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Abstract

In this paper, a novel target recognition method, namely orthogonal maximum margin projection subspace
(OMMPS), is proposed for radar target recognition using high-resolution range profile (HRRP). The core of OMMPS
is to maximize the between-class margin by increasing the between-class scatter distance and reducing the
within-class scatter distance simultaneously. By introducing the nonlinear mapping function, we also derive

projection subspace

the kernel version of OMMPS, namely orthogonal kernel maximum margin projection subspace (OKMMPS).
Compared with maximum margin criterion (MMC) method, OMMPS are optimal in meaning of maximum
margin due that the coordinate axes of OMMPS are obtained sequentially by solving the constrained
optimization problem, thus improves the recognition performance. In addition, the number of efficient
features for OMMPS is not limited by the number of pattern classes, and the appropriate features can still
be obtained for separating the classes, even in high-dimensional space with only a few classes. Moreover,
the coordinate axes of OMMPS are mutually orthogonal, and the features extracted by OMMPS reduce the
redundancy. The extensive experimental results show that the proposed method has better recognition
performance than the other methods such as MMC and LDA.

Keywords: Radar target recognition, HRRP, Maximum margin criterion, Orthogonal maximum margin

1 Introduction

We are able to obtain the high-resolution range profile
(HRRP) by the wideband radar. The HRRP is the ampli-
tude of radar-returned echoes from target as a function
of range cell, which represents the distribution of projec-
tion of target radar scattering centers along the radar
line of sight. It can provide geometric structure informa-
tion such as target size and information of scattering
centers, which is very useful in target classification.
Therefore, the radar target recognition using HRRP has
intensively been focused by radar target recognition
community [1-7]. K. T. Kim et al. propose some invari-
ant features for HRRP [8-9]. Y. Shi et al. [10] use a
novel neural network classifier for HRRP recognition. S.
K. Wong [11] presents a feature selection method in
frequency domain. D. E. Nelson et al. [12] study a new
iterated wavelet feature for HRRP classification. R. A.
Mitchell et al. [13] extract some robust statistical
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features from HRRP for radar target recognition. X. J.
Liao et al. [14] use sequential HRRPs to identify the
ground targets. C. Y. Wang et al. [15] model the radar
echoes for radar HRRP recognition by T-mixture model.
M. Li et al. [16] propose a sparse representation-based
denoizing method for improving recognition perform-
ance using HRRP. L. Du et al. [17] apply the statistical
model for recognizing the radar HRRP. L. Shi et al. [18]
use the local factor analysis to model the non-
Gaussianity of the radar HRRP data. J. S. Fu et al. [19]
extract the between-class discriminant information and
among-class discriminant information for improving the
classification performance. However, HRRP is sensitive
to target aspect, time-shift, and amplitude-scale. These
factors increase the between-class ambiguities which
must be resolved and degrade the classification accuracy.
Moreover, HRRP is typically high-dimensional, non-
Gaussian, and interdimension dependently distributed
and increases the difficulties in statistical modeling of
pattern objects. Thus, the radar target recognition using
HRRP is still a challenging task.
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Many previous works have shown that subspace
methods are very effective in pattern recognition task.
For example, the principal component analysis (PCA)
can preserve the large variance directions [20]. The
linear discriminant analysis (LDA) is able to maximize
the between-class distance and minimize the within-
class distance simultaneously [21]. PCA and LDA are
widely applied for feature extraction and dimension
reduction. In order to process the nonlinear problem,
KPCA [22] and KFDA [23] are proposed based on kernel
trick. However, the performance of these methods
cannot be improved further when the objects such as
HRRPs are usually high-dimensional vectors and do not
satisfy the assumption of the Gaussian distribution.

Because they only capture the global geometric structure
of dataset and do not consider the local geometric structure
information that is very important for target recognition.

