about the expected person distribu-

tion given all available background information (von Davier et al. 2009).

The conditioning model is the item response model multiplied by the population

model (Adams & Wu 2007; Embretson & Reise 2000). Hence, the conditioning model

captures information from the test items (expressed in the item response model) and

background information (expressed in the population model). Hence, it offers the

opportunity to specify a population distribution of persons consisting of several sub-

populations. This is especially important if the population distribution is conditional

on several demographic variables rather than being a simple (unconditional) normal

distribution.

Types of missing data and their effects on the estimation process

In large-scale assessments, three types of missing data can be distinguished. The first

one is rather fundamental: IRT models are usually intended to measure proficiencies of

persons. As each person’s individual proficiency θn is considered to be a latent con-

struct, θ is an inherently unobserved (i.e., missing) variable. Missing data in the indi-

vidual response pattern (the 0/1 answers of persons to test items) constitute the

second type, and missing data in background information constitute the third type of

missing data.

First type of missing data: inherently missing θ

The inherently missing person parameter θn is not a problem in MML estimation. The

MML formulation of the Rasch model may be described as a random person–fixed

item model (De Boeck 2008) and does not parametrize individual θn parameters. How-

ever, a common practice in most large-scale assessment programs is to provide

individual θn values for subsequent analyses (e.g., ordinary least squares regression,

contingency table analyses). θn estimates therefore have to be generated in an

additional step, using the parameters of the fitted model. The most suitable method to

generate θn estimates is plausible value imputation (Mislevy et al. 1992; von Davier

et al. 2009; Wu 2005). This method is based on multiple imputation (Rubin 1987): The

conditioning model defines how the observed item responses are related to θ, and the

plausible-values approach provides a model-based imputation of missing θn values.

Mislevy et al. (1992) pointed out that plausible values provide synthetic data produced

by the model. Analyzing plausible values with standard techniques yields the same re-

sults as if we actually observed true person proficiencies (Rubin 1987). This does not

necessarily hold for other estimates of individual θn values, for example Weighted

Maximum Likelihood Estimates (WLEs; Warm 1989) or the expected a posteriori dis-

tribution (EAP; Bock & Aitkin 1981). Moreover, the multiple imputation of plausible
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values allows investigators to adequately quantify the uncertainty in the parameter

estimation of subsequent analyses.

The imputation of plausible values can be conditioned on background information by

including some demographic variables when specifying the population model. Similar

to the recommendations made for multiple imputation (Rubin 1987), it is crucial to

include all variables that may be used in subsequent analyses in order to ensure

unbiased estimation of their effects on achievement (Mislevy et al. 1992; von Davier

et al. 2009).
Second type of missing data: missing data in the item responses

The second (and also the third) type of missing data concerns missing values in data

that are expected to be observed. However, the second type of missing data likewise is

not a problem for parameter estimation, if some conditions are met. Missing data in

the item responses are a direct consequence of multiple matrix sampling designs (Frey

et al., 2009; Gonzalez & Rutkowski 2010). As large samples of items are used to com-

prehensively cover the test constructs, only a subset of items is presented to each per-

son to keep the individual workload within acceptable boundaries. Such missing

responses which result from giving samples of items to samples of persons are often

called missing by design (Enders 2010). If the test booklets are randomly distributed to

the persons, these data are assumed to be missing completely at random (MCAR).

MCAR means that missing values on a variable neither depend on values of other vari-

ables in the model nor on values of the variable itself (Graham 2009; Rubin 1987). By

contrast, responses that a person has chosen to omit are often treated as incorrect re-

sponses. See Lord (1974, 1983) and Ludlow and O’leary (1999) for a discussion of this

procedure.
Third type of missing data: missing data in background information

The third type of missing data—which is the focus of the present article—concerns

missing values on background variables which are inherently due neither to the latent

variable modeling of θ nor to the test design. In the population model (Equation 2), it

is assumed that background variables are measured without error because Yn is a vector

of fixed and known values (Adams & Wu 2007). In principle, the same problem applies

when missing values occur in ordinary least squares regression models (e.g., Little

1992): The corresponding procedures require that all variables be fully observed.

