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Cysteinyl-leukotrienes (cysteinyl-LTs) exert a range of proinflammatory effects, such as 
constriction of airways and vascular smooth muscle, increase of endothelial cell 
permeability leading to plasma exudation and edema, and enhanced mucus secretion. 
They have proved to be important mediators in asthma, allergic rhinitis, and other 
inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, 
and urticaria. The classification into subtypes of the cysteinyl-LT receptors (CysLTRs) 
was based initially on binding and functional data, obtained using the natural agonists 
and a wide range of antagonists. CysLTRs have proved remarkably resistant to cloning. 
However, in 1999 and 2000, the CysLT1R and CysLT2R were successfully cloned and both 
shown to be members of the G-protein coupled receptors (GPCRs) superfamily. 
Molecular cloning has confirmed most of the previous pharmacological characterization 
and identified distinct expression patterns only partially overlapping. Recombinant 
CysLTRs couple to the Gq/11 pathway that modulates inositol phospholipids hydrolysis 
and calcium mobilization, whereas in native systems, they often activate a pertussis 
toxin-insensitive Gi/o-protein, or are coupled promiscuously to both G-proteins. 
Interestingly, recent data provide evidence for the existence of an additional receptor 
subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides, and of an 
intracellular pool of CysLTRs that may have roles different from those of plasma 
membrane receptors. Finally, a cross-talk between the cysteinyl-LT and the purine 
systems is being delineated. This review will summarize recent data derived from studies 
on the molecular and cellular pharmacology of CysLTRs. 

KEYWORDS: CysLT1, CysLT2, GPR17, signaling pathway 
 

CYSTEINYL-LT/CYSLT RECEPTOR SYSTEM: THE PAST 

Cysteinyl-leukotrienes (cysteinyl-LTs) are potent lipid mediators synthesized from arachidonic acid in 
response to different immune and inflammatory stimuli[1,2]. They have recognized roles in respiratory 
diseases, such as asthma and allergic rhinitis, but have been implicated in other inflammatory conditions, 
including cancer, cardiovascular, gastrointestinal, skin, and immune disorders[3]. Early pharmacological 
studies have provided evidence that these lipid mediators exert their actions through specific cellular 
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targets, namely, receptor proteins, while subsequent experimental evidence strongly suggested that these 
are G-protein coupled receptors (GPCRs) (for a complete review, see [4,5,6,7,8]). 

Over the last 20 years, a large number of selective antagonists for cysteinyl-LT receptors (CysLTRs) 
have been developed[9]. The use of these antagonists enabled an initial pharmacological classification of 
CysLTRs in two broad subgroups: those that were blocked by these antagonists (CysLT1)[10,11,12] and 
those that were resistant to blockade (CysLT2). Currently, only BAY u9773 displays antagonist actions at 
both receptors, unfortunately with poor potency and selectivity, especially in human tissues[13,14]. 

CYSLTR CLONING: THE BREAKTHROUGH 

CysLTRs escaped gene cloning with conventional approaches up to 1999, when two separate 
groups[15,16] cloned the first CysLTR using a cognate ligands strategy for fishing orphan GPCRs. Soon, 
thereafter, almost simultaneously, came the CysLT2R cloning by three different groups[17,18,19]. 
Previous biochemical and pharmacological findings were essentially confirmed by the sequence analysis 
demonstrating their belonging to the GPCR group of receptors organized in the characteristic seven 
serpentine topology. They belong to the rhodopsin family of the GPCR gene superfamily and, in 
particular, to the purine receptor cluster (within the δ group) of phylogenetically related receptors, which 
includes, besides a number of orphans, receptors that respond to purinergic or pyrimidinergic nucleotides 
(P2Ys), proteases (F2Rs), and platelet activating factor (PAF) (PAFR)[20,21]. Unlike the monoamine or 
neuropeptide receptors, the receptors belonging to the purine cluster have no clear homologues in 
invertebrates, suggesting a relatively recent evolutionary origin[22,23]. Both receptors are glycosylated 
protein, sharing only 38% amino acid (aa) identity, with very low homology in the extreme carboxyl 
termini. 

