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Abstract

Automatic extraction of acoustic regions of interest from recordings captured in realistic clinical environments is a
necessary preprocessing step in any cry analysis system. In this study, we propose a hidden Markov model (HMM)
based audio segmentation method to identify the relevant acoustic parts of the cry signal (i.e., expiratory and
inspiratory phases) from recordings made in natural environments with various interfering acoustic sources. We
examine and optimize the performance of the system by using different audio features and HMM topologies. In
particular, we propose using fundamental frequency and aperiodicity features. We also propose a method for
adapting the segmentation system trained on acoustic material captured in a particular acoustic environment to a
different acoustic environment by using feature normalization and semi-supervised learning (SSL). The performance
of the system was evaluated by analyzing a total of 3 h and 10 min of audio material from 109 infants, captured in a
variety of recording conditions in hospital wards and clinics. The proposed system yields frame-based accuracy up to
89.2%. We conclude that the proposed system offers a solution for automated segmentation of cry signals in cry
analysis applications.
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1 Introduction
For several decades, there has been an ongoing inter-
est in the connection of acoustic characteristics of infant
cry vocalizations with infant health and developmen-
tal issues [1–4]. Atypicalities in specific features of cry
(e.g., fundamental frequency) have been linked with diag-
nosed conditions such as autism, developmental delays,
and chromosome abnormalities [5, 6] and with risk fac-
tors such as prematurity and prenatal drug exposure
[7, 8]. These findings have generated hope that cry analysis
may offer a cost-effective [9], low-risk, and non-invasive
[10, 11] diagnostic technique for early identification of
children with developmental and health problems. The
need for detecting health problems and risks (e.g., as
pointed out by [6]) as early as possible is important
because the plasticity of the developing brain and the
sensitive periods of skill formation at the very early age
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offer the best chances to support optimal development by
rehabilitation and medical care [12–16].
An infant cry signal consists of a series of expirations

and inspirations separated by bouts of silence. These will
be referred to as expiratory and inspiratory phases in this
paper. A cry signal captured in a realistic environment
(e.g., pediatric ward of a hospital) may contain extraneous
sounds (e.g., non-cry vocals produced by the infant, vocals
of other people present in the room, and background
noise contributed by the surrounding environment or by
the recording equipment itself ). A cry signal recording
can thus be thought of being composed of what we call
the regions of interest, namely, expiratory and inspiratory
phases, and extraneous regions consisting the rest of the
audio activity contained in the recording, termed as resid-
ual in this paper. Figure 1 is an example of a chunk of a cry
recording captured in hospital environment.
In realistic clinical situations, the recordings are affected

by the acoustic environment including the room acous-
tics and other sound sources present during the recording.
The cry signal itself is affected by several factors related to
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Fig. 1 An example of a chunk of infant cry signal showing expiratory and inspiratory phases and non-cry vocals present in the recording
(categorized as residual)

the state of infants’ health and development [6], age [17],
size [18], reason of crying [19], and arousal [20].
In a cry analysis system meant to work with recordings

captured in realistic environments, there is often a need
for a pre-processing system which is able to differenti-
ate the regions of interest (i.e., expiratory and inspiratory
phases) from extraneous acoustic regions (i.e., residual).
The need for identifying the expiratory and inspiratory
phases as separate classes arises from the fact that they
differ in their properties, e.g., fundamental frequency, har-
monicity, and time duration. Successful extraction of these
are of significant interest when the system output is used
as a diagnostic tool where the relation of these properties
to infant neuro-developmental outcomes can be explored.
Manual annotation of cry recordings is prone to errors
and is rendered unfeasible when the number of recordings
to be annotated is large. The segmentation mechanism
in any such cry analysis system thus needs to be auto-
matic and should be able to work with material captured
in diverse recording contexts.
Various methods have been previously used in the field

of infant cry analysis to deal with the problem of iden-
tifying the useful acoustic regions from cry recordings,
for example, manual selection of voiced part of record-
ings [4, 21], cepstral analysis for voicing determination
[22], harmonic product spectrum (HPS) based methods
[23], short-term energy (STE) histogram based methods
[24, 25], and k-nearest neighbor algorithm based detec-
tion [26]. Most of these methods have treated inspiratory
phases as noise, and primary attention has been focused
on extraction of expiratory phases. The relevance of