What might be the consequences of missing values in background data? In theory,

two possible effects would be conceivable: First, the parameter estimates in Equation 2

might be biased which may, in turn, result in biased estimates of subpopulation differ-

ences. Thus, the effect of missing data on the population model is comparable to the

effect of missing data on ordinary least-squares regression models. Second, the uncer-

tainty of the corresponding mean estimates might not be adequately represented which

may result in biased standard errors of the subpopulation mean estimates. The extent

to which these biases occur is presumably influenced by the overall proportion of miss-

ing values and by whether the probability of missing values depends on further vari-

ables, even on θ itself. The model used to estimate θ would have to take these potential

dependencies into account.
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Approaches to dealing with missing data in background information

Dummy coding

In several current large-scale assessment programs (Allen et al. 2001; Foy et al. 2008;

OECD 2009) missing observations were dummy coded and the dummy variables were

subsequently used in the population model. However, Schafer and Graham (2002)

pointed out that this method merely redefines the parameters as the population model

now contains two effects for a variable X in the population model: one effect for the re-

spondents and another effect for the nonrespondents. Moreover, this approach does

not take a possible missing at random (MAR) mechanism into account. MAR means

that missing values on a certain variable may depend on values of other variables in

the model but not on values of the variable itself. Allison (2002) demonstrated that

even in the case of MCAR, dummy-variable adjustment may lead to biased estimates

in ordinary least squares regression when the proportion of missing data is substantial

(i.e., 50%).

Rutkowski (2011) carried out a simulation study to explore the impact of missing

values on background variables on proficiency estimates when missing values on back-

ground variables were dummy coded, focusing on the estimation of differences in

group means. Under an MAR condition with a maximum of 20% of missing values, the

differences in group means were estimated without bias. However, both group means

were biased in the same direction. Rutkowski termed this a tandem shift. Although this

tandem shift preserved subgroup differences, it may lead to erroneous conclusions if

the results are to be expressed on a predefined scale, for example, to estimate trend

effects between different cohorts (Mazzeo & Von Davier 2008). Rutkowski (2011)

pointed out that the estimation of subgroup differences can be problematic if the pro-

portions of missing values on the background variables differ between groups. In sum-

mary, dummy coding may be appropriate if it is combined with assessment strategies

that minimize the proportion of missing values in background information. If this is

not the case, defining dummy codes for missing observations may be questionable from

a theoretical point of view (Schafer & Graham 2002) and may also lead to biased mean

estimates (Rutkowski, 2011). Hence, alternative procedures have to be applied.

Single + Multiple Imputation (SMI)

Instead of using dummy codes, missing values on background data may be imputed

prior to estimating the parameters of the conditioning model (OECD 2006; Weirich

et al. 2012. In order to impute the missing data, we have to construct an imputation

model which includes all variables that may be related to the occurence of missing data

under an MAR assumption. Thus, the population model used to generate the plausible

values includes imputed data on the background variables.

The SMI procedure contains a sequence of four steps. The first step is the specifica-

tion of the item response model (often referred to as calibration). As the aim is to esti-

mate the item parameters only, a simple MML population model without background

information can be chosen as θn = μ + En, with En ~N(0,σ2). The mean of the popula-

tion distribution is often defined to be zero, i.e., μ = 0. Hence, to calibrate items, miss-

ing values in background variables can be ignored.

The second step is the single imputation of missing values in background variables

which requires an imputation model. If we assume that missing values might depend
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on θ, we should include θ into the imputation model. However, individual θn values are

estimated in a later step, therefore we have to use a proxy for θ, for example, the per-

centage of correct responses or point estimates (e.g., MLEs or WLEs) for each person

from the item response model. In this study, we will use the latter one.

The third step is the estimation of the conditioning model’s parameters. We jointly

use the item responses and the (imputed) background information for estimation. In

contrast to the item response model, θn = Ynβ + En. Yn does not contain any missing

values because all missing values were imputed in the third step. All background vari-

ables are treated as if they were fully observed. A common practice is to consider the

item parameters obtained in the first step as the true item parameters (von Davier

et al. 2007).

The fourth and last step is the imputation of plausible values. The imputation model

for this step is the conditioning model. Hence, the process of handling different sources

of missing data comprises two imputation procedures: a single imputation of back-

ground variables and a multiple imputation of latent person estimates (θn). To avoid

confusion between both, we henceforth refer to the first one (step 2) as the imputation

model and to the second one (step 4) as the conditioning model. Both imputation steps

are not independent because the imputed data from step 2 are used in step 4.

The SMI procedure should help to minimize bias in the population model when

missing values on background variables depend on θ. However, there is an uncertainty

in the prediction of θ in the population model due to missing values on background in-

formation. The SMI procedure may not adequately represent this uncertainty because

the population model treats observed and imputed values in the same way. For ex-

ample, consider two groups with different proportions of missing values on background

variables: The uncertainty in the group mean estimates should differ between the

groups because we have more observed data in one group than in the other. However,

this is not represented in the model if only a single imputation method is used for both

groups. Although a bias in estimated group mean differences is unlikely, if the imput-

ation model adequately captures the mechanism behind the missing data, the corre-

sponding standard errors of the mean estimates may be underestimated (White et al.