The gene/chromosome location is also known. Human CysLT1R and CysLT2R are located on the long 
arms of chromosomes X (Xq13-Xq21)[15] and 13 (13q14)[17,18], respectively. 

The basic characteristics of the human CysLT1R and CysLT2R are summarized in Table 1. 

TABLE 1 
Schematic Characteristics of Cloned Human CysLTRs 

 CysLT1R CysLT2R GPR17(CysLT3R) 

Gene symbol* CYSLTR1 CYSLTR2 GPR17 
Genomic location Xq13-Xq21 13q14.2 2q21 
Accession number 
(GenBank) 

AF119711 AB038269 NM005291 

Protein size 337 aa 346 aa 339 aa 
Pharmacological profile LTD4 > LTC4 >> LTE4 LTD4 = LTC4 >> LTE4 LTC4 > LTD4 
Primary coupling** Gq/11 Gq/11 Gi 
Primary expression Peripheral blood 

leukocytes, spleen, 
smooth muscle (lung, 
intestine) 

Peripheral blood 
leukocytes, spleen, 
adrenal medulla, heart, 
brain 

Brain, heart, kidney 

* Symbol approved by the HUGO Gene Nomenclature Committee (HGNC) 
(http://www.gene.ucl.ac.uk/nomenclature/) 

** See text for further information on the coupling of native CysLTRs. 
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CysLT1R 

Molecular Biology 

The open reading frame for the human CysLT1R encodes a protein of 337 aa with a calculated molecular 
mass of 38 kDa[15,16]. It was observed to migrate at a molecular weight of 30–42 kDa (depending on 
experimental conditions) as a monomeric form[24,25,26,27,28,29], although oligomers were often 
observed (see “Oligomerization”). 

The genomic structure and transcriptional regulation have been studied, and it was revealed that the 
human CysLT1R contains five exons that are variably spliced and a single promoter region with multiple 
transcription start sites, and that the entire open reading frame is located in exon 5[30]. Multiple splice 
variants of CysLT1R exist and the transcript expression patterns differ from tissues and cell types[30,31]. 

Human CysLT1R possesses four potential N-glycosylation sites besides many potential protein kinase 
A and C phosphorylation sites, mostly located in the third intracellular loop and carboxyl terminal[15]. 

Human CysLT1R has the highest homology (32% aa identity) with the purinoceptor P2Y1 and the 
receptor for PAF, whereas it shares a lower homology (28% aa identity) with the other subclasses of 
leukotriene receptors, the BLT receptors[15]. 

Binding Studies 

Binding studies with [3H]LTD4 on membranes from host cells transiently expressing the receptor 
identified a high-affinity binding with a Kd of 0.3–9 nM[15,16] compatible with the values reported for 
other human tissues and cells[32,33,34,35]. The affinity of LTC4 is about 350-fold lower than that of 
LTD4[15], in agreement with data obtained from human lung membranes[34]. Furthermore, [3H]LTD4 
binding is potently and competitively inhibited by members of structurally distinct classes of CysLT1R 
antagonists, such as montelukast, zafirlukast, and pranlukast (IC50 in the range of 1.8–4.9 nM) and to a 
lesser extent by pobilukast (IC50 = 30 nM)[16]. 

Pharmacological Characterization and Signal Transduction in Recombinant 
Systems 

LTD4 displayed a potency higher than that of LTC4 and LTE4, in cells transfected with the recombinant 
CysLT1R. Indeed, characterization of CysLT1R activation on cRNA-injected melanophores from Xenopus 
laevis demonstrated that LTD4 is the most potent cysteinyl-LT agonist with an EC50 of 0.4 nM, whereas that 
of LTC4 is 21 nM[15]. The same rank order of potency was observed in other functional assays in X. laevis 
oocytes or in Ca2+ mobilization assay in COS-7[15,16], HEK-293, and CHO[16] (see also [3]). LTE4 is the 
less potent leukotriene agonist acting as a partial agonist[16], in agreement with data previously obtained for 
other human tissues[13,36]. As expected, the LTD4 functional response is potently inhibited by the selective 
CysLT1R antagonists MK571[15], zafirlukast, pranlukast, montelukast, and pobilukast[16]. 