To capture the local structure information, several
manifold learning methods have been proposed. X. F.
He et al. [24] present the locality preserving projections
(LPP) by means of a weight matrix (called heat kernel).
H. T. Chen et al. [25] propose the local discriminant
embedding (LDE) using the neighbors and class relations
of data. D. Cai et al. [26] study the orthogonal Laplacian-
faces (OLPP) by computing a set of orthogonal basis
functions. L. Zhu et al. [27] propose the orthogonal
discriminant locality preserving projections (ODLPP) by
orthogonalizing the basis vectors. S. J. Wang et al. [28]
present an exponential locality preserving projections
(ELPP) via introducing the matrix exponential function.
The above methods can obtain impressive results. How-
ever, they only emphasize the compactness between the
neighbors or same-class data points and do not con-
sider the optimal separation between different-class
data points. Therefore, the discriminative power may
be improved by combining the manifold learning and
discriminant analysis.

Motivated by the idea, S. Yan et al. [29] present margin
fisher analysis (MFA) method. MFA uses the intrinsic
graph and the penalty graph to characterize the local
structure in discriminant analysis and thus increases the
intraclass compactness and interclass separability. M.
Sugiyama [30] proposes the local fisher discriminant
analysis (LFD) approach by taking local structure of the
data into account, and the multimodal data can be
embedded appropriately. D. Cai at al. [31] study the
locality sensitive discriminant analysis (LSDA) method,
which utilizes local geometry structure of the data mani-
fold and discriminant information at the same time. T.
Zhang et al. [32] present a discriminative locality align-
ment (DLA) algorithm by imposing discriminative infor-
mation in the part optimization stage. DLA can attack
the distribution nonlinearity of measurements and
preserve the discriminative ability while avoiding the
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small sample size problem. B. Li et al. [33] propose the
locally linear discriminant embedding (LLDE) method.
LLDE apply the constrained weights to strengthen the
classification ability. Y. Chen et al. [34] present a local
coordinate factorization (NLCF) method by adding a
local coordinate constraint into the standard NMF
objective function. Q. Gao et al. [35] propose the stable
orthogonal local discriminate embedding algorithm by
introducing the orthogonal constraint on the basis
vectors. C. Hou et al. [36] propose a unified framework
that explicitly unfolds the manifold and reformulate local
approaches as the semi-definite programs and thus
improves the performance of some algorithms such as
locally linear embedding (LLE), laplacian eigenmaps (LE),
and local tangent space alignment (LTSA). Although the
above methods are successful in many applications, their
recognition performance may decrease when objects as
HRRPs suffer from the large within-class variation due to
the fact that these methods are often in lack of robustness
and generalization.

Inspired by the maximum margin of SVM, A. Kocsor
et al. [37] propose the margin maximizing discriminant
analysis (MMDA) approach. The core of MMDA is to
maximize the between-class margin on the decision
boundary by applying the normals of a set of pairwise
orthogonal margin maximizing hyperplanes to construct
a projection subspace. But MMDA is only fit for binary
classification problem and cannot be applied for multi-
class classification problem directly. Based on the similar
idea, H. F. Li et al. [38] present the maximum margin
criterion (MMC) method. The aim of MMC is to
maximize the trace of the difference of the between-
class scatter matrix and within-class scatter matrix. It
can be applied for multiclass classification directly and
avoid the small sample size (SSS) problem. However, the
coordinate axes of MMC subspace are not optimal in
meaning of maximum margin due to the fact that they
are solved by (SVD) on the difference between the
between-class scatter matrix and within-class scatter
matrix without exerting the constraints. Thus, its per-
formance can be improved further.

In this paper, a novel target recognition method,
namely orthogonal maximum margin projection sub-
space (OMMPS), is proposed for radar target HRRP
recognition. The aim of OMMPS is to maximize the
between-class margin by increasing the between-class
scatter distance and reducing the within-class scatter
distance simultaneously. By exerting the orthogonality
constraint on the objective function, we can solve the
OMMPS. The OMMPS has three advantages: First, the
number of features does not depend on the number of
classes. As a result, the appropriate features can still be ob-
tained for separating the classes, even in high-dimensional
space with only a few classes. Second, the coordinate axes



Zhou EURASIP Journal on Wireless Communications and Networking (2016) 2016:72

of OMMPS are optimal in meaning of maximum margin
because the coordinate axes are solved sequentially by
exerting the orthogonality constraint on the objective
function. Third, the coordinate axes of OMMPS are
mutually orthogonal and the features extracted by
OMMPS reduce the redundancy, thus improves the
recognition performance.