2010), in particular if the rates of missing data in background variables are high.
Multiple + Multiple Imputation (MMI)

Nested imputation (Rubin 2003) or two-stage multiple imputation (Harel 2007; Harel

& Schafer 2003; Reiter & Drechsler 2007; Reiter & Raghunathan 2007) explicitly man-

ages two multiple imputation procedures in a dependent structure. The basic principle

is described by Rubin (2003):

A few imputations of the first part are created (say M), and then for each of these,

several imputations of the second part are created (say N). The standard combining

rules for multiple imputation (the repeated imputation rules) have to be modified

because the imputations within a nest are correlated, since they share a common set

of imputed values for the first set of missing values. (p. 6)

The nested imputation also allows for different missing value mechanisms, for

example, MCAR and MAR (Harel & Schafer 2003). In the context of large-scale
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assessments, this may be of particular interest as we may assume different mechanisms

in order to account for missing values on θ and missing values on background vari-

ables. Furthermore, MMI is preferable to SMI because MMI captures both sources of

uncertainty: the uncertainty due to missing values on the background variables and the

uncertainty due to the inherently missing θ values.

To implement this method in a large-scale assessment context, we would have to ex-

tend the SMI procedure described in the previous section. In the second step, we now

create more than one imputation of the background data (which would result in, say,

M = 5 data sets). Step 3 therefore has to be repeated M times, once for each of the M

imputed data sets. In step 4, we would draw N plausible values from each of the M fit-

ted conditioning models, which will result in M ×N plausible values overall. We would

then apply the modified combining rules by Rubin (2003) to pool statistics based on

these plausible values. A more detailed illustration of how the following combining

rules are applied to the sets of plausible values is provided in Additional file 1.

Let Q be the quantity of interest (i.e., our set of plausible values). Q̂ m;nð Þ is the mean

estimate of the nth plausible value in the mth nest. The overall average Q�, then, is:

Q� ¼ 1
MN

XM
m¼1

XN
n¼1

Q̂ m;nð Þ: ð3Þ

Q�m is a vector of M mean estimates across the N plausible values in each nest
Q�m ¼ 1
N

XN
n¼1

Q̂ m;nð Þ; ð4Þ

and �U is the overall average of the associated variance estimates,

�U ¼ 1
MN

XM
m¼1

XN
n¼1

U m;nð Þ: ð5Þ

Let MS(b) be the between-nest mean square,
MS bð Þ ¼ N
M−1

XM
m¼1

�Qm−�Qð Þ2; ð6Þ

and let MS(ω) be the within-nest mean square,

MS ωð Þ ¼ 1
M N−1ð Þ

XM
m¼1

XN
n¼1

Q� m;nð Þ−Q�m

� �2
: ð7Þ

The quantity
T ¼ �U þ 1
N

1þ 1
M

� �
MS bð Þ þ 1−

1
N

� �
MS ωð Þ ð8Þ

estimates the total variance of Q−Q�ð Þ . Estimation of the significance levels of Q are
based on a Student-t reference distribution, T−0:5 Q−Q�ð Þetv . The degrees of freedom, v,

follow from
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v−1 ¼ N−1 1þM−1
� �

MS bð Þ

T

 !2
1

M−1
þ 1−N−1

� �
MS ωð Þ

T

 !2
1

M N−1ð Þ : ð9Þ

This procedure is computationally more extensive than the commonly applied
dummy coding procedure and, to our knowledge, has not been used in any large-scale

assessment program yet. However, from a theoretical point of view, MMI strategies

seem especially appropriate as they explicitly account for several types of missing data

in a dependent structure, which is common in large-scale assessments. The present art-

icle therefore assesses whether using MMI leads to more precise estimates of the un-

certainty of person parameters than SMI when the proportion of missing values on

background variables is substantial. This question is of particular interest if it seems

plausible that missing background data are MAR instead of MCAR. The study only in-

vestigates the third type of missing data and assumes that missing values in the item re-

sponses are MCAR (as a consequence of multiple matrix sampling) and missing values

on background variables are MAR. Specifically, our study addressed the following re-

search questions:

1. Does either SMI or MMI of missing values on background variables lead to

unbiased estimates of subpopulation proficiency means, the mean subpopulation

proficiency difference, and regression coefficients of proficiency on background

variables?

2. Does either SMI or MMI of missing values on background variables lead to

unbiased estimates of standard errors of subpopulation proficiency means, the mean

subpopulation proficiency difference, and regression coefficients?