anatomical and physiological bases of inspiratory phona-
tion has been pointed out by Grau et al. [27]. Previously,
Aucouturier et al. [28] have used the hidden Markov
model (HMM) based method for automatic segmentation
of cry signals while treating inspiratory vocalization as a
separate class. They utilized standard mel-frequency cep-
stral coefficients (MFCC) as audio features and employed
HMM topology consisting of a single state for each tar-
get class. Abou-Abbas et.al [29] proposed a similar HMM
based method utilizing delta and delta-delta features
along with MFCCs and experimenting with more number
of HMM states for each class. Similarly, Abou-Abbas et.al.
[30] proposed cry segmentation using different signal
decomposition techniques. Hidden Markov models for
cry classification instead of detection have been studied
by Lederman et.al. [31, 32].
In this paper, we propose an HMM based method for

identifying useful acoustic regions from cry recordings
captured under diverse recording conditions. The diver-
sity of recording conditions includes acoustic conditions
of recording, types of cry trigger, and infant-related fac-
tors which are known to affect acoustic characteristics of
cry. Sections 4.1 and 4.2 describe this in detail. The work
presented here distinguishes itself from similar previous
efforts by proposing the use of fundamental frequency and
aperiodicity (see Section 2.1) as audio features in addition
to conventionally used features, e.g., MFCCs and their
first and second order derivatives.We show that this yields
an improvement in segmentation performance. Moreover,
we show that the proposed system is able to adapt tomate-
rial recorded in unseen acoustic environments for which
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it has not been trained. We use a combination of fea-
ture normalization and semi-supervised learning for this
adaptation problem.
The paper follows the following structure. Section 2

explains the implementation of the proposed system,
Section 3 explains the model adaptation techniques,
Section 4 describes the data used in experiments,
Section 5 describes the evaluation and presents the
obtained results, and, finally, Section 6 provides some
concluding remarks with suggestions for future directions
of this work.

2 Proposedmethod
In order to analyze infant cry recordings captured in
realistic environments containing interfering sources, the
goal is to segment cry recordings into three classes,
namely, expiratory phases, inspiratory phases, and resid-
ual. The residual class consists of all acoustic regions
in the cry recording except the ones covered by the
other two classes. A supervised pattern recognizer based
on hidden Markov models (HMM) with Gaussian mix-
ture model (GMM) densities [33] is used for segmen-
tation. An HMM is a statistical model which models a
generative time sequence characterized by an underly-
ing hidden stochastic process generating an observable
sequence [34]. HMMs have been widely used in auto-
matic speech recognition (e.g., [35]) to model variability
in speech caused by different speakers, speaking styles,
vocabularies, and environments.
Figure 2 depicts the block diagram of the segmentation

process. Each cry recording under investigation is divided
into windowed overlapping short time frames. For each
such frame, the HMM pattern recognizer outputs a set of
observation probabilities of the three classes being active
in that frame. These probabilities are decoded using the
Viterbi algorithm. Decoding here refers to the process of
finding the best path in the search space of underlying
HMM states that gives maximum likelihood of the acous-
tic feature vectors from the cry signal under investigation.
It outputs a class label for each frame of the signal, and

this information is used to identify the regions of interest
(i.e., expiratory and inspiratory phases) in the cry sig-
nal. The overall implementation can thus be described in
three stages, namely, feature extraction, HMM training,
and Viterbi decoding. These stages are described in the
following subsections.

2.1 Feature extraction
Mel-frequency cepstral coefficients (MFCC) are used as
the primary audio features. They have been widely used
in audio signal processing problems, for example, speech
recognition [36], audio retrieval [37], and emotion recog-
nition in speech [38]. Frame duration of 25 ms with
50% overlap between consecutive frames and Hamming
window function was used for extracting the MFCCs.
For each frame of the signal, a 13-dimensional MFCC
feature vector, x = [ x1, x2....., x13]T , is extracted, which
includes the zeroth MFCC coefficient; here, T represents
the matrix transpose. The sampling frequency for each
audio signal is 48 kHz. In conjunction with MFCCs, the
following additional features are investigated.

1. Deltas and delta-deltas: MFCCs are static features
and provide a compact spectral representation of
only the corresponding frame. Temporal evolution of
these features might be useful for segmentation
purposes since HMMs assume each frame to be
conditionally independent of the previous ones given
the present state. This temporal dynamics is captured
by computing the time derivatives of MFCCs, known
as delta features. Similarly, temporal dynamics of
delta features can be captured by computing their
time derivatives, known as delta-delta features. For
13 MFCCs per frame, we have 13 delta coefficients
and 13 delta-delta coefficients. The use of these time
derivatives also means that the system is non-causal.

