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Modeling equilibrium clusters in lysozyme solutions
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Abstract — We present a combined experimental and numerical study of the equilibrium cluster
formation in globular-protein solutions under no-added salt conditions. We show that a cluster
phase emerges as a result of a competition between a long-range screened Coulomb repulsion and
a short-range attraction. A simple effective potential, in which electrostatic repulsion is fixed by
experimental conditions and attraction is modeled with a generalized Lennard-Jones potential,
accounts in a remarkable way for the wavevector dependence of the X-ray scattering structure

factor.

Competition between short-range attraction and long
range repulsion provides an efficient way to stabilize
aggregates whose shape and characteristic size result from
the delicate balance between these opposing forces [1-6].
Under appropriate external conditions, particles interact-
ing with such a mixed potential may form equilibrium
cluster phases. This is a state of matter in which the
stable structure of the solution is characterized by the
presence of equilibrium aggregates of particles, the colloid
analog of micelles [7].

Cluster phases have been recently observed in colloidal
systems as a result of the competition between short-
range depletion attraction and long-ranged electrostatic
repulsion [4,5]. Confocal microscopy has provided detailed
information on the size and shape of these clusters. Theo-
retical and numerical studies suggest that cluster-phases
can also be observed in different systems such as star-
polymer solutions [8] or charged liposomes [6]. The typical
signature of the equilibrium cluster phase is a pre-peak
in the structure factor, signaling a preferential distance
set by the competing forces on different length scales.
Such a feature has been recently reported in solutions
of globular proteins [4,9,10], implying a generality of the
mechanism by which bulk aggregation is disfavored and
finite-size clusters are formed and persist in equilibrium.
This similarity suggests the possibility of an approach to
globular proteins based on the assumption of an effective
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interaction potential, in which the competition between
repulsion and attraction is built in.

In proteins, short-range attraction is normally
attributed to a combination of van der Waals attraction,
hydration forces, and hydrophobic interactions [11,12].
While in colloid-polymer mixtures such short-range
attraction is well characterized in terms of polymer size
and concentration, in protein solutions it is poorly under-
stood. However, clear evidence for its presence is provided
by studies at increasing ionic strength of the second virial
coefficient [13-15] and by the determination of gas-liquid
coexistence lines [16-18], which are metastable with
respect to crystallization as for short-ranged attractive
colloids [19]. Long-range repulsion arises from screened
electrostatic interactions, associated to the net charge of
the protein in pH-controlled protein solutions.

Among globular proteins, lysozyme has become the
prototype for scientific investigations. Under no-added salt
condition, the lysozyme structure factor shows a clear clus-
ter pre-peak whose position is essentially independent of
protein concentration and weakly dependent on tempera-
ture [4]. Hence, it is particularly important to assess under
which conditions an effective potential can be designed
which accounts for such typical features. Previously, theo-
retical studies have attempted to study lysozyme solutions
for different solution parameters (e.g. pH, density, salt
concentration), either with an effective continuum model
for electrostatic interactions between proteins carrying
discrete charges [20] or with explicit primitive models [15].
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At high ionic strength, modeling for the calculation of the
phase diagram usually relies on purely attractive poten-
tials [21]. Some models have incorporated the “patchy-
ness” and/or the non-sphericity of the interactions [20,22],
associated with the discrete distribution of charged and
hydrophobic sites, whose relative distances could compete
with the relevant distances incorporated in an effective
spherical potential. But, to our knowledge, for none of
these models, despite the large number of involved para-
meters, an equilibrium cluster phase has been predicted.

In this letter we present a combined experimental and
numerical study on the equilibrium cluster formation in
suspensions of a globular protein in the absence of added
salt. We propose an effective simple potential for the
lysozyme-lysozyme interaction in water based on a short-
range attractive potential complemented by a Yukawa
screened electrostatic repulsion. Parameters in the Yukawa
potential are fixed by the known size and charge of the
protein and the composition of the solvent. In contrast
to previous studies on colloid-polymer mixtures where
the contribution of background ions is dominant [23,24],
counterions coming from the surface charge induce a
highly concentration-dependent behavior of the amplitude
and screening length of the Yukawa potential, which is
properly taken into account [25]. The depth and width
of the resulting potential is chosen by best-fit with the
structure factor at one reference concentration, and kept
fixed for all other studied state points. The derived
potential is capable of accurately describing the measured
static properties at low and intermediate concentrations.

The globular protein used is hen egg white lysozyme
(Fluka, L7651). Its molecular weight is 14.4kDa and
its shape ellipsoidal with linear dimensions of 3 x 3 x
4.5nm [17]. For simplicity, we neglect the asymmetry in
shape, and we model it as a sphere of diameter o = 3.4 nm.
Lysozyme is dispersed in a solution of DO (99.9%,
Cambridge Isotope Laboratories) containing 20 mM Hepes
buffer salt. A detailed description of the sample prepara-
tion procedure can be found elsewhere [4]. The pH="7.8
is adjusted with sodium hydroxide and held constant
within 0.1 units for all volume fractions investigated.
Under these conditions, the net charge of the protein is
known from titration experiments to be Zy = +8e [26]. The
ionic strength of the solvent, estimated by conductime-
try, is 8mM, corresponding to a Debye screening length
at infinite protein dilution of £ ~3.4nm. SAXS experi-
ments are performed with a pinhole camera (NanoSTAR
from Bruker AXS) equipped with a sealed tube (Cu K,,),
a thermostatically regulated sample chamber and a two-
dimensional gas detector (see ref. [9] for further details).
Samples are measured at volume fractions ranging from
¢ =0.085 to 0.201, where ¢ = mpo>/6, with p the protein
number density, is systematically measured by UV-visible
spectroscopy.