We expected that both methods would lead to unbiased mean estimates and regres-

sion coefficients. Moreover, the MMI method was expected to capture the uncertainty

more adequately and was expected to result in slightly higher standard errors and

slightly larger confidence intervals for parameters.

Method
We conducted a simulation study to compare the SMI and the MMI methods when

missing proportions on background variables were substantial. Missing values on back-

ground variables were assumed to be dependent on θ (i.e., an MAR condition was as-

sumed for the simulation).

Simulation design

In order to establish realistic conditions for the simulation study, we used item parame-

ters from reading comprehension tasks from the German National Assessment Study

2011 in elementary schools (LV 2011) (Stanat et al. 2012), a nationally representative

German large-scale assessment study. As is common in large-scale studies, the LV 2011

used a balanced multiple matrix sampling design to compile the test booklets. For the

present study, 80 dichotomous reading items were grouped into nine disjoint blocks.

Each block contained 6 – 16 items (9 items on average). 20 booklets with one or two

blocks in each booklet were used in a rotated booklet design to mimic a balanced
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incomplete block design (see e.g., Frey et al. 2009; Gonzalez & Rutkowski 2010). The

booklet design is displayed in Table 1. The original item difficulties from the LV 2011

were used to simulate the item responses. The item difficulties ranged from −2.995 to

2.689, which corresponds to a probability for a correct response ranging from 92.9 per-

cent to 9.1 percent. Item responses of N = 2,000 persons were simulated resulting in

400 valid responses per item.

Two uncorrelated background variables were used in the simulation. The first one,

X1, was uniformly distributed with two levels 0 and 1 (i.e., a grouping variable splitting

the population into two subpopulations). The second one, X2, was normally distributed.

The true person proficiency distribution was simulated to depend on both background

variables. The population model (see Equation 2) was

θn ¼ β�1X1 þ β�2X2 þ En; ð10Þ

with En N 0; σ2
� �

and σ2 ¼ 1:44. Equation 10 is used to both generate and analyze the
e θ θ

data. In order to differentiate between the parameters of these models, we use asterisks

for the parameters β�1 and β�2 of the simulation model to indicate that these are true pa-

rameters. In contrast, the parameters of the population model used to analyze the data

are denoted β1 and β2. For β
�
1 and β�2, a combination of values of 0.1 and 0.4 were used,

which resulted in 2 × 2 = 4 conditions for the population model. The coefficients were

chosen to mimic conditions which can be expected in real large-scale assessments. In
Table 1 Rotated block design to form test booklets

Booklet Block position 1 Block position 2

1 TL 02

2 TL 03 TL 04

3 TL 01 TL 07

4 TL 05

5 TL 04 TL 01

6 TL 06 TL 05

7 TL 09 TL 01

8 TL 07 TL 06

9 TL 07 TL 03

10 TL 09 TL 06

11 TL 05 TL 09

12 TL 08 TL 07

13 TL 04 TL 02

14 TL 08

15 TL 01 TL 03

16 TL 02

17 TL 02 TL 05

18 TL 06 TL 08

19 TL 08 TL 04

20 TL 03 TL 09

Note. TL = testlet. Empty cells mean that the corresponding position in the booklet is non-occupied. For example, booklet
1 only contains testlet 2.
The booklets were used to link the items in the testlets.
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the German National Assessment Study in secondary schools 2012, for example, the

largest effect of socioeconomic status (SES) on proficiency is 49 points on the PISA

scale with M = 500 and SD = 100 (Kuhl et al. 2013). This corresponds to a regression

coefficient of about .45. For each background variable, 25% and 40% of the values were

deleted, mimicking empirical findings on proportions of missing data for sensitive vari-

ables (i.e. SES) when the completion of questionnaires is voluntary (Stanat et al. 2012).

The patterns of missing data of the background variables were in turn created to be

dependent on true person proficiencies. For each background variable, the polyserial

correlation of the missing pattern with the true person proficiencies was −.10 or −.40.
To keep the number of simulations manageable, we refrained from testing against a

baseline condition (i.e., 0% missing values or a zero correlation) as we did not expect to

find any bias under these conditions.