2. Fundamental frequency (F0): Inspiratory phases are
known to have higher fundamental frequency (F0)
than expiratory phases [27]. This property can be
exploited for segmentation purposes by including F0

Fig. 2 Block diagram of the audio segmentation system
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as an audio feature. The YIN algorithm [39] is a
popular pitch estimation algorithm, which has been
found to perform well in the contexts of speech [40]
and music [41] signals. A freely available MATLAB
implementation of the algorithm is used in the
proposed system [42], and one F0 value is obtained
for each frame. We found YIN algorithm to be
suitable for this dataset as F0 values were empirically
found to be between 200 and 800 Hz and very few
instances of hyperphonation (F0 < 1000 Hz) [6]
were observed.

3. Aperiodicity : Aperiodicity in this study refers to the
proportion of aperiodic power in the signal frame and
is computed through the YIN algorithm. In order to
compute an F0 estimate, the YIN algorithm employs
a function known as cumulative mean normalized
difference function. The minima of this function that
subscribes to certain conditions gives an estimate of
the fundamental period of the signal frame. The
value of the function at this minima is proportional
to the aperiodic power contained in the signal frame.
A detailed mathematical treatment can be found
from the original paper [39]. One aperiodicity value
is obtained corresponding to each frame.

2.2 Cry modeling using HMMs
The available dataset is manually annotated and divided
into training and test sets, as will be described in detail
in Section 4. Features extracted from all audio files in the
training dataset for a particular target class are concate-
nated to give training feature matrix Xi, i being the index
of the target class. Using these feature matrices, three sep-
arate HMMmodels are trained corresponding to the three
target classes: expiratory phases, inspiratory phases, and
residual. The probability density function (pdf) of each
HMM state is modeled with Gaussian mixture models
(GMMs).
Training involves estimating HMM parameters, λi (i.e,

weight, mean, and covariance of component Gaussians
and state transition probabilities), which best fits the
training data Xi. Probabilistically, it is framed as problem
of maximizing probability of an HMM model given the
training dataXi, which in turn can be framed asmaximum
likelihood estimation problem, i.e.,

λ
opt
i = argmax

λ

P(Xi|λi) (1)

where λ
opt
i indicates the optimal model for ith class. For

this, the standard Baum-Welch algorithm [43], an expec-
tation maximization algorithm used to estimate HMM
parameters, is used. AHTO toolbox of the Audio Research
Group, Tampere University of Technology, is used for
this purpose. Fully connected HMMs are used with each
state having equal initial state probability. It also means

all entries of initial state transition probability matrix are
non-zero and equal. For state means and covariances,
k-means clustering initialization is used.
Two parameters have to be chosen for each HMM: S,

the number of states used to adequately model the class,
and C, the number of Gaussian components in the corre-
sponding GMM used to model each state of the HMM.
The effect of both these parameters on system perfor-
mance has been investigated and will be discussed in
Section 5. The number of states and component Gaussians
in the three HMMs are denoted by Sexp and Cexp, Sins
and Cins, and Sres and Cres for expiratory phase, inspi-
ratory phase, and residual, respectively. HMMs trained
for the three target classes are then combined to form a
single HMM having a combined state space and transi-
tion probability matrix. State transitions from any state
of one model to any state of another model are possible,
in other words, the combined HMM model is fully con-
nected. The combined model has a transition probability
matrix having dimensions (Sexp + Sins + Sres) × (Sexp +
Sins + Sres). The probability of transition from one model
to another depends upon model priors and inter-model
transition penalty, a parameter similar to HTK toolkit’s
[44] word transition penalty parameter. Inter-model tran-
sition penalty penalizes model transition from one model
to another and has to be empirically determined (we
have used a value of −1 in this paper). The model priors
are calculated simply by counting the occurrences of the
corresponding class from the annotated data.
HMM parameters of this combined model are used for

Viterbi decoding of observation probability outputs in the
following section. Figure 3 depicts the combined HMM.

2.3 Viterbi decoding
Features extracted from the cry recording to be segmented
are fed to the three HMM models, each trained for a
particular target class. For each frame of the recording,

Fig. 3 HMMmodels for individual classes are combined into a single
fully connected HMM
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the HMM outputs the probabilities of its constituent
states being active in that frame. Three observation prob-
ability matrices are generated corresponding to three
HMMs which are combined into a single matrixOcomb as
depicted in Fig. 4. The Viterbi algorithm is employed upon
this combined observation probability matrix using the
parameters learned for combined HMMmodel in the pre-
vious section. The algorithm maximizes the probability
of occurrence of state sequence q given a learned HMM
λcomb and observation probability matrixOcomb, i.e.,

qopt = arg max
q

P(q|Ocomb, λcomb) (2)

where qopt is the state sequence giving maximum likeli-
hood through the combined HMM state space which now
consists of (Sexp +Sins +Sres) states. This output sequence
consists of a state assignment for each frame of the record-
ing, which can further be used to give corresponding class
assignment for each frame. It is done by identifying the
contributing HMM corresponding to the chosen state for
that frame. AHTO toolbox is used for Viterbi decoding.
Figure 4 shows the implementation of the audio segmen-
tation system. The segmentation results for a 5-s chunk of
a cry signal is depicted in Fig. 5.