We perform molecular dynamics simulations (MD) of
a system composed of N =2500 particles of diameter
o and mass m in a cubic box of size L, as a function

of volume fraction ¢ and temperature 7. The excluded-
volume term plus the short-range (SR) attraction are
modeled for simplicity with the generalized Lennard-Jones
2a-a potential [27],

e[ o

where « essentially controls the width of the attraction
and the steepness of the hard-core, while —e is the
depth of the SR potential. The parameters o and kT
(where kp is the Boltzmann constant) are chosen as
units of length and energy, respectively. The short-range
potential is complemented by a long-range repulsion,
modeled with a Yukawa potential. Its amplitude and
screening length are fixed by the experimental conditions
and follow the generalized one-component macroion model
(GOCM) [25,28],

e /¢
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where Lp=e?/(4meoekpT) is the Bjerrum length,
¢ = [4rLp(p|Zo| + 2ps)2%]~1/? is the Debye length, with p
the protein number density, Z; the net charge on a protein,
ps the salt number density in the buffer, z the valence of
the dissolved ions (2 =1) and X a correction factor that
depends on both ¢ and £ (egs. (11)-(15) in [25]). The
resulting Yukawa potential gives a realistic description of
the effective repulsion between proteins for the relatively
high-volume fractions investigated. Here the explicit
¢-dependence of X incorporates the effect of screening
of a protein by other proteins, whereas the contribution
of additional counter-ions with increasing p enters in
the calculation of £. Under the chosen condition of low
background electrolyte, we find it important to properly
describe the change of ¢ and X with ¢. Under excess
salt, or infinite dilution, the GOCM reduces to the repul-
sive part of the classical DLVO potential. Particles are
assumed to interact simultaneously via Vi, = Vsgr + Vy,
shown in fig. 1 for various ¢ values. The integration
time-step is fixed to At=5 1072 in units of \/mo?2/e.
A cutoff at r. = 8¢ is applied to reduce the computational
effort, without significantly altering the model, since
Vvtot(’f‘c) <1073,

Whilst the theoretical work of Belloni allows us to model
the electrostatic repulsion without any fitting parameter,
no theory is capable to properly account for the attractive
part. However, in the case of lysozyme and numerous
other globular proteins, attraction is known to be short-
ranged and of moderate strength [29]. Previous scattering
studies on lysozyme suspensions under high salt condi-
tions have shown that the attractive part of the effective
potential does not significantly depend on tempera-
ture [14,30,31]. Following these indications, we determine
the two unknown parameters € and « in the generalized
Lennard-Jones potential by running simulations at fixed
¢ =0.188, and searching for the a-¢ values best matching
the experimental peak positions of S(q) at 5°C.
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Fig. 1: Potential Vio:(7) as a function of interparticle distance
r for various ¢. The total potential well depth is Viin =
—4.22kpT and its range is = 3.6%c. The inset details the
construction of Vi, with a short-range attractive potential Vsgr
and a long-range screened Coulomb repulsion Vy-.
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Fig. 2: Comparison of the structure factors S(g) obtained by
MD simulations (lines) with SAXS (symbols), for lysozyme
suspensions of volume fraction 0.188 at corresponding temper-
atures.

The results from simulations obtained with a =90,
corresponding to an attraction range of 3.6%c and
€=06.66kpT are compared with the measured S(g) in
fig. 2 at ¢ =0.188. The position of the cluster peak and its
T-dependence are properly accounted for the chosen o and
€ values. It is important to point out that also the location
of the nearest neighbor peaks at ~2.25nm~! coincides
with previous SANS measurements [4,9]. We also note
that the low ¢-limit is rather well described, suggesting
that the present potential properly accounts for the
system compressibility (oc.S(0)7!) for all temperatures.
This remarkable agreement infers that the use of an effec-
tive potential captures the essential features necessary to
describe the clustering process in lysozyme suspensions.

To validate the resulting potential, we turn to examine
other densities. We have verified that the hypothesis of
constant total depth, as opposed to the hypothesis of a
constant €, is necessary to properly describe S(g) at all
densities. We thus introduce a density dependence in €
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Fig. 3: ¢-dependence of the static structure factor S(q)
measured by SAXS (upper panel) and obtained by MD simu-
lation (lower panel) with potentials of fig. 1. The dependence
of the Debye length £ on volume fraction is shown as inset.

to counterbalance the density dependence of V3 in such
a way that GVj,;, remains constant at all densities, as
shown in fig. 1. In this respect, the potential is built on:
i) the Belloni theoretical approach for the electrostatic
contribution and ii) the assumption that the depth of
the resulting total potential is constant at all densities.
Considering the short distances at which attraction sets in,
one possible explanation of the constant V,,;, constraint
arises from the spherical average requested to generate
an effective centro-symmetric potential starting from a
non-spherical patchy protein, mediating the location of
attraction and repulsion sites [20,22].