Interestingly, in the recombinant systems, CysLT1R appeared very weakly, if not at all, coupled to a 
pertussis toxin (PTX)-sensitive G-protein[15,16], in agreement with previous results obtained in animal 
tissues[37]. However, it is known that the use of recombinant systems might produce results that depend 
on cell type, transducer, or effector availability, especially when dealing with GPCRs[38]. Indeed, many 
research groups observed coupling also to Gi/o family in human cells[36,39,40,41] (see below). 

Regulation of Functionality 

Agonist-induced internalization of recombinant human CysLT1R has been reported to be GRK/arrestin 
independent and significantly PKC dependent, particularly in COS-1 transfected cells[42]. At variance 
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with these data, CysLT1R homologous desensitization in the human macrophage-like cell line U937 most 
likely depends on GRK2 activation[43]. Interestingly, extracellular nucleotide-induced CysLT1R 
heterologous desensitization, which was indeed dependent on PKC, did not cause receptor internalization 
and induced a very fast recovery of CysLT1R functionality with respect to agonist-induced homologous 
desensitization and trafficking[43] (see also “Cross-Talk with Other GCPRs”). 

Distribution in Human Tissues 

The pathophysiological role of cysteinyl-LTs in asthma is well documented[44,45,46,47], and results 
obtained from localization studies are coherent with the antibronchoconstrictive and anti-inflammatory 
activities of CysLT1R antagonists[15,24]. Findings from in situ hybridization analysis indicates CysLT1R 
mRNA expression in the smooth muscle cells (SMCs) at all levels of the respiratory tree as well as in 
interstitial lung macrophages, and little expression in the epithelial cells[15]. CysLT1R has been localized 
at gene and protein level, in infiltrating and structural cells of human nasal mucosa from normal 
subjects[48], and patients with asthma/allergic rhinitis[49] or aspirin-sensitive/aspirin-tolerant chronic 
rhinosinusitis[50]. 

Immunohistochemical analysis on peripheral blood leukocytes (PBLs) showed the presence of 
CysLT1R in a series of cells of particular relevance to asthma and atopy, such as monocytes/macrophages, 
eosinophils, pregranulocytic CD34+ cells, neutrophils, and in subsets of B lymphocytes, but not T 
lymphocytes[24]. Gauvreau and colleagues[51] documented that basophils, which accumulate in the 
airways of subjects with atopic asthma[52], express variable levels of functional CysLT1R. Furthermore, 
CysLT1R expression was demonstrated in human mast cells (MCs) from normal[27,53] and asthmatic 
subjects[54]. 

In the gastrointestinal system, CysLT1R expression has been documented in small intestines and 
colon[15,16], in colorectal carcinomas, and in colon cancer cells[28] (for details, see article by Massoumi 
and Sjölander[134]). The expression of a functional CysLT1R has also been reported in human saphenous 
veins, where it mediates contractile effects of cysteinyl-LTs[55] (for more detailed information on LT 
receptors in vascular SMCs, see article by Bäck[135]). Little expression has been initially reported in 
brain[15,16], but then documented in human brains with traumatic injury or tumors[56]. 

For a more detailed description of CysLT1R distribution and functional significance, see Capra et al.[3]. 

CysLT2R 

Molecular Biology 

Gene cloning and characterization studies of human CysLT2R were first reported by Heise and 
coworkers[17], and then confirmed and expanded by two other groups[18,19]. The open reading frame of 
human CysLT2R encodes a protein of 346 aa, which appears to migrate at a molecular weight of 58 kDa 
in basophil lysates[51]. 

Human CysLT2R possesses four potential N-glycosylation sites, three of which are in the 
extracellular N-tail, besides many potential protein kinase A and C phosphorylation sites mostly located 
in the third intracellular loop and carboxyl terminal[17]. 

The genomic organization of the human CysLT2R has not yet been published. 

