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Abstract
Conditions for well-posed and unique solvability of a non-homogeneous boundary
value problem for a class of fourth order elliptic operator-differential equations with
an unbounded operator in boundary conditions are found in this work. Note that
these solvability conditions are sufficient, and they are expressed only in terms of the
properties of operator coefficients of the boundary value problem. Besides, the
estimates for the norms of intermediate derivative operators in a Sobolev-type space
are obtained, and their close relationship with the solvability conditions is established.
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1 Introduction
Many applied problems of mathematical physics require the study of spectral problems
with a polynomial appearance of a parameter in the boundary conditions [–], while, in
corresponding inverse problems, the unknown coefficients appearing in the equation and
boundary conditions are found using known spectra [–]. However, some non-classical
problems of mathematical physics [] reduce to the problems with an operator in the
boundary conditions. Note that the well-posed and unique solvability and Fredholmness
of the boundary value problems for second and third order operator-differential equations
with operator boundary conditions have been widely studied both on a finite interval and
on the half-axis (see, e.g., [–] and the references therein, though far from being com-
plete). The works dedicated to such kind of problems for fourth order operator-differential
equations are relatively few. We can only mention [, ]. Here it should be noted that
the solvability of the boundary value problems for operator-differential equations of fourth
and higher orders in case where the coefficients in the boundary conditions are only com-
plex numbers has been extensively studied in [–]. See the references therein.

In this work, we treat the well-posed and unique solvability of a non-homogeneous
boundary value problem for a fourth order elliptic operator-differential equation with un-
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bounded operator boundary conditions. The solvability of this problem allows using the
obtained abstract results in the study of both new classes of boundary value problems for
fourth order elliptic partial differential equations and the corresponding spectral prob-
lems.

2 Problem statement
Let H be a separable Hilbert space with scalar product (x, y), x, y ∈ H , and A be a positive
definite self-adjoint operator in H (A = A∗ ≥ cE, c > , E is the identity operator). By Hγ

(γ ≥ ) we will mean the scale of Hilbert spaces generated by the operator A, i.e., Hγ =
D(Aγ ), (x, y)γ = (Aγ x, Aγ y), x, y ∈ D(Aγ ), with H = H , (x, y) = (x, y), x, y ∈ H .

Denote by L(R+; H) the Hilbert space of all vector-valued functions defined on R+ =
(, +∞) with the values in H and the finite norm

‖f ‖L(R+;H) =
(∫ +∞



∥∥f (t)
∥∥

H dt
)/

.

Following [], Chapter , we introduce the Hilbert space

W 
 (R+; H) =

{
u(t) : u()(t) ∈ L(R+; H), Au(t) ∈ L(R+; H)

}

equipped with the norm

‖u‖W 
 (R+;H) =

(∥∥u()∥∥
L(R+;H) +

∥∥Au
∥∥

L(R+;H)

)/.

Hereinafter the derivatives u(j) ≡ dju
dtj are understood in the sense of the theory of dis-

tributions in a Hilbert space []. Similarly we define the spaces L(R; H) and W 
 (R; H),

where R = (–∞, +∞).
By L(X, Y ) we mean the set of linear bounded operators acting from the Hilbert space X

to another Hilbert space Y . Fix some operator K ∈ L(H/, H/). Let us define the following
subspace of the space W 

 (R+; H):

W 
,K (R+; H) =

{
u(t) : u(t) ∈ W 

 (R+; H), u() = , u′′() = Ku′()
}

.

The trace theorem of [], Chapter , implies the correctness of the last definition.
Next, denote by σ (·) the spectrum of the operator (·).
Consider the following boundary value problem in the space H :

u()(t) + Au(t) +
∑

j=

Aju(–j)(t) = f (t), t ∈R+, (.)

u() = ϕ, u′′() – Ku′() = ψ , (.)

where A = A∗ ≥ cE, c > , Aj, j = , , , , are linear and, in general, unbounded operators,
K ∈ L(H/, H/), f (t) ∈ L(R+; H), ϕ ∈ H/, ψ ∈ H/, u(t) ∈ W 

 (R+; H).