In fig. 3 numerical results are compared with the
corresponding experimental data at T'=5°C for volume
fractions ranging from ¢ =0.085 to 0.201. Again, the
numerical S(q) properly reproduces the features observed
experimentally. With increasing ¢, the cluster peak
position does not significantly change while its amplitude
systematically decreases. Moreover, the agreement is
quantitative for the cluster and nearest-neighbor peak
positions as well as for their amplitudes. Also the compres-
sibilities are well reproduced, with an initial decrease with
increasing ¢, saturating to a roughly constant value.

The ability of the potential to correctly reproduce the
structure of the system suggests to analyze the equi-
librium configurations provided by MD. Particles are
considered to be in the same cluster when the separation
between pairs of nearest-neighbor particles is smaller than
Tmaz = 1.0650, a value corresponding to the distance at
the maximum in Vi, (see fig. 1). Figure 4a) shows the
resulting distribution n(s) of clusters of size s, for several
state points. We note that these results are qualitatively
unaffected by different choices of the bonding distance.
At the smallest ¢, the suspension is essentially composed
of small clusters with a distribution that rapidly and
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Fig. 4: a) Cluster size distribution n(s) for various ¢ at
T =5°C. The distribution for small sizes follows random perco-
lation dependence of s~2-2. For ¢ >0.148 large clusters are
found indicating that the system is percolating. b) Snapshot at
¢ =0.125 with few selected clusters of size n =10, 30, 82, 203.

monotonically decays to zero. As ¢ increases, larger clus-
ters form and the distribution progressively develops a
power law behavior n(s) oc s™, with an exponent 7 —2.2
consistent with random percolation.

We can try to exploit the micelle analogy in order to
understand the variation of the cluster size distribution
shown in fig. 4. In the case of charged micelles at low ionic
strength, one expects a dramatic change in the micellar
growth scenario at a crossover concentration where the
screening length becomes comparable to the micellar
length [32]. At this point, a sharp transition to accelerated
micellar growth with a very broad size distribution occurs.
In the studied concentration range, we indeed observe an
enhanced cluster growth and a large broadening of the
size distribution close to ¢ = 0.085, where the ration ¢/c
has decreased to a value of 0.5. From that point, we
indeed observe an enhanced cluster growth and a large
broadening of the size distribution. This is due to the effect
of decreasing electrostatic repulsion on top of that of the
increase in number density, resulting in a faster growth
with respect to standard short-ranged attractive systems.

For ¢ > 0.148 percolating states are found where the
system forms a space-spanning cluster. From the analysis
of the MD trajectories one observes that clusters are
highly transient. Even above the percolation threshold,
the system is still in a fluid phase, and percolation does
not imply gelation, for which a long-living network is
necessary. Interestingly, the observed transient percolating
states resemble those of the transient networks found in
the semidilute regime of charged micelles, where under

the same salt-free conditions a persisting low-q peak is
also present [33]. The observation of isolated clusters, as
depicted in fig. 4b), reveals that the clusters are highly
random. We find both space-filling spherical shapes as well
as filamentous structures, made primarily of single chains,
that are very different from those observed in other more
repulsive systems [5,24]. Moreover, in the investigated
region of phase space, there is not a preferred cluster size,
since a peak in n(s) is never observed.

Clusters observed under the present no-salt conditions
are generated by the competition between attraction and
repulsion, as clearly indicated by the presence of the pre-
peak in the structure factor and should not be considered
as the transient clusters that are commonly observed
on approach to a phase-separation boundary in short-
range potentials, whose spectral signature is a peak in
S(q) at ¢ — 0. In the investigated T-range, attraction is
always sufficiently counter-balanced by the electrostatic
repulsion, allowing for the existence of stable clusters
and preventing phase separation. The resulting clusters
are highly polydisperse and their structural development
with volume fraction leads to transient networking, with
hallmarks of random percolation.

In summary, we demonstrated that equilibrium cluster
formation in complex protein solutions can be reproduced
using a unifying “colloid-approach”, with a simple one-
component effective potential between proteins composed
of a short-range attraction and a longer-range repulsion.
This indicates the existence of a fundamental principle
for self-assembly in biological solutions. It is interesting
to note that aggregation and bundle formation in biolog-
ical polyelectrolytes such as DNA [34], microtubules or
f-actin [35,36] has also been looked at as an equilibrium
process based on a balance of opposing forces. While the
attraction is of rather different electrostatic origin and
thought to arise from the presence of multivalent coun-
terions, it also underlines the importance of self-assembly
due to a combination of non-specific short-range attractive
and long-range repulsive forces in these systems.
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