3 Model adaptation
The proposed audio segmentation system is trained on a
dataset recorded in a particular acoustic environment and
may not necessarily be able to generalize for a dataset cap-
tured in a different acoustic environment. In this section,
we will show that the proposed system can be made to
work for data recorded in unseen acoustic environments
as well. We will train our system on data recorded in a
known acoustic environment and use it predict class labels
on data recorded in an unseen acoustic environment. Our
proposed solution consists of two stages: feature normal-
ization [45] and semi-supervised learning. These will be
described in detail in the following subsections.

3.1 Feature normalization
Features extracted from an audio file are normalized by
subtracting the mean and dividing it by the standard
deviation before feeding it to the HMM. The mean and
standard deviation vectors are derived for each audio file
separately. This is repeated for each audio file present in
the training data (from known environment) as well as
the test data (from unknown environment). For a feature
vector Fjn extracted from jth frame of nth audio file, the
normalized feature vector is given by

Fstdjn = Fjn − μn
σ n

(3)

where μn and σ n are mean vector and standard deviation
vector, respectively, derived for nth audio file. The divide
operation here is element-wise.

3.2 Semi-supervised learning
A semi-supervised learning (SSL) method, known as self
training [46], is used to further adapt the HMMmodels to
an unseen acoustic environment. In a classical SSL prob-
lem, we have two datasets: labeled data (from a known
acoustic environment) and unlabeled data (from a new
acoustic environment). The idea behind this method is to
generate additional labeled training data using the unla-
beled data comprised of audio files recorded in the unseen
acoustic environment. The output labels generated by the
model for the unlabeled data are treated as true labels, and
the models are retrained using the combination of orig-
inal training data and this newly generated labeled data.
Figure 6 depicts this process.
Alternatively, instead of using the entire unlabeled data,

a selection of only those frames can be made for which we
are confident of the assigned label being true. The likeli-
hoods outputted by HMMs corresponding to three target
classes may be used to devise a confidence criterion. In
Fig. 4, we have three likelihood matrices corresponding to
each target class for each test file. The maximum likeli-
hood for each column of the three matrices is calculated.
The ratio between the maximum and second largest value
roughly represents how confident we can be about the
classification result for a particular frame. We will refer it
as the confidence threshold. Only those frames for which
this ratio exceeds a certain threshold are chosen. A con-
fidence threshold of 2 was used in this work. Figure 7
shows the procedure of selecting data based on confidence
threshold. Data selected this way can be used as addi-
tional training data for HMMs corresponding to the three
classes.

4 Acoustic material
For this study, we collected cry recordings from two
cohorts of infants in Tampere, Finland, and in Cape Town,
South Africa. The following subsections describe these
two databases and evaluation of the performance of the
audio segmentation system on them.

4.1 Database: Tampere cohort
In Tampere, Finland, we captured the recordings atMater-
nityWard Units and NeonatalWard Unit of Tampere Uni-
versity Hospital. The recording period was from April 13
to August 3, 2014. The study followed the stipulated ethi-
cal guidelines and was approved by the Ethical Committee
of Tampere University Hospital. The cohort consisted of a
heterogeneous group of 57 neonates whose chronological
ages (i.e., the time elapsed since birth) at recording were
from 0 to 5 days as depicted in Table 1. The cohort was not
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Fig. 4 Implementation of the audio segmentation system. The input to the system is a feature matrix derived from a test audio file. The output is a
class label assigned for each frame of the cry signal
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Fig. 5 Audio segmentation results for a chunk of cry signal shown in the top panel. The bottom panel depicts the actual and predicted class labels
with blue and red plots, respectively
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Fig. 6 Semi-supervised learning block diagram

standardized because the target of the present study was
to develop a robust tool for identifying infant cry sounds
in the captured recordings for general neonate population.
In order to minimize the influence of learning and matu-
ration on cry characteristics, the age of the infants was the
only standardized variable in the cohort.
The cry samples were captured in a variety of record-

ing conditions. Firstly, the place of recording and the
associated acoustic environment varied significantly. It
included the hospital corridor, normal pediatric ward,
intensive care unit (ICU), waiting room, and nurse’s office.
Within each room, recordings were captured at different
places (e.g., mother’s bed, weighing scales, and infant’s
bed). Secondly, the background sounds present in the
recording consisted of human voices (e.g., coughing and
speaking) and mechanical sounds (e.g., sound of running