Definition . If for every f (t) ∈ L(R+; H) and every ϕ ∈ H/, ψ ∈ H/ there exists
a function u(t) ∈ W 

 (R+; H) that satisfies equation (.) almost everywhere in R+, the
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boundary conditions (.) in the sense of convergence

lim
t→+

∥∥u(t) – ϕ
∥∥

H/
= ,

lim
t→+

∥∥u′′(t) – Ku′(t) – ψ
∥∥

H/
= 

and the estimate

‖u‖W 
 (R+;H) ≤ const

(‖f ‖L(R+;H) + ‖ϕ‖H/ + ‖ψ‖H/

)
,

then the boundary value problem (.), (.) is said to be regularly solvable, and u(t) is
called a regular solution of the boundary value problem (.), (.).

The main purpose of this work is to find the conditions for regular solvability of the
boundary value problem (.), (.) under some restrictions on its operator coefficients.
To achieve this purpose, we use the estimates for the norms of intermediate derivative
operators by the norm of an operator generated by the principal part of the considered
equation and the given boundary conditions. This is precisely what distinguishes this pa-
per. Note that the method offered in [, ] and later developed in [] to calculate the
exact values of the norms of intermediate derivative operators is not directly applicable in
our case. That is why we have to apply another procedure to estimate such norms, based
on the classical inequalities of analysis. Being not too complicated and quite original, this
procedure allows only upper estimates for the considered norms. But this is good enough
for the purposes of this paper.

3 Main results
We first assume that Aj = , j = , , , , and ϕ = ψ =  in the boundary value problem
(.), (.). Then we get a simpler boundary value problem

u()(t) + Au(t) = f (t), t ∈R+, (.)

u() = , u′′() = Ku′(). (.)

Denote by P the operator that acts from W 
,K (R+; H) to L(R+; H) as follows:

Pu(t) = u()(t) + Au(t), u(t) ∈ W 
,K (R+; H).

The following lemma is true.

Lemma . Let B = A/KA–/ and –
√

 /∈ σ (B). Then the equation Pu(t) =  has a
unique zero solution in W 

,K (R+; H).

Proof Note that the general solution of the equation Pu(t) =  belonging to the space
W 

 (R+; H) has the following form:

u(t) = eωtAξ + eωtAξ,
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where the exponentials eωtA, eωtA are the (C) semigroups generated by ωA, ωA, re-
spectively,

ω = –
√


+
√


i, ω = –
√


–
√


i,

and ξ, ξ ∈ H/. From (.) we have

{
ξ + ξ = ,
ω

 Aξ + ω
Aξ = KA(ωξ + ωξ).

(.)

System (.) yields

ξ = –ξ, (.)(
E +

√


B
)

A/ξ = . (.)

Then, by the condition –
√

 /∈ σ (B) of the lemma, it follows from equation (.) that ξ = .
Hence from (.) we have ξ = . Consequently, u(t) = . The lemma is proved. �

The following theorem is true.

Theorem . Let B = A/KA–/ and –
√

 /∈ σ (B). Then, for every f (t) ∈ L(R+; H), the
boundary value problem (.), (.) has a unique regular solution.

Proof By virtue of Lemma ., the problem

u()(t) + Au(t) = , t ∈R+,

u() = , u′′() = Ku′()

has only zero solution in W 
,K (R+; H).

Let us show that the equation Pu(t) = f (t) has a solution u(t) ∈ W 
,K (R+; H) for every

f (t) ∈ L(R+; H). For this aim, we first continue the vector function f (t) by zero for t < 
and denote the obtained function by F(t). Let F̂(ξ ) be the Fourier transform of the vector
function F(t), i.e.,

F̂(ξ ) =
√
π

∫ +∞

–∞
F(t)e–iξ t dt,

where the integral on the right-hand side is understood in the sense of mean convergence
in H .

Applying direct and inverse Fourier transforms, we easily see that the vector function

υ(t) =


π

∫ +∞

–∞

(
ξE + A)–

(∫ +∞


f (s)e–iξ s ds

)
eitξ dξ , t ∈R,

satisfies the equation

υ()(t) + Aυ(t) = F(t)
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almost everywhere in R. Let us show that υ(t) ∈ W 
 (R; H). Let υ̂(ξ ) be the Fourier trans-

form of the vector function υ(t). By the Plancherel theorem, we have

∥∥υ(t)
∥∥

W 
 (R;H) =

∥∥υ()(t)
∥∥

L(R;H) +
∥∥Aυ(t)