2 OMMPS

Let X = [X11°-X1n, **"Xc1° - "Xen. Jdenotes a training sample
set,x;is the jthrz-dimensional HRRP vector of ith class. Each
class contains N; training samples, and the number of total
training sample for C classes is N(N=Nj + Ny + - + N().
Let A represents a n x m-dimensional matrix (7 < n).
Projecting x;; into m-dimensional feature subspace below

T
Yij =A Xjj (1)
where Tdenotes transposition, and y;is a m-dimensional

vector, namely subprofile of x;. Firstly, computing the
between-class scatter distance dp in subprofile space

cC C
BZ%ZZNNI( (V¥:)" (7-¥%)
¢
=2 N 0N ) (2

N;
where Tr(-) is the trace of matrix. y; = ]%Z
=1

Ny
Sy and -
k=1

class’ training subprofiles, kth class’ training subprofiles,
and total training subprofiles, respectively. Substituting
Eq. (1) into Eq. (2), it follows that

C .
dg=Tr (AT (Z % (X,-X) (ii—i)T> A) )

i=1
= Tr(ATSpA)

c N
ﬁz Zyij are the mean vectors of ith

i=1 j=1

where X;is the mean vector of ith class’ training samples,
and X is the mean vector of total training samples. Sp is
the between-class scatter matrix in original sample space

C .
S5 = ;‘j\v“(m—x)@—i)T (4)

Secondly, computing the within-class scatter distance
dyy in subprofile space
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S i )
ben)on)’))

=1

N;

T il

(w2
Substituting Eq. (1) into Eq. (5), we can get

dy = Tr ATZ (%ﬁ’:(xi,_x,.) (xi/—xi)T> A>

j=1

Z

i

Il
—

(6)

where Sy, is the within-class scatter matrix in original
sample space

s =3 (Vx5 o

=1 =1

According to the geometric structure in subprofile
space, we define the between-class margin in subprofile
space below

dM = dB—dW = TV(AT(SB—S\V)A) (8)

where d, is the between-class margin.

The aim of OMMPS is to seek an orthogonal projection
subspace by maximizing the between-class margin based
on the orthogonality constraint, i.e., solving the following
maximization problem

a, = arg maxd,,

a,

= arg r{na}x{Tr(arT(SB—SW)a,)}
= arg rFa}x{arT(SB—SW)ar}
ar

r=12,-m

©)

and
ala, =1 (10)
aja, =0 [=1,2,-,r-1 (11)

where a, is the column vector of matrix A, i.e, A = [a,
ay ... ay], namely orthogonal maximum margin projec-
tion subspace (OMMPS). Although the objective func-
tion in Eq. (9) is similar to that of MMC [38], the
objective function of MMC does not include the orthog-
onality constrains. Besides, MMC obtains the projection
subspace using the eigenvectors corresponding to the
first largest eigenvalues of matrix (Sg - Sy), and thus, the
projection vectors of MMC are not optimal in meaning
of maximum margin. We solve the above optimization
problem by following steps.
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To solve a;, we construct a Lagrangian function using
Egs. (9) and (10)

](al,Al) = a{(SB—S\x/)al—Al (alTal—l) (12)

where 1; is a Lagrangian multiplier. Taking the vector
derivative of J(a;,A;) with respect to a; and set the
resultant equation to zero, we can get the generalized
eigenvector equation

(SB—Sw)a1 = )L1a1 (13)

Let A™is the largest eigenvalue of matrix (S - Syy)and
u**is the corresponding eigenvector; then, we may set

a; = p™ (14)

After obtaining the a;, combining Egs. (9)—(11), we
can form the Lagrangian function

J(ar, A1, 24,1, 4,) = af (Sp-Sw)ai-M1al a,-rala, -

-Araal a1, (al'a,-1)
(15)

where 1;, 15, A,_1, and A, are Lagrangian multipliers. In
a similar way, taking the derivative of J(a,A, A5 - A, _1,4,)
in Eq. (15) with respect to a, and A/(/=1,2, -+, 7), solving
the resultant equation leads to

(I- (alalT +agal + -+ ar,laf_l))(SB—SW)a, =La, (16)

Let A)"is the largest eigenvalue of Eq. (16) and p"**is
the corresponding eigenvector; then, we can set

a, = p (17)

According to the above discussion, it is obvious that
the basis vectors of OMMPS are solved sequentially by
exerting the orthogonality constraint on the objective
function. As a result, they are mutually orthogonal and
optimal in meaning of maximum margin. Therefore,
OMMPS has better discriminative power than MMC.
The steps of feature extraction based on OMMPS are
shown in Algorithm 1.