The simulation was set up using a full-factorial experimental design so that all pos-

sible combinations would be represented. We varied the following factors and factor

levels:

– Regression coefficients in the population model: β�1 ={.1,.4} and β�2 ={.1,.4}
– Proportions of missing data for both background variables X1 and X2: m(X1) =

{.25,.4} and m(X2) = {.25,.4}

– Correlations between the patterns of missing data in both background variables and

θ*: d(X1,θ
*) = {−.1,−.4} and d(X2,θ

*) = {−.1,−.4}

In the next step, the 20 booklets were randomly distributed to virtual persons. Using

the true person proficiency scores from Equation 10 and the known item parameters,

the response probability for person n and item i was defined according to the item re-

sponse model (see Equation 1):

P Xni ¼ 1ð Þ ¼ eθn−bi

1þ eθn−bi
: ð11Þ

Each response Xni was generated by sampling a value from a uniform distribution
across the interval [0, 1]. If the sampled value was between 0 and P(Xni = 1), Xni was set

to 1. Otherwise, Xni was set to 0.

We used the package TAM (Kiefer et al. 2013) in R (R Core Team 2014) to specify a

marginal IRT model without conditioning on background variables, where the item pa-

rameters were fixed at their known values. This analysis was done for the sole purpose

of obtaining a WLE for each person. The WLE served as a rough point estimate of the

unknown true proficiency score.

Next, the missing values of both background variables were imputed using the R

package MICE (van Buuren & Groothuis-Oudshoorn 2011). The imputation model

consisted of three variables—X1, X2, and the WLE—in a fully conditional specification

(see van Buuren 2007) to account for the process that created the missing data. Two

different imputation methods were applied. For X1, we used a logistic regression imput-

ation according to its binomial distribution. For X2, we used predictive mean matching.

Overall, M = 5 imputed data sets were generated. From this point on, the procedure

varied depending on whether missing values were imputed under a single or nested im-

putation method.
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SMI method

The first imputed data set was used to specify the population model in order to

estimate the posterior distribution of the person parameters with item parameters

fixed at their known values. Using TAM, twenty plausible values were drawn from

the posterior distribution. The mean proficiency estimates were pooled across these

20 imputed values according to Rubin (1987). The regression estimates were taken

from the latent regression part of the population model. Therefore, pooling was

not necessary.

MMI method

The method described above was repeated M = 5 times, which resulted in 5 × 20 = 100

plausible values. The mean proficiency estimates were pooled over 100 imputed values

according to Rubin (2003), whereas the regression estimates were pooled over M = 5

imputed values according to Rubin (1987).

Measures

The estimates of interest were

– the mean proficiency estimates in both subpopulations (i.e., �θX1¼0 and �θX1¼1)

– the mean proficiency difference (i.e., �θX1¼1−�θX1¼0)

– the estimated coefficient β2 in the latent regression model

The analyses were repeated 1,000 times for each of the 64 conditions. For all esti-

mates mentioned above, three measures were of particular interest in each condition.

To examine whether a bias in the corresponding estimates occurred, we computed

Bias xð Þ ¼ N−1
XN
i¼1

xi−xð Þ; ð12Þ

where N is the number of replications, xi is the estimate in the ith replication, and x is
the true parameter which was used for data generation. For example, if we consider the

bias in the regression coefficient β2, xi is the estimate of β2 in the ith replication, and x

= β�2 . If we consider the bias in the subpopulation differences, xi is the estimate of
�θX1¼1−�θX1¼0 in the ith replication, and x is the true subpopulation difference, i.e. x = β�1.
The root mean square error (RMSE) between the true x and the estimated xi parame-

ters were computed by using

RMSE xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1

XN
i¼1

xi−xð Þ2
vuut : ð13Þ

Finally, we were interested in the recovery proportion; that is: How often does the
95% confidence interval include the true value? If the standard error of the estimate

had no bias (and the estimate itself had no bias), we would expect that the 95%
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confidence interval would include the true value in 95% of all cases. The 95% confi-

dence interval for xi was computed as

CI95 xið Þ ¼ xi � 1:96⋅SE xið Þ: ð14Þ

To identify whether the bias or the RMSE depended on the simulated conditions, we
calculated ANOVA effect sizes across all replications of the simulation. All ANOVA

analyses contained the following seven factors, each with two levels: β�1 , β
�
2 , missing

proportion on X1 (m(X1)), missing proportion on X2 (m(X2)), dependency between θ*

and the missing values on X1 (d(X1,θ
*)), dependency between θ* and the missing values

on X2 (d(X2,θ
*)), and the imputation method (SMI vs. MMI). For the sake of concise-

ness and clarity of results, we only computed main effects, two-way interactions, and

three-way interactions in a common model. Hence, 7þ 7
2

� �
þ 7

3

� �
¼ 63 effects

were estimated. For the same reason, only effects for which the effect size η2 exceeded

0.005 are displayed. Moreover, we computed ANOVAs without interaction effects in

order to describe whether the addition of interaction effects leads to an increase in ex-

plained variance.