∥∥
L(R;H)

=
∥∥ξυ̂(ξ )

∥∥
L(R;H) +

∥∥Aυ̂(ξ )
∥∥

L(R;H)

=
∥∥ξ(ξE + A)–F̂(ξ )

∥∥
L(R;H)

+
∥∥A(ξE + A)–F̂(ξ )

∥∥
L(R;H)

≤ sup
ξ∈R

∥∥ξ(ξE + A)–∥∥
H→H

∥∥F̂(ξ )
∥∥

L(R;H)

+ sup
ξ∈R

∥∥A(ξE + A)–∥∥
H→H

∥∥F̂(ξ )
∥∥

L(R;H)

=
(

sup
ξ∈R

∥∥ξ(ξE + A)–∥∥
H→H + sup

ξ∈R

∥∥A(ξE + A)–∥∥
H→H

)

× ∥∥F(t)
∥∥

L(R;H). (.)

According to the spectral theory of self-adjoint operators, for ξ ∈R, we have

∥∥ξ(ξE + A)–∥∥ ≤ sup
σ∈σ (A)

∣∣ξ(ξ + σ )–∣∣ ≤ ,

∥∥A(ξE + A)–∥∥ ≤ sup
σ∈σ (A)

∣∣σ (ξ + σ )–∣∣ ≤ .

Then it follows from (.) that υ(t) ∈ W 
 (R; H).

Now denote by u(t) the restriction of the function υ(t) to R+. Then u(t) belongs to the
space W 

 (R+; H), satisfies equation (.) almost everywhere in R+ and, according to the
trace theorem of [], Chapter , u(j)

 () ∈ H/–j, j = , , , .
Next, we seek the solution of the boundary value problem (.), (.) in the following

form:

u(t) = u(t) + eωtAη + eωtAη,

where

ω = –
√


+
√


i, ω = –
√


–
√


i,

and η,η ∈ H/ are subject to be determined from (.). Then we get the following sys-
tem:

{
u() + η + η = ,
u′′

 () + ω
 Aη + ω

Aη = K(u′
() + ωAη + ωAη).

(.)

Considering the relation

η = –η – u()
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in the second equation of (.), and taking into account the condition –
√

 /∈ σ (B), we
uniquely determine

η = A–/
(

E +
√


B
)–

A/ς ∈ H/,

where

ς =

i

A–[ωKAu() – Ku′
() + u′′

 () – iAu()
] ∈ H/.

Thus, u(t) belongs to the space W 
 (R+; H), satisfies equation (.) almost everywhere in

R+ and conditions (.).
On the other hand, the operator P : W 

,K (R+; H) → L(R+; H) is bounded:

‖Pu‖
L(R+;H) =

∥∥u() + Au
∥∥

L(R+;H) ≤ ‖u‖
W 

 (R+;H). (.)

Therefore, by the Banach inverse operator theorem, there exists the inverse operator
P–

 : L(R+; H) → W 
,K (R+; H), and this operator is bounded. It follows

‖u‖W 
 (R+;H) ≤ const‖f ‖L(R+;H).

The theorem is proved. �

In the sequel, we will need the following auxiliary statement.

Lemma . Let B = A/KA–/ and Re B ≥ . Then the inequality

‖Pu‖
L(R+;H) ≥ ‖u‖

W 
 (R+;H) + 

∥∥Au′′∥∥
L(R+;H) (.)

is true for every u(t) ∈ W 
,K (R+; H).

Proof Integrating by parts, for u(t) ∈ W 
,K (R+; H), we obtain

Re
(
u(), Au

)
L(R+;H) = Re

(
BA/u′(), A/u′()

)
+

∥∥Au′′∥∥
L(R+;H). (.)

Due to (.), we have

‖Pu‖
L(R+;H) =

∥∥u()∥∥
L(R+;H) +

∥∥Au
∥∥

L(R+;H) +  Re
(
u(), Au

)
L(R+;H)

= ‖u‖
W 

 (R+;H) +  Re
(
BA/u′(), A/u′()

)
+ 

∥∥Au′′∥∥
L(R+;H). (.)