Algorithm 1. The feature extraction based on
OMMPS

Task: Solve the linear subprofile features using the
training data set

X = [Xq1- X1, - Xc1 e Xen]

Step 1) Determine the subprofile's dimensionality m

Step 2) Compute the matrix Sgand Syby equation (4)
and (7)

Step 3) SVD to matrix (Sz— Sw), and obtain the a; by
equation (14)

Step 4) SVD to matrix (I—(alalT+ —|—a,_1arT_1))
(Sg-Sw )for r =2, and obtain the a,by equation (17)
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Step 5) Set r=r+ lrepeat Step 4 until a,,is obtained.
Then A =[a; a, - a,,]

Step 6) Obtain the linear subprofile of HRRP
vector x using equation (1)

3 Orthogonal kernel maximum margin projection
subspace (QKMMPS)
When nonlinear variations in HRRPs are very serious,
the HRRPs of different classes may not be separable
linearly. We introduce the nonlinear mapping to solve
this problem. A nonlinear function ¢ is used to map x;
into a high-dimensional feature space F below
R": x;—F : ¢(xy) (18)
where the dimensionality of feature space Fis n; here, n
may be any value or infinite. Let A, denotes a n x m®-
dimensional transformation matrix, namely orthogonal
kernel maximum margin projection subspace; then,
¢(x;) is projected into 7? dimensional space as follow

Y?} = Ag‘p (xij) (19)

where y?; is m?-dimensional column vector, namely non-

linear subprofile of HRRP vector x;; in low-dimensional
feature space. In a similar way, we can compute the
between-class margin d9; in nonlinear subprofile space

df, = Tr(Ag (sj’;—s‘(;,)Aq,) (20)

where S§ and S}, are the between-class scatter matrix
and within-class scatter matrix in high-dimensional
feature space F, respectively.

St — zclj% (x¢—x?) (x!—x?)" (21)
c /nr Ni

s, :Z<%Z(x;_xl)(xg_x¢)T> )
i=1 j=1

N;
where x;’; = (p(xij) , i(;p = (I/Ni)z ¢)(xij) , and Xx?
=1
C N;

= (I/N)ZZQD(X[,'). Based on the aim of orthogonal
=1 j=1

kernel maximum margin projection subspace (OKMMPS),

we may get OKMMPS by solving the following constrained

maximization problem
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a? = arg max df
w o
= arg ggf{TV((af) (S5-8%)"al)}
— arg max {(a?)" (S5-S%,)"a?
oo (01”5053 ")

r=1,2,m
(23)
and
(a?)"a? = 1 (24)
@) a?=0 1=1,2,-r-1 (25)

where a? is the column vector of matrix Ay ie, A,

= [a? aj -af, |, namely OKMMPS. Because the expres-
sion of nonlinear mapping ¢(-) is not defined explicitly,
it is impossible to solve the Eq. (23) for obtaining

OKMMPS directly. We use kernel trick to solve this

problem.
Let
C N;
= ZZ rz/‘p xl] (26)
i=1 j=1
and
k(Xz‘p Xlk) = ¢T(xi/)¢(xlk) (27)

where a,;; is a coefficient, x;and x; are n-dimensional
column vectors, and k(x;,Xx;) is a kernel function.
Substituting Eqgs. (26) and (27) into Egs. (23)—(25), it
follows that

o = maxie) { (@) (S55-85) o b r=1,2
(28)
and
(x,TK(x, =1 (29)
o« Ka, =0 [=1,2,r-1 (30)
where
o = @ i o aene)” (31)
N,
Sk = ;ﬁ(P -P)(P,-P)" (32)
C N;
sz, = ,z;];\[[l,l ((19),-P:) (),-P )T (33)
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Zk xl]axlk lv :1727 7C ]:1323' 7Nl
‘k1
(34)
(( ) _kxlkaxl]
,:12 N k=1,2,- N,