water, air conditioning, and diaper tape being opened).
Thirdly, infant-related factors (e.g., weight of the infant
and prematurity of birth) that are known to influence the
acoustic qualities of cry varied . Apart from the record-
ing conditions, the cry-initiating trigger also varied. It
included invasive (e.g., venipuncture) and non-invasive
(e.g., changing diapers and measuring body temperature)
operations, as well as spontaneous cries (e.g., due to
hunger or fatigue).
All Tampere recordings were stored as 48 kHz sam-

pling rate, two-channel audio in a 24-bit Waveform audio
file (WAV) format. The audio recorder used was Tascam
DR-100MK II with RØDE M3 cardioid microphone. For
further computation, the mean of the two channels was
taken to yield the signal to be segmented. The distance
between the infant’s mouth and the recorder was kept at

Fig. 7 Selection of data based on confidence threshold for each unlabeled audio file. The model outputs provide the labels for semi-supervised
learning
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Table 1 The chronological ages of infant subjects in the
Tampere cohort

No. of infants Chronological age (day)

1 0

11 1

29 2

10 3

3 4

2 5

1 Missing info.

approximately 30 cm. Each recording was given a sepa-
rate number code. The recordings were manually anno-
tated using Audacity [47] application to generate labels for
training the HMM models. Figure 8 is a snapshot of the
Audacity application showing an example of a chunk of
the labeled cry recording.
The database of 57 manually annotated audio record-

ings spans around 115 min in duration. A total of 1529
expiratory phases were found with a mean duration of
0.95 s and a standard deviation of 0.65 s. Similarly, 1005
inspiratory phases were found with a mean duration of
0.17 s and a standard deviation of 0.06 s. Figure 9 (top)
illustrates the distribution of the time durations for expi-
ratory and inspiratory phases for the Tampere cohort.
Note that inspiratory phases were fewer in number and

shorter in duration as compared to expiratory phases.

Hence, less data were available for training the HMM
for inspiratory phases as compared to expiratory phases.
Moreover, it needs to be emphasized here that inspira-
tory phases exhibitedmore variations throughout the data
in comparison to expiratory phases. For example, on the
one hand, we had recordings with very short or almost no
discernible inspiratory phases, and on the other hand, we
had recordings which have unusually prominent inspira-
tory phases as compared to expiratory phases. It is also
possible to observe both these extreme cases within the
same recording.

4.2 Database: Cape Town cohort
The other cohort used for this study is being investi-
gated under a larger research project in cooperation with
the Department of Psychiatry, University of Stellenbosch,
Cape Town. The data were collected in 2014 and consisted
of cry recordings of 52 infants whose age was less than
7 weeks (mean 33.5 days, standard deviation 3.5 days).
The cry recordings in this database were also manually
annotated using the Audacity application. The database
of 52 manually annotated audio recordings spans around
75 min in duration. A total of 1307 expiratory phases were
found with a mean duration of 1.1 s and a standard devia-
tion of 0.76 s. Similarly, 680 inspiratory phases were found
with a mean duration of 0.25 s and a standard deviation
of 0.07 s. Figure 9 (bottom ) illustrates the distribution of
the durations for expiratory and inspiratory phases for the
Cape Town cohort.

Fig. 8 Snapshot of the Audacity application showing a manually annotated chunk of the cry recording. Expiratory and inspiratory phases are coded
by names exp_cry and insp_cry, respectively
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Fig. 9 Distribution of durations of expiratory (left) and inspiratory (right) phases for Tampere (top) and Cape Town (bottom) cohorts

In the Cape Town cohort, the location and procedure of
recording were somewhat more standardized than in the
Tampere cohort (i.e., the recordings were captured while
conducting routine examinations in the same nursing
room). The cry trigger used was vaccination (i.e., inva-
sive) or measurement of infant weight at a weighing scale
(i.e., non-invasive). All Cape Town recordings were stored
as 48-kHz sampling rate, two-channel audio in a 24-bit
Waveform audio file (WAV) format. The audio recorder
used was Zoom H4n recorder with built-in condenser
microphones. The distance between infant’s mouth and
the recorder was approximately 1.3 m for infants being
vaccinated and 70 cm for infants being weighed. Our data
collection was conjoined with another study whose pro-
tocol required the mic to be a bit far and hence the larger
distance between the infant and the recorder as compared
to the Tampere cohort. Due to guidelines of the project
concerning protection of privacy of the involved partici-
pants, we are not able to publish the audio data used in
this project.