As Re B ≥ , equality (.) implies the validity of inequality (.). The lemma is proved.
�

Note that Theorem . combined with Lemma . implies that the operator P, under
the condition –

√
 /∈ σ (B) with B = A/KA–/, maps the space W 

,K (R+; H) isomorphi-
cally onto L(R+; H). Consequently, the norm ‖Pu‖L(R+;H) is equivalent in W 

,K (R+; H)
to the initial norm ‖u‖W 

 (R+;H). And, as the intermediate derivative operators

Aj d–j

dt–j : W 
,K (R+; H) → L(R+; H), j = , , , ,
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are continuous (see []), the norms of these operators can be estimated through the norm
‖Pu‖L(R+;H). The need for these estimates arises when one tries to establish solvability
conditions for the boundary value problem (.), (.) using only the properties of its op-
erator coefficients.

Theorem . Let B = A/KA–/ and Re B ≥ . Then the estimates

∥∥Aju(–j)∥∥
L(R+;H) ≤ cj‖Pu‖L(R+;H), j = , , , , , (.)

are true for every u(t) ∈ W 
,K (R+; H) with

c = c = c = , c =



, c =
√


.

Proof We first multiply both sides of equation (.) scalarly by Au(t) in the space
L(R+; H) and then integrate by parts. Then, taking into account (.) and the condition
Re B ≥ , we have

Re
(
Pu, Au

)
L(R+;H)

= Re
(
u() + Au, Au

)
L(R+;H)

=
∥∥Au

∥∥
L(R+;H) + Re

(
BA/u′(), A/u′()

)
+

∥∥Au′′∥∥
L(R+;H)

≥ ∥∥Au
∥∥

L(R+;H) +
∥∥Au′′∥∥

L(R+;H). (.)

Applying the Cauchy-Schwarz inequality and then the Young inequality to the left-hand
side of (.), we get

∥∥Au
∥∥

L(R+;H) +
∥∥Au′′∥∥

L(R+;H)

≤ ‖Pu‖L(R+;H)
∥∥Au

∥∥
L(R+;H)

≤ δ


‖Pu‖

L(R+;H) +


δ

∥∥Au
∥∥

L(R+;H), δ > . (.)

Assume δ = 
 in (.). Then we obtain

∥∥Au′′∥∥
L(R+;H) ≤ 


‖Pu‖

L(R+;H)

or

∥∥Au′′∥∥
L(R+;H) ≤ 


‖Pu‖L(R+;H). (.)

On the other hand, from (.) we have

∥∥Au
∥∥

L(R+;H) ≤ ‖Pu‖L(R+;H)
∥∥Au

∥∥
L(R+;H).

Therefore,

∥∥Au
∥∥

L(R+;H) ≤ ‖Pu‖L(R+;H). (.)



Al-Aidarous et al. Boundary Value Problems  (2015) 2015:191 Page 8 of 14

Note that the validity of (.) can be also obtained from inequality (.). Besides, inequal-
ity (.) implies the validity of the following one:

∥∥u()∥∥
L(R+;H) ≤ ‖Pu‖L(R+;H). (.)

Now let us estimate the norm ‖Au′‖L(R+;H). Integrating by parts, taking into account
u(t) ∈ W 

,K (R+; H), and then applying the Cauchy-Schwarz inequality and inequalities
(.), (.), we obtain

∥∥Au′∥∥
L(R+;H) =

∫ +∞



(
Au′, Au′)dt

=
(
Au, Au′)|+∞

 –
∫ +∞



(
Au, Au′′)dt

= –
∫ +∞



(
Au, Au′′)dt ≤ ∥∥Au

∥∥
L(R+;H)

∥∥Au′′∥∥
L(R+;H)

≤ 

‖Pu‖

L(R+;H).

Consequently,

∥∥Au′∥∥
L(R+;H) ≤ √


‖Pu‖L(R+;H).

Finally, we proceed to estimate the norm ‖Au′′′‖L(R+;H). It was shown in [] that the
inequality

∥∥Au′′′∥∥
L(R+;H) ≤ 

∥∥Au′′∥∥
L(R+;H)

∥∥u()∥∥
L(R+;H) (.)

is true for u(t) ∈ W 
 (R+; H). Considering inequalities (.) and (.) in (.), we have

∥∥Au′′′∥∥
L(R+;H) ≤ ‖Pu‖

L(R+;H)

or

∥∥Au′′′∥∥
L(R+;H) ≤ ‖Pu‖L(R+;H).