To identify whether the recovery proportion depended on the simulated conditions,

we conducted a logistic regression analysis. For each of the 1,000 replications of the 64

simulated conditions, we created a dummy code that equaled 1 if the confidence inter-

val of the corresponding estimate incorporated the true value and 0 otherwise. This

dummy code was used as the dependent variable in a logistic regression analysis. All re-

gression analyses contain the seven factors mentioned above, each with two levels.

Results
The following section summarizes the results of the simulation, focusing on differences

between the SMI and the MMI methods. First, we present the bias for the three esti-

mates’ mean proficiency difference, β1 and β2. We examine whether the bias was influ-

enced by conditions of the simulation using descriptive analyses and ANOVA effect

size estimation. The same procedure was carried out for the RMSE and the recovery

proportion.

The table for the means of all measures in all of the 64 conditions for both single and

nested imputation of background variables is provided in Additional file 1 (Table B1).

Bias

Tables 2 and 3 display ANOVA effect size estimates of bias in the subpopulation differ-

ences (Table 2) and of bias in the regression coefficient β2 (Table 3). Across all

simulated conditions, the bias for all estimates was negligible (mean bias in the subpop-

ulation differences = −0.016; mean bias for regression coefficient β2 = 0.017). Moreover,

the differences between SMI and MMI were negligible (the main effect of imputation

method failed to account for a substantial amount of variance in the bias of the sub-

population differences and the regression coefficient β2). Whereas the overall bias was

small, some conditions were associated with higher bias: For example, higher correla-

tions between the patterns of missing data in X1 and θ* caused a higher bias in the esti-

mation of subpopulation differences. Higher correlations between the patterns of

missing data in X2 and θ* caused a higher bias in the estimation of subpopulation



Table 2 ANOVA effect size table for bias in subpopulation

Differences factor SS η2

d(X1, θ*) × d(X2, θ*) 52.14 0.062

d(X1, θ*) 45.18 0.054

β�1 �m X1ð Þ 21.48 0.025

β�2 � d X1; θ�ð Þ 19.98 0.024

β�1 �m X1ð Þ � d X2; θ�ð Þ 17.65 0.021

m(X1) ×m(X2) 13.54 0.016

β�2 � d X1; θ�ð Þ � d X2; θ�ð Þ 10.87 0.013

β�2 �m X1ð Þ � d X1; θ�ð Þ 7.24 0.009

β�2 �m X2ð Þ 7.13 0.008

β�2 �m X2ð Þ � d X2; θ�ð Þ 6.96 0.008

β�1 � β�2 � d X1; θ�ð Þ 6.08 0.007

β�1 � β�2 5.62 0.007

m(X1) ×m(X2) × d(X2, θ*) 4.81 0.006

m(X1) × d(X2, θ*) 4.66 0.006

d(X2, θ*) 4.56 0.005

β�2 �m X1ð Þ � d X2; θ�ð Þ 4.47 0.005

m(X1) × d(X1, θ*) ×m(X2) 4.40 0.005

Residuals 563.55

Total 844.02
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differences and in the estimation of β2. Higher proportions of missing data for back-

ground variable X1 caused a bias in the estimation of β2. However, most ANOVA effect

sizes were small. For example, the seven main effects of the ANOVA analysis displayed

in Table 2 together only account for 7.3% of the explained variance, whereas all 64 ef-

fects together account for 33.2% of the explained variance. Considering Table 3, the

seven main effects only account for 5.7% of the explained variance, whereas all 64

effects account for 20.4% of the explained variance. The bias was therefore rarely asso-

ciated with a single factor (e.g., a large proportion of missing values alone) but rather

with combinations of (adverse) conditions (e.g., a large proportion of missing values

and a high level of dependence of the pattern of missing data on true person
Table 3 ANOVA effect size table for bias in regression coefficient β2
Factor SS η2

m(X1) 12.90 0.087

β�1 � β�2 4.13 0.028

d(X2, θ*) 3.17 0.022

β�1 �m X1ð Þ 2.42 0.016

β�1 2.40 0.016

β�1 � β�2 � d X1; θ�ð Þ 1.36 0.009

β�1 � d X2; θ�ð Þ 1.19 0.008

β�1 � β�2 �m X2ð Þ 1.04 0.007

β�2 �m X2ð Þ � d X2; θ�ð Þ 0.82 0.006

Residuals 110.01

Total 147.56
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proficiencies). Both SMI and MMI are therefore able to compensate for a single ad-

verse condition. As expected, the imputation method (SMI vs. MMI) did not affect the

bias—all ANOVA analyses revealed only negligible main effects of the simulation

methods or interaction effects of the simulation method and the other factors.
RMSE