5 Evaluation
The segmentation performance was evaluated using a
five-fold cross-validation framework. In the case of
Tampere cohort, the available dataset of 57 cry record-
ings was divided into five partitions: four partitions of
12 recordings each and one partition of nine record-
ings. In a similar manner, for the Cape Town cohort, the
dataset of 52 cry recordings was divided into five parti-
tions: four partitions of 10 recordings and one partition
of 12 recordings. The division was done according to cry

codes assigned to the recordings which correspond to the
chronological order in which they were captured. In each
fold, one of the partitions was used as the test set and the
rest of the partitions were used for training. Five such folds
were performed with each fold having a different partition
as the test set. The output labels generated by the system
were compared against the manually annotated ground
truth.
For each test file under investigation, the output labels

produced by themodel were compared against the ground
truth (i.e., manual annotations) to calculate the perfor-
mance metrics. Two metrics have been used in this study
to evaluate the performance of the system, namely, frame-
based accuracy and frame-based F score. The frame-
based accuracy is defined as

accuracy = number of correctly labeled frames
total number of frames

. (4)

The frame-based F score is defined as the harmonic
mean of precision and recall values. Precision is the ratio
of true positive value to the test outcome positives for
a particular class. True positive value is the number of
frames correctly labeled by the system for a particular
class, and test outcome positive value is the number of
frames detected by the system belonging to that class.
Recall is the ratio of true positive values to total positive
values for any class. Total positive values are number of
frames in the test set belonging to that particular class.
The frame-based F score is thus given by

Fscore = 2
P · R
P + R

, (5)
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where P and R are the precision and recall, respec-
tively. Accuracy provides the overall performance of the
system, while F score is a measure of performance
over individual classes. The proposed segmentation sys-
tem aims to identify expiratory and inspiratory phases
from cry recordings; hence, F scores are reported for
these two classes only. The final system performance
metrics were obtained by averaging results over all
five folds.
It is to be noted that each performance metric is accom-

panied with the standard error calculated as,

standard error = sample standard deviation
√
sample size

(6)

where the sample sizes for Tampere and Cape Town
cohorts are 57 and 52, respectively.

5.1 Results: Tampere cohort
We investigated the performance of the system with
changes in the following parameters of the system,

• Number of HMM states used for each target class.
• Number of Gaussian components used to model the

output of each HMM state.
• Audio features used for feature extraction.

We started with a baseline HMM configuration con-
sisting of one state and five Gaussian components for
each target class while using standard MFCCs. Figure 10
(left plot) shows the variation of system accuracy and F
scores while increasing the number of HMM states. The
number of Gaussian components for each target class is
5. It can be seen that increasing the number of HMM

states up to 3 leads to improvement in the system per-
formance. However, adding further states does not result
in any significant improvement in system performance
but results in an increase in computation time of training
the HMMs.
Similarly, Fig. 10 (right plot) depicts the variation in sys-

tem performance while increasing the number of Gaus-
sian components. HMMs with one state for all target
classes were used. It shows an improvement in system
accuracy on incorporating up to 15Gaussian components.
On incorporating more number of Gaussians, improve-
ment is not very substantial; on the other hand, computa-
tion time of training HMM also increases.
Tables 2 and 3 show the accuracy and F scores,

respectively, for different combination of HMM states
and component Gaussians. As we add further states and
Gaussian components into the HMM topology, we
improve the system performance, but at the same time,
training time of the models increases as well. The solu-
tion would be to choose a topology which is fairly efficient
in terms of segmentation metrics and does not take much
time to train. For further experiments, we empirically
chose a topology consisting of three HMM states for each
class and 10 Gaussian components to model each HMM
state.
It can be observed that performance of the segmenta-

tion system is good for expiratory phases, while it is rel-
atively poor for inspiratory phases. This observation can
be attributed to short duration, lack of training data, and
wide variation in the types of inspiratory phases present
in the database, as was pointed out in Section 4.1. The
number of instances of expiratory phases in the database,
including both Tampere and Cape Town data, is around
1.7 times larger than inspiratory phases.
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Fig. 10 The left plot shows the variation of segmentation performance for different number of HMM states per target class, using five Gaussians for
each state. The right plot shows the same for different number of Gaussians for each state, using single HMM state per target class. The blue plot
depicts the variation in system accuracy, while red and black plots depicting variation in F scores for expiratory and inspiratory phases, respectively
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Table 2 Accuracy (in %) of the audio segmentation system with
different number of HMM states and component Gaussians