The theorem is proved. �

Now we consider another case of problem (.), (.) with Aj �= , j = , , , , while ϕ

and ψ are equal to zero as before:

u()(t) + Au(t) +
∑

j=

Aju(–j)(t) = f (t), t ∈R+, (.)

u() = , u′′() = Ku′(). (.)

Denote by P the operator that acts from W 
,K (R+; H) to L(R+; H) as follows:

Pu(t) = u()(t) + Au(t) +
∑

j=

Aju(–j)(t), u(t) ∈ W 
,K (R+; H).
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The following lemma is true.

Lemma . Let AjA–j ∈ L(H , H), j = , , , . Then the operator P is a bounded operator
from W 

,K (R+; H) to L(R+; H).

Proof Taking into account the conditions of the lemma and inequality (.), for every
u(t) ∈ W 

,K (R+; H), we have

‖Pu‖L(R+;H) ≤ ‖Pu‖L(R+;H) +

∥∥∥∥∥
∑

j=

Aju(–j)

∥∥∥∥∥
L(R+;H)

≤ √
‖u‖W 

 (R+;H) +
∑

j=

∥∥Aju(–j)∥∥
L(R+;H)

≤ √
‖u‖W 

 (R+;H) +
∑

j=

∥∥AjA–j∥∥
H→H

∥∥Aju(–j)∥∥
L(R+;H). (.)

Then, by the theorem on intermediate derivatives [], Chapter , from (.) we obtain

‖Pu‖L(R+;H) ≤ const‖u‖W 
 (R+;H).

The lemma is proved. �

The following theorem on solvability of the boundary value problem (.), (.) is
true, stated only in terms of the properties of its operator coefficients.

Theorem . Let B = A/KA–/, Re B ≥ , AjA–j ∈ L(H , H), j = , , , , and the inequal-
ity

α =
∑

j=

cj
∥∥AjA–j∥∥

H→H < 

be fulfilled, where the numbers cj, j = , , , , are defined in Theorem ., i.e.,

c = c = , c =



, c =
√


.

Then the boundary value problem (.), (.) has a unique regular solution for every
f (t) ∈ L(R+; H).

Proof First we rewrite the boundary value problem (.), (.) in the form of operator
equation

Pu(t) + (P – P)u(t) = f (t), (.)

where f (t) ∈ L(R+; H), u(t) ∈ W 
,K (R+; H).
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Note that the conditions B = A/KA–/, Re B ≥  provide the existence of the bounded
inverse operator P–

 from L(R+; H) to W 
,K (R+; H). Replacing u(t) = P–

 v(t), where v(t) ∈
L(R+; H), we arrive at the following equation in the space L(R+; H):

v(t) + (P – P)P–
 v(t) = f (t).

In this case, taking into account estimates (.), for every v(t) ∈ L(R+; H), we obtain

∥∥(P – P)P–
 v

∥∥
L(R+;H) =

∥∥(P – P)u
∥∥

L(R+;H)

≤
∑

j=

∥∥AjA–j∥∥
H→H

∥∥Aju(–j)∥∥
L(R+;H)

≤
∑

j=

cj
∥∥AjA–j∥∥

H→H‖Pu‖L(R+;H)

= α‖v‖L(R+;H).

As α < , the operator E + (P – P)P–
 has an inverse in the space L(R+; H). Consequently,

equation (.) is uniquely solvable in the space W 
,K (R+; H), and

u(t) = P–


(
E + (P – P)P–


)–f (t).

It follows

‖u‖W 
 (R+;H)

≤ ∥∥P–


∥∥
L(R+;H)→W 

 (R+;H)

∥∥(
E + (P – P)P–


)–∥∥

L(R+;H)→L(R+;H)‖f ‖L(R+;H)

≤ const‖f ‖L(R+;H).

The theorem is proved. �

Remark . In Theorem ., the condition Re B ≥  with B = A/KA–/ allows to omit
the condition –

√
 /∈ σ (B).

Finally, from Theorem . we can obtain the conditions for the regular solvability of the
boundary value problem (.), (.).

Theorem . Let all the conditions of Theorem . be fulfilled. Then the boundary value
problem (.), (.) is regularly solvable.

Proof Obviously, in case ϕ = ψ =  the regular solvability of the boundary value problem
(.), (.) follows from Theorem ..