Combining Eqgs. (28) and (29), we can construct the
following function for getting a;

J(a1,y;) = (xlT (SE—S‘W)(xl—Al ((xlTK(xl—l) (36)

where y; is a Lagrangian multiplier. Taking the vector
derivative of J(aj,y;) with respect to a; and set the
resultant equation to zero, we can get the generalized
eigenvector equation

K™ (S5-S% a1 =y (37)
Similar to the observation in Section 2, we set
@ = (38)

o, max
where py’

is the eigenvector corresponding to the

largest eigenvalue y™ of matrix K! (SE—S@).
Combining Eqgs. (28), (29), and (30), the function is

constructed using Lagrangian multipliers to solve

a(2<r<m)

J(@ Y15 Yo Yr1s ¥,) = o (3-8 ) ear-y,af Keo—y, 00 Kat, -
“¥raal Kayi-y, (o Ke,-1)

(39)
where y3, y2, -1, and y, are Lagrangian multipliers. In

a similar way, we can get the following eigenvector
equation

K! (I (Kalal Kaztxz + -+ Ka,_ o, 1))(5 -S5 )oq =y,q

(40)

Let y"*is the largest eigenvalue of Eq. (40) and pj>™*
is the corresponding eigenvector; then, we set

= (41)

After obtaining S% oy, a5 -+, @, ¢(x) is projected into
the nonlinear subprofile space according to Eq. (19); it
follows that

k(x11,X)

7 k(xl.va)

Y=l o, (42)

k(xCN57 X)

where y? is the corresponding nonlinear subprofile of x.
The steps of feature extraction based on OKMMPS are
shown in Algorithm 2.
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Fig. 2 The average recognition rates of two methods (MMC and

OMMPS) versus dimensionality of subspace. a MMC. b OMMPS

Algorithm 2. The nonlinear feature extraction based
on OKMMPS

Task: Solve the nonlinear subprofile features using the
training data set

X = [xll XN, Xel 'xCNC}

Step 1) Determine the subprofile's dimensionality m

Step 2) Select the kernel function

Step 3) Compute the matrix K, and Sj, by equation
(27), equation (32) and (33)
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Step 4) SVD to matrix K (Sg—S‘{‘X,), and obtain the a;
by equation (38)

Step 5) SVD to matrix K (I-(Kayaf + -+ +Ka,
al 1)) (S-S5 )for r =2 and obtain the a,by equation (41)
Step 6) Set r=r + lrepeat Step 5 until a,,is obtained

Step 7) Obtain the nonlinear subprofile of HRRP
vector xusing equation (42)

4 Experimental results

To show the effectiveness of the proposed method, we
perform the extensive experiments on the measured data
of three kinds of airplanes.

4.1 Data description

The data used in experiments are HRRPs measured from
three airplanes, including An-26, Jiang, and Yark-42. For
each airplane, 240 HRRPs over a wide range of aspects
are adopted. For each airplane, one quarter of all HRRPs
are used for training and the rest are used for testing.
Before running experiments, each HRRP is preprocessed
by energy normalization. The HRRPs of three airplanes
are illustrated in Fig. 1.

4.2 The dimensionality of subspace

In this experiment, we consider the effect of subspace’s
dimensionality on recognition performance. The train-
ing data and testing data are as described above. The
subspace’s dimensionality is set from 1 to 10. The
nearest-neighbor classifier is applied for classification.
Two kernels are used, i.e., radial basis function kernel
(RBFK)

Kiy) = (13)
and polynomial function kernel (PFK)
k(x,y) = (xy +1)? (44)

where the kernel parameters o and d are set by the
cross-validation method.