No. of No. of HMM states for each class
Gaussians 1 2 3 4

5 85.0 ±1.3 87.1 ±1.2 87.8 ±1.2 87.7 ±1.1

10 85.7 ±1.2 85.4 ± 1.1 87.5 ±1.1 87.6 ± 1.1

15 85.7 ± 1.2 85.5 ± 1.0 87.9 ±1.1 87.9 ±1.0

20 86.1 ±1.1 87.8 ± 1.0 87.8 ±1.0 88.1 ±1.1

25 86.1 ±1.1 88.0 ±1.0 87.9 ±1.0 88.2 ±1.1

Table 4 reports the performance of the system with
additional features. An improvement in the system per-
formance is observed by combining other audio features
with MFCCs used in the baseline configuration. Use of
deltas and delta-deltas, F0, and aperiodicity features led to
an overall improvement in the accuracy of the system. A
corresponding improvement in the F score performance
was observed as well, notably for inspiratory phases. The
overall accuracy of the system was improved up to 89.2%
for a combination of MFCCs and aperiodicity features.
The corresponding F score performance was 48.9% for
inspiratory phases and 83.3% for expiratory phases.

5.2 Cape Town cohort
The recording conditions (e.g., acoustic environment
and recording equipment) while capturing cry data in
Tampere and Cape Town were quite different from each
other. In this section, we report the ability of the system
trained on Tampere data to work for Cape Town data
using techniques discussed in Section 3. The effective-
ness of employed adaptation techniques was investigated
by comparing the performance of the adapted systemwith
the system trained on Tampere data alone and with the
one trained on Cape Town data (without any adaptation).
The segmentation system was trained on Tampere data

(entire 57 recordings) and tested on Cape Town data
(entire 52 recordings). The output labels generated by
the system were compared against manually annotated
ground truth obtained for Cape Town cohort. The final
system performance metrics were obtained by averaging

over all Cape Town recordings. An accuracy of 58.3%
was obtained for this system. For model adaptation, this
procedure was repeated, firstly, with feature normaliza-
tion alone, and then, with both feature normalization
and semi-supervised learning adaptation. Table 5 com-
pares the performance of the original system (trained
on Tampere data and tested on Cape Town data) with
that of the adapted system. Most of the improvement
was achieved through feature normalization step. It can
be seen that feature normalization improved the sys-
tem accuracy to 80% from 58.3% for the original system
(trained on Tampere material alone). Semi-supervised
learning further improved it with a notable improvement
in F score for expiratory phases up to 73.2% against 71.2%
with feature normalization alone. Similar improvements
in F score of inspiratory phases was observed, as reported
in Table 5.
Instead of using the entire unlabeled data for semi-

supervised learning adaptation, a confidence threshold
can be used to select only a subset of the unlabeled data,
as explained in Section 3.2.

6 Conclusions
In this paper, we investigate the problem of automatically
identifying expiratory and inspiratory phases from infant
cry recordings. The segmentation system offers system
accuracies up to 89.2% and is capable of adapting to cry
sounds recorded in acoustic settings different from the
one it is trained for.
Two datasets, Tampere cohort with 57 cry recordings

and Cape Town cohort with 52 recordings, were analyzed.
The recordings were captured under realistic clinical envi-
ronments which often consisted of extraneous sound
sources. The output of this segmentation system can
then be utilized for performing further analysis involv-
ing extraction of required acoustic parameters from the
identified acoustic parts. This segmentation system thus
offers to be an essential pre-processing step for an infant
cry analysis system especially when the number of cry
recording to be analyzed is large enough to render manual
segmentation unfeasible.

Table 3 F scores (%) of the expiratory and inspiratory phase classes, denoted by Exp and Ins, respectively, with different number of
HMM states and component Gaussians

No. of HMM states for each class

No. of Gaussians 1 2 3 4

for each state Ins Exp Ins Exp Ins Exp Ins Exp

5 35.1 ±2.6 79.4 ±1.6 38.3 ±2.6 81.1 ±1.6 41.0 ±2.7 81.1 ±1.6 40.5 ±2.7 80.8 ±1.5

10 37.0 ±2.6 80.2 ±1.6 40.1 ±2.4 81.4 ±1.4 41.5 ±2.8 80.6 ±1.4 40.8 ±2.7 81.4 ±1.5

15 39.8 ±2.6 80.3 ±1.5 41.6 ±2.5 81.7 ±1.2 42.8 ±2.6 80.5 ±1.3 41.8 ±2.9 80.7 ±1.3

20 39.6 ±2.6 80.7 ±1.5 41.7 ±2.7 81.6 ±1.3 40.6 ±2.8 81.2 ±1.3 41.7 ±2.9 81.2 ±1.4

25 39.8 ±2.6 80.6 ±1.4 42.3 ±2.6 81.9 ±1.3 41.3 ±2.8 81.0 ±1.3 42.4 ±2.8 80.9 ± 1.3
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Table 4 The performance of the model with additional features