In case Aj = , j = , , , , and f (t) = , we have the problem

u()(t) + Au(t) = , t ∈R+, (.)

u() = ϕ, u′′() – Ku′() = ψ , (.)
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where ϕ ∈ H/, ψ ∈ H/. The solution of problem (.), (.) will be sought in the
following form:

u(t) = eωtAζ + eωtAζ, (.)

where

ω = –
√


+
√


i, ω = –
√


–
√


i,

and ζ, ζ are the unknown vectors to be determined from conditions (.):
{

ζ + ζ = ϕ,
ω

 Aζ + ω
Aζ – KA(ωζ + ωζ) = ψ .

(.)

Considering the relation

ζ = ϕ – ζ

in the second equation of system (.) and taking into account the condition –
√

 /∈ σ (B),
we uniquely determine

ζ =
i


A–/
(

E +
√


B
)–

A/(ψ – ω
Aϕ + ωKAϕ

)
.

Then

ζ = ϕ –
i


A–/
(

E +
√


B
)–

A/(ψ – ω
Aϕ + ωKAϕ

)
.

It is clear that ζ, ζ ∈ H/. Consequently, from the representation (.) we have [],
Chapter 

‖u‖W 
 (R+;H) ≤ const

(‖ζ‖H/ + ‖ζ‖H/

)
≤ const

(‖ϕ‖H/ + ‖ψ‖H/

)
. (.)

Now we can directly proceed to the study of boundary value problem (.), (.). We will
seek the solution of the boundary value problem (.), (.) in the form u(t) = v(t) + u(t),
where u(t) is a regular solution of problem (.), (.). Then the function v(t) is the
solution of the boundary value problem

v()(t) + Av(t) +
∑

j=

Ajv(–j)(t) = g(t), t ∈R+, (.)

v() = , v′′() = Kv′(), (.)

where

g(t) ≡ –
∑

j=

Aju
(–j)
 (t) + f (t).
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Estimating the norm of the function g(t) in L(R+; H), we obtain

‖g‖L(R+;H) ≤
∥∥∥∥∥

∑
j=

Aju
(–j)


∥∥∥∥∥
L(R+;H)

+ ‖f ‖L(R+;H)

≤
∑

j=

∥∥AjA–j∥∥∥∥Aju(–j)


∥∥
L(R+;H) + ‖f ‖L(R+;H)

≤ const
(‖ϕ‖H/ + ‖ψ‖H/ + ‖f ‖L(R+;H)

)
.

Consequently, by Theorem . and estimate (.), we have

‖u‖W 
 (R+;H) ≤ ‖v‖W 

 (R+;H) + ‖u‖W 
 (R+;H)

≤ const‖g‖L(R+;H) + ‖u‖W 
 (R+;H)

≤ const
(‖ϕ‖H/ + ‖ψ‖H/ + ‖f ‖L(R+;H)

)
.

The theorem is proved. �

Note that the case where the operator Re B is not non-negative requires special consid-
eration.

Appendix
Now we apply the abstract results of Theorem . to a problem for partial differential
equations.

On the half-strip R+ × (,π ), consider the following boundary value problem for fourth
order elliptic equations:

∂u(t, x)
∂t +

∂u(t, x)
∂x +

∑
j=

pj(x)
∂u(t, x)
∂t–j ∂xj = f (t, x), (A.)

u(, x) = ,
∂u(, x)

∂t = a
∂u(, x)

∂t ∂x
, (A.)

∂ku(t, )
∂xk =

∂ku(t,π )
∂xk = , k = , , (A.)

where a is a complex number, pj(x), j = , , , , are bounded functions on the interval
(,π ), f (t, x) ∈ L(R+; L(,π )). Note that this problem can be reduced to the boundary
value problem (.), (.). Here H = L(,π ), Aj = pj(x) ∂ j

∂xj , j = , , , . The operator A

is defined in L(,π ) by the equality Au = du
dx with the conditions u() = u(π ) = u′′() =

u′′(π ) = , and the operator K is defined in L(,π ) by the equality Ku = a du
dx .

Taking into account Theorem ., we obtain that under the conditions Re a ≥  and∑
j= cj sup≤x≤π |pj(x)| < , the boundary value problem (A.)-(A.) has a unique solution

in the space W 
 (R+; L(,π )).
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