Tables 4 and 5 display ANOVA effect size estimates for the RMSE in the subpopulation

differences (Table 4) and in the regression coefficient β2 (Table 5). Across all simulated

conditions, the RMSE for the subpopulation differences was .076. The mean RMSE for

the regression coefficient β2 was .035. The RMSE differed between the two imputation

methods, but only slightly and only for the regression coefficient β2: The RMSE was

.037 for the single imputation method and .032 for the nested imputation method. This

main effect was significant (η2 = 0.011, see Table 5). Considering Table 4, the seven

main effects of the ANOVA analysis only account for 4.4% of the explained variance,

whereas all 64 effects account for 22% of the explained variance. Considering Table 5,

the main effects account for 10% of the explained variance, whereas all 64 effects ac-

count for 25.3% of the explained variance.

Although we found a significant main effect of imputation method on the RMSE for the

regression coefficient β2, its effect size was small and the reduction of .037–.032 = .005 in

the RMSE is negligible.
Recovery proportion

We conducted logistic regression analyses to predict the probability that the confidence

interval of an estimate (e.g., β2) would include the true value. Tables B2 and B3 are pro-

vided in Additional file 1 and display the results of the logistic regression analyses for

the recovery proportion of the subpopulation differences (Table B2) and regression co-

efficient β2 (Table B3). Comparing the SMI and MMI methods, we found mean recov-

ery proportions of .83 versus .95 for the subpopulation differences, and .85 versus .96

for the regression coefficient β2. The main effect for the imputation method was signifi-

cant both for subpopulation differences and for the regression coefficient β2. MMI
Table 4 ANOVA effect size table for the RMSE of subpopulation differences

Factor SS η2

β�2 �m X2ð Þ � d X2; θ�ð Þ 9.37 0.031

β�1 � β�2 � d X1; θ�ð Þ 9.31 0.030

β�1 � d X2; θ�ð Þ 6.92 0.023

m(X1) 5.38 0.018

β�1 � β�2 5.16 0.017

d(X1, θ*) 4.58 0.015

β�2 � d X1; θ�ð Þ �m X2ð Þ 2.01 0.007

β�1 �m X1ð Þ � d X1; θ�ð Þ 1.88 0.006

β�1 � d X1; θ�ð Þ �m X2ð Þ 1.85 0.006

m(X1) ×m(X2) × d(X2, θ*) 1.62 0.005

Residuals 238.17

Total 305.29



Table 5 ANOVA effect size table for the RMSE of regression coefficient β2
Factor SS η2

m(X1) 4.34 0.064

β�2 1.08 0.016

β�1 � β�2 0.92 0.013

d(X1, θ*) ×m(X2) × d(X2, θ*) 0.90 0.013

imp. Method 0.74 0.011

β�1 � d X1; θ�ð Þ � d X2; θ�ð Þ 0.73 0.011

m(X1) × d(X1, θ*) × d(X2, θ*) 0.67 0.010

β�2 � d X1; θ�ð Þ �m X2ð Þ 0.65 0.010

m(X1) ×m(X2) 0.60 0.009

β�1 �m X1ð Þ 0.56 0.008

β�1 �m X2ð Þ 0.52 0.008

β�2 �m X1ð Þ � d X1; θ�ð Þ 0.52 0.008

β�2 �m X2ð Þ 0.43 0.006

β�1 � β�2 � d X1; θ�ð Þ 0.36 0.005

Residuals 50.82

Total 68.01
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overall leads to a higher recovery proportion than SMI. Moreover, the advantage of

MMI over SMI is particularly apparent in some specific conditions, for example, if the

missing proportion on X1 is 40% instead of 10% (line 23 in Table B2). This indicates

that the MMI method yields a higher recovery proportion if the proportion of missing

values is large, or if the correlation between the patterns of missing data in X2 and θ* is -.4

instead of -.1. To summarize, MMI seems appropriate for (a combination of) some ad-

verse conditions. This finding reflects the fact that the uncertainty in the imputed values,

which results from some adverse conditions, is only incorporated in the MMI method.
Discussion
The goal of the present study was to compare two imputation methods—SMI and

MMI—for handling missing data in background variables in large-scale assessment pro-

grams. The first key question of the present paper was whether these imputation

methods would allow unbiased estimation of subpopulation differences and coefficients

in the latent regression model. The second question was related to the standard errors

of the estimates: How often does the confidence interval include the true value?