 

Binding Studies 
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Data analysis of saturation binding experiments with [3H]LTD4 in COS-7 cell membranes transiently 
expressing CysLT2R revealed the presence of high- and low-affinity sites (Kd1 = 0.4 nM – Kd2 = 51 
nM)[17]. Takasaki and colleagues, who used [3H]LTC4 in the presence of s-decylglutathione[18] to 
disguise the binding of LTC4 to its other nonreceptor sites[34], observed affinity in the nanomolar range 
(Kd = 3 nM). Furthermore, all the classical CysLT1R antagonists were demonstrated to be inactive in 
competition assays, whereas BAY u9773 was a full competitor[17,19]. 

Pharmacological Characterization and Signal Transduction in Recombinant 
Systems 

Characterization of the cloned receptor has mostly confirmed the data previously reported in the 
literature[13]. Functional activation by aequorin assay in HEK293T cells transiently expressing the 
receptor demonstrated that LTD4 and LTC4 are equipotent agonists, whereas LTE4, again, behaves as a 
partial agonist[17]. Similar findings were obtained in other functional activation assays in X. laevis 
oocytes[17] or in Ca2+ mobilization assay in HEK293T cells[18] (see also [3]). As expected, the response 
of this receptor subtype was characterized by the lack of sensitivity to the classical CysLT1R antagonists 
MK571, montelukast, zafirlukast, and pranlukast[17]. BAY u9773, which displayed the expected 
antagonist activity, intriguingly acted in a noncompetitive manner against LTC4[17], despite behaving as 
a full competitor in binding assay with [3H]LTD4 (see above)[17,19]. Furthermore, Nothacker and 
colleagues[19] highlighted the BAY u9773 role as a subtype selective agonist to the recombinant 
CysLT2R, in agreement with the previous findings of Labat and coworkers on human bronchus and 
pulmonary veins[13]. 

Functional assay on X. laevis oocytes indicated that, at least in this system, CysLT2R is not coupled to 
a PTX-sensitive G-protein[17]. Again, the same is also true in human umbilical endothelial cells 
(HUVECs) (G.E. Rovati and A. Sala, unpublished observations), but not in human MCs[57]. 

No data are yet available on the regulation of CysLT2R functionality. 

Distribution in Human Tissues 

Localization studies have been performed with various techniques and have identified a distinctive 
expression pattern for human CysLT2R, despite some overlapping with CysLT1R. Indeed, expression in 
heart, brain, and adrenals appears to be peculiar to CysLT2R. 

CysLT2R mRNA is highly expressed in the entire heart, as revealed by Northern analysis[17,18,19]. 
Further characterization by in situ hybridization indicated a particular concentration in Purkinje fiber 
cells[17], myocytes and fibroblasts derived from atrium and ventricle, coronary artery–derived SMCs, 
and lack of expression in endothelial cells (ECs)[58]. Human saphenous veins express CysLT2R that are 
not implicated in contraction and for which a functional role remains to be determined[55]. Several 
authors indicate that HUVECs almost exclusively express CysLT2R[59,60,61]. Immunohistochemical 
analysis of brain tissues from patients undergoing brain surgery indicates that CysLT2R is expressed in 
the SMCs, but not in the ECs, of arteries and veins of normal area[62] (for more detailed information on 
LT receptors in vessels and endothelium[135]). 

CysLT2R mRNA is highly expressed in several regions of the brain, with particular concentration in 
hypothalamus, thalamus, putamen, pituitary, and medulla[17]. Its expression has been reported in the 
granulocytes of the brain parenchyma, and in neuron- and glial-appearing cells in either the late stages of 
traumatic injury or in the area surrounding the tumors, and in the ECs of microvessels that regenerate 
after traumatic brain injury[62]. 

The adrenal gland may represent a novel tissue for future studies on cysteinyl-LT functions and the 
CysLT2R role in modulating endocrine system because a very good level of expression was detected, 
particularly in medullary pheochromocytes[15]. In the immune system, moderate expression of CysLT2 
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mRNA was seen in spleen, lymph nodes, and PBLs, with very strong expression in eosinophils[17,59], 
suggesting unidentified roles for this receptor in these cells. Mellor and colleagues[57] reported that 
human MCs also constitutively express the type-2 receptor for cysteinyl-LTs, and CysLT2R expression 
was reported in basophils[51]. No expression was found in either undifferentiated or differentiated 
promyelocytic HL-60 and promonocytic U937 cells, which are known to express high levels of 
CysLT1R[19,43]. 