Figure 2 shows the average recognition rates of two
methods (MMC [38] and OMMPS) versus the subspace’
dimensionality. From Fig. 2a, it can be seen that there is a
big rise in the average recognition rate when the subspace’
dimensionality is increased from 1 to 5, and the average
recognition rates keep same approximate when the
subspace’ dimensionality is above 5. Thus, the proper

Table 1 The average recognition rates along with the dimensionalities using radial basis function kernel (%)

Method 0=5 0=10 0=20 0=30 0=40 0=50

KPCA 69.33 (5) 82.00 (15) 83.00 (7) 8333 (10) 84.00 (10) 84.00 (10)
KFDA 7633 (2) 85.42 (2) 7567 (2) 7833 (2) 82.00 (2) 81.00 (2)
OKMMPS 73.00 (10) 7567 (2) 90.33 (50) 8867 (60) 88.00 (75) 87.33 (80)

The italicized numbers represent the highest recognition rates of one method for different parameter value
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Table 2 The average recognition rates using polynomial function kernel (%)

Method d=1 d=2 d=3 d=4 d=5 d=6
KPCA 8233 (8) 83.00 (7) 83.00 (10) 81.67 (10) 80.33 (10) 80.00 (5)
KFDA 79.67 (2) 77.00 (2) 7533 (2) 78.00 (2) 84.33 (2) 83.00 (2)
OKMMPS 88.67 (67) 87.67 (74) 87.67 (80) 87.67 (80) 86.67 (80) 86.33 (80)

The italicized numbers represent the highest recognition rates of one method for different parameter value

dimensionality of MMC is set as 5 in the following
experiments. From Fig. 2b, the appropriate dimen-
sionality of OMMPS can also be set as 5. In a similar
way, the proper dimensionality of OKMMPS with
RBFK and PFK are set as 50 and 67, respectively.

4.3 Kernel parameters

In this experiment, we set the appropriate parameters for
kernel methods such as OKMMPS, KPCA [22], and KFDA
[23] by the cross-validation method. For radial basis func-
tion kernel, the parameter ois set as 5, 10, 20, 30, 40, and
50. For polynomial function kernel, the parameter d varies
from 1 to 10. The training data and test data are the same
as previous experiments. The nearest-neighbor classifier is
applied for classification. The experiment is run for each
parameter. Tables 1 and 2 illustrate the average recognition
rates along with the dimensionalities of three kernel
methods for varying value of parameters. As can be seen in
Tables 1 and 2, OKMMPS achieves the best recognition
results when the radial basis function kernel with o=20
and the polynomial function kernel with d =1 are selected
for OKMMPS. We choose the parameters for other kernel
methods in similar way. The best kernel parameters chosen
for the methods mentioned above are shown in Table 3. In
addition, it can also be observed that the methods with the
radial basis function kernel have higher recognition rates
than those with polynomial function kernel. It shows that
the radial basis function kernel can well represent the non-
linearity appearing in HRRP samples for these data.

4.4 The variation of target aspect

The HRRPs change largely when the target aspect varies
with a few degrees, which increase the difficulty in
classifying the targets. In this experiment, we consider
the robustness of MMC, OMMPS, and OKMMPS to the
variation of target aspect. The training data is the same
as the previous experiments. Three subsets of testing
data are selected, including 300, 420, and 540 HRRPs,

Table 3 The best kernel parameters for kernel-based methods

Method Radial basis function kernel Polynomial function kernel
o d

KPCA 40 2

KFDA 10 5

OKMMPS 20 1

respectively. For each class, 100, 140, and 180 HRRPs
are chosen for three subsets of testing data, respectively.
It is obvious that the variation of target aspect becomes
large when the number of HRRPs increases. The radial
basis function kernel is used. The parameters of these
methods are set according to the above experiments.
The dimensionality of MMC, OMMPS, and OKMMPS
is 5, 5, and 50, respectively. The parameter of radial basis
function kernel for OKMMPS is set as 20. The nearest-
neighbor classifier is applied for classification. The rec-
ognition results of three methods for three subsets of
testing data are illustrated in Fig. 3. From Fig. 3, it is
shown that the average recognition rates decrease when
the number of testing samples is increased from 100 to
180, i.e., the variation of target aspect becomes large.
However, the recognition rates of OMMPS and OKMMPS
are still better than those of MMC for three subsets. This
means that OMMPS and OKMMPS are more robust to
variation of aspect than MMC. The reason is that the basis
vectors of OMMPS and OKMMPS are obtained by solv-
ing the optimization problem sequentially, and they are
optimal in meaning of maximum margin. Thus, the high
classification accuracy can be obtained when the within-
class scatter is large due to big change of HRRPs.