Features Acccuracy F score (%)

(%) Ins Exp

MFCCs 87.5 ±1.1 41.5 ±2.8 80.6 ±1.4

MFCCs + � and �� 88.6 ±0.9 45.9 ±2.5 82.2 ±1.1

MFCCs + F0 88.5 ±0.9 47.8 ±2.9 81.6 ±1.3

MFCCs + F0 + 88.8 ±0.9 47.1 ±2.5 82.3 ±1.1

� and ��

MFCCs + ap0 89.2 ±0.9 48.9 ±2.8 83.3 ±1.3

MFCCs + ap0+ 89.0 ± 0.8 47.4 ±2.5 82.8 ±1.2

� and ��

The expiratory and inspiratory phase classes are denoted by Exp and Ins, respectively

The cry recordings utilized in this study were captured
under a wide variation in the recording conditions (i.e.,
context of recording, type of cry trigger, and types of
extraneous sound sources present while recording).More-
over, infant-related attributes known to affect acoustic
characteristics of cry (e.g., weight of the infant, prematu-
rity of birth) varied as well.
An HMM based solution is proposed for the segmen-

tation problem. The cry recordings were segmented into
three classes: expiratory phases, inspiratory phases, and
residual. The former two classes constitute the regions of
interest, and residual is simply a collection of all irrele-
vant acoustic regions (i.e., non-cry vocals of infant, other
sound sources, and silent parts). The HMM configura-
tion, namely, the number of states for each class and
the number of Gaussian components used to model each
HMM state, were varied, and the resulting effect on sys-
tem performance was investigated. An improvement in
system performance was observed while using more than
one HMM state for each class and adding more compo-
nent Gaussians. However, the improvement was not very

Table 5 Comparison of the performance of the original
segmentation system with the adapted system on Cape Town
database

Accuracy F score (%)

(%) Insp Exp

Original system 58.3 ±1.4 20.7 ±0.7 65.4 ± 1.6

With feature 80.0 ±1.4 36.5 ±2.0 71.2 ±1.6

Norm. alone

With feature norm. 80.7 ±1.4 38.5 ± 1.8 73.2 ±1.7

and SSL

System trained with Cape
Town data

85.2 ±0.7 39.2 ±2.3 78.0 ± 1.1

The expiratory and inspiratory phase classes are denoted by Exp and Ins, respectively

significant beyond certain number of states and compo-
nent Gaussians, and as we opted for a larger number of
HMM states and number of Gaussian components, the
computation times for training also increased. Hence, in
the proposed system, a suitable number of HMM states
and component Gaussians should be chosen based on
availability of training material and requirements of com-
putation time. In this study, we have presented results
for three HMM states for each class and 10 component
Gaussians for modeling each HMM state.
It is observed that the segmentation system works suf-

ficiently well for expiratory phases but performs rather
poorly for inspiratory phases in comparison. The rea-
son for this is the diverse nature of inspiratory phases
present in our data set. Additionally, less data were avail-
able for training the system to identify inspiratory phases
as compared to expiratory phases. The performance of the
system for inspiratory phases is expected to improve with
the availability of more training material.
Different audio features in conjunction with con-

ventional MFCC features were experimented with. An
improvement in system performance was observed with
deltas and delta-deltas, fundamental frequency, and aperi-
odicity features. It is hence recommended to incorporate
them along with MFCCs. The best performance for the
system was observed with aperiodicity feature. An accu-
racy of 89.2% along with F scores of 48.9 and 83.3%
were obtained for inspiratory and expiratory phases,
respectively.
As a critical test of the applicability of the proposed

segmentation system to cry recordings irrespective of
recording conditions, we show that the system trained
on material recorded in one acoustic setting can be reli-
ably adapted to perform on material recorded in an
unseen acoustic setting. We propose a two-step model
adaptation method consisting of feature normalization
and semi-supervised learning adaptation. The proposed
model adaptation method yielded system accuracies up
to 80.7% compared to 85.2% obtained for a system
trained on the material recorded in the unseen acoustic
setting itself.
In this study, we have grouped together all extrane-

ous acoustic parts in a single target class called residual.
Alternatively, multiple classes can be created for differ-
ent kinds of sound sources provided sufficient data is
available. Moreover, in this study, HMM topology with
same number of states for all target classes were used.
Alternatively, different combinations of number of states
for different classes can be experimented with for opti-
mal performance. Additionally, instead of using the self-
training method, other semi-supervised learning methods
can be experimented with in order to improve the abil-
ity of the system to adapt to material captured in unseen
acoustic settings.
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