Concerning the first research question of unbiased population estimates, none of the

simulated conditions showed differences between SMI and MMI. The mean bias was

negligible for both imputation methods. Some adverse factors (and especially combina-

tions of adverse factors, e.g., a large proportion of missing values and a high level of de-

pendence of the missing data pattern on true person proficiency) led to biases in the

range of −0.145 to 0.092 for the subpopulation differences and −0.041 to 0.061 for the

regression coefficient β2.

Concerning the second research question, when considering the RMSE and especially

the recovery proportion, the MMI method outperformed the SMI method. As the

MMI method takes the between-imputation variance in the imputed background data
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into account, the standard errors of the regression coefficient β2 and of the subpopula-

tion difference accurately reflected the uncertainty due to the amount of missing data.

The estimates of the regression coefficient β2 varied less between the replications and

resulted in lower RMSEs. The differences between the two imputation methods, how-

ever, were apparent only for substantial proportions of missing data of about 40%,

which may occur empirically for some sensitive variables such as SES (Stanat et al.

2012). Hence, we recommend using MMI instead of SMI if the missing data proportion

is substantial and if researchers are interested not only in unbiased estimates (e.g., for

purely descriptive purposes) but also in unbiased standard errors of these estimates

(e.g., for significance testing).

In general, we conclude that imputation methods can provide a suitable alternative to

dummy coding, which is flawed by some conceptual problems and may cause biased

mean proficiency estimates if the proportion of missing values on the background vari-

ables is substantial (Rutkowski 2011). To date, multiple imputation methods per se are

widely established in large-scale assessments to estimate θn values, which are consid-

ered to be inherently missing in the IRT framework, whereas the problem of missing

data in background variables has rarely been tackled by imputation methods. Our ana-

lyses show that MMI yields only small practical advantages compared to SMI at the

cost of higher computational effort. Therefore, SMI should be a sufficient method in

most applications.

Typically, large-scale assessments comprise a multitude of background variables,

which are reduced to several uncorrelated principal components prior to the estimation

of the population model. Compared to this procedure, the present simulation is highly

simplified. In empirical applications where background variables typically are corre-

lated, it is plausible to assume that the more background variables are included, the less

problematic is a high proportion of missing values on a single variable as other vari-

ables might compensate the loss of information. SMI and MMI methods may easily be

combined with principal component analyses, which can be applied after the imput-

ation of missing values in background variables. With MMI, this would result in several

data sets, where the number of principal components may vary between the data sets.

A limitation of both SMI and MMI methods is the use of the WLE as a rough profi-

ciency estimate for the unobserved person parameter θn in the imputation model.

Strictly speaking, the WLE is only an unbiased estimate of the population mean when

the same test items are administered to all persons (Wu 2005). In large-scale assess-

ments, however, this requirement is not fulfilled. Moreover, WLEs suffer from scale un-

reliability and contain error variance (Mislevy et al. 1992). Using the WLEs in the

imputation model may therefore underestimate the relation between θ and the back-

ground variables. This underestimation is expected to be more severe if only few items

from the item pool are presented to each person. This would decrease the WLE reli-

ability, which, in turn, leads to a poorer representation of the relation between θ and

the background variables in the imputation model. In our simulation, the number of

items and persons is constant over all conditions. Consequently, the WLE reliability

remained stable at about .70. Future research should investigate the influence of scale

reliability when individual θn estimates (e.g., WLEs or EAPs) are used in the imputation

model to gain information about the level of precision (e.g., in the estimation of sub-

population differences) that could be expected given certain characteristics of the
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experimental design (e.g., sample size, number of items, number of background vari-

ables, or proportion of missing values on background variables). A further improve-

ment of the imputation approach might be to include the unreliability of the WLE as a

possible source of uncertainty into the imputation model. However, as a three-level

nested imputation this would result in much more computational effort which may not

be desirable in empirical applications.

Conclusion
The present study showed that nested imputation methods are suitable approaches to

deal with missing values in both continuous and categorical background variables. Both

SMI and MMI yield virtually unbiased estimates of subpopulation differences and re-

gression coefficients for background variables with missing data. Concerning the esti-

mation of standard errors, MMI more accurately reflect the uncertainty due to missing

data in the background variables than SMI, resulting in slightly larger standard errors.

However, the differences between imputation methods are small in non-extreme condi-

tions of missing data. Thus, both SMI and MMI can be used to impute missing values

on background variables in large-scale assessments to avoid the conceptual flaws and

the possible biases associated with the common approach of dummy coding missing

observations.

Additional file

Additional file 1: Appendix to the paper: Nested Multiple Imputation in Large-Scale Assessments.
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