4.5 Performance comparison

To show the effectiveness of the proposed method further,
we evaluate the performance of OMMPS and OKMMPS
compared with MMC [38], PCA [20], LDA [21], KPCA
[22], and KFDA [23] under different SNR. The SNR is set
as 5, 10, 15, 20, 25, and 30 dB. For each SNR, the recogni-
tion results are averaged for 50 run. The dimensionality of
subspace for MMC, OMMPS, OKMMPS, PCA, LDA,
KPCA, and KFDA is 5, 5, 50, 26, 2, 10, and 2, respectively.
The radial basis function kernel is used. According to the
experimental results of subsection 4.3, the kernel param-
eter for OKMMPS, KPCA, and KFDA is set as 20, 40, and
10, respectively. The nearest-neighbor classifier is applied
for classification. Figure 4 shows the average rates of seven
methods versus SNR. Some interesting observations can
be seen from Fig. 4.

(1) When SNR is above 15 dB, the kernel methods such
as OKMMPS, KFDA, and KPCA outperform the corre-
sponding linear methods such as OMMPS, LDA, and
PCA. At SNR=15 dB, the average recognition rates of
OKMMPS, KFDA, KPCA, OMMPS, LDA, and PCA are



Zhou EURASIP Journal on Wireless Communications and Networking (2016) 2016:72 Page 9 of 11

100 \ ‘ ‘ ‘ ‘

8or —e— MMC i

—%— OMMPS
—— OKMMPS

60 b

Average recognition rates (%)
~
o
Il

50 b

40 | | | | |
80 100 120 140 160 180 200

Number of testing samples

Fig. 3 The average recognition rates of three methods versus the number of testing samples

_

86.52, 81, 79.67, 85.33, 80, and 79.33 %. It shows that the is much less than the dimensionality of HRRP. At SNR
kernel methods are more robust to noise than the linear =15 dB, the average recognition rates of MMC and LDA
methods. This is because the nonlinearity in HRRPs are 83.33 and 80 %, respectively. This demonstrates that
is very obvious due to the effect of noise, and the = MMC has better discriminative power than LDA for
kernel methods can well represent the nonlinearity small size of training data. The reason is that LDA
variation appearing in HRRP samples by nonlinear suffers from small sample size (SSS) problem in the case
mapping. Thus, the separability between the different of small size of training data. However, MMC does not
classes can be improved. need the inversion of the within-class scatter matrix and

(2) MMC has better recognition performance than may avoid the SSS problem. As a result, the features
LDA for all SNR level when the number of training data  extracted by MMC are more robust.
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Fig. 4 The average recognition rates of seven methods versus SNR
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(3) The discriminative ability of OMMPS and OKMMPS
is superior to that of MMC when the SNR is from 5 to
30 dB. At SNR =15 dB, the average recognition rates of
OMMPS, OKMMPS, and MMC are 85.23, 86.42, and
83.33 %, respectively. The reason is that the basis vectors
of OMMPS and OKMMPS are obtained by solving the
optimization problem sequentially and they are optimal in
meaning of maximum margin. Especially, the basis vectors
of OKMMPS are still orthogonal in high-dimensional
feature space. It means that the features extracted by
OMMPS and OKMMPS are more discriminative than
those extracted by MMC.

5 Conclusions

In this paper, we propose a novel radar target recognition
method using HRRP, namely orthogonal maximum mar-
gin projection subspace (OMMPS). The kernel version,
called as orthogonal kernel maximum margin projection
subspace (OKMMPS), is also derived. The proposed
method is able to maximize the between-class margin
by increasing the between-class scatter distance and
reducing the within-class scatter distance simultan-
eously. The experimental results on the measured data
of three kinds of planes show that

(1)OMMPS and OKMMPS can still obtain the
appropriate dimensionality of subspace for
high-dimensional HRRP vector with three classes.

(2) The radial basis function kernel can better represent
the nonlinearity appearing in HRRP samples than
the polynomial function kernel.

(3)OMMPS and OKMMPS are more robust to the
variation of target aspect than MMC method.

(4)OMMPS and OKMMPS have higher recognition
performance than the other methods.

Abbreviations

HRRP: high-resolution range profile; MMC: maximum margin criterion;
OKMMPS: orthogonal kernel maximum margin projection subspace;
OMMPS: orthogonal maximum margin projection subspace.
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