In human lung, the CysLT2 mRNA signal was very high in interstitial macrophages and weak in 
SMCs[17]. A549 cells, a human lung adenocarcinoma-derived line with alveolar epithelial cell properties, 
express mRNA for CysLT2R, but not for CysLT1R[63]. 

For a more detailed description of CysLT2R distribution and functional significance see Capra et 
al.[3]. 

CELLULAR SIGNALING IN CONSTITUTIVE HUMAN SYSTEMS 

CysLT1 Functions and Cellular Signaling 

In consideration of the widely known spasmogenic activities of cysteinyl-LTs[64], intracellular Ca2+ 
mobilization and phosphatidylinositol (PI) metabolism were the obvious signal transduction systems to 
investigate. U937 cells, a promonocytic leukemia cell line known, on differentiation with dimethyl 
sulfoxide (DMSO), to express a high density of CysLT1R endogenously[65], is certainly the first human 
cell line in which cysteinyl-LT signal transduction mechanisms have been studied. The group of Crooke 
first demonstrated that in DMSO-differentiated U937 (dU937), LTD4 is able to induce elevation of 
intracellular free Ca2+ concentration ([Ca2+]i) and PI metabolism[66]. In the same cells, the same authors 
further showed that treatment with phorbol 12-myristate 13-acetate (PMA) blocked LTD4-induced PI 
metabolism and Ca2+ mobilization[67,68] and that, accordingly, the inhibitor of PKC staurosporine 
augmented LTD4-induced PI metabolism and [Ca2+]i. These observations suggested for the first time that 
PKC might play a role in determining the responsiveness of CysLT1R[69]. Indeed, heterologous 
desensitization of CysLT1R is mediated through activation of PKC in dU937 cells[70] (see also “Cross-
Talk with Other GPCRs”). [Ca2+]i elevation has also been demonstrated in THP-1, another monocytic 
leukemia cell line[40,71], and more recently in human MCs[53] and monocyte-derived macrophages[61]. 
Furthermore, in dU937 cells, Ca2+ signaling in response to LTD4 appears to be a prenylated protein-
dependent phenomenon[35]. 

Specifically considering the crucial bronchoconstrictor activity of cysteinyl-LTs[72] and their role in 
asthma[3,45], a number of studies have focused on human airways. Early studies in human bronchial 
muscle preparations suggested that the CysLTR in this system might be linked with a receptor-operated 
calcium-entry mechanism[73]. Accordingly, in freshly isolated SMCs from human small bronchioles, 
LTD4 caused a slow increase in [Ca2+]i, with a consequent rise of the activity of large conductance Ca2+-
dependent K+ channels and the amplitude of depolarization-induced outward whole-cell current[74]. 
These data seem to suggest that LTD4 causes constriction of these small bronchioles primarily by 
activating Ca2+ entry via nonvoltage gated channels, possibly by a PC-PLC mediated pathway. However, 
LTD4 contraction of SMCs from human bronchi was found to be partially Ca2+ independent, involving 
both Ca2+-dependent and -independent isoforms of PKC[75]. 

It was again in U937 cells that CysLT1R have been demonstrated for the first time to modulate Ca2+ 
responses through at least two G-proteins, one PTX sensitive (Gi/o) and one insensitive (Gq/11)[35,36,68]. 
These data are in good agreement with the finding that LTD4 activates distinct signaling pathways 
differently coupled to G-proteins also in THP-1 cells: a PTX-insensitive mitogen-activated protein kinase 
(MAPK) activation and a PTX-sensitive chemotactic response[40]. More recently, it has been recognized 
that CysLT1R activation induces MAPK phosphorylation through a Gi/o-protein in mesangial[76], 
dU937[29], airway SMCs[41], and MCs[77]. Finally, in bronchial SMCs, CysLT1R-dependent actin 
reorganization is coupled with PTX-sensitive G-protein[78]. Thus, these data confirm CysLT1R 
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promiscuity in G-protein coupling in constitutive systems, at variance with data obtained, so far, in 
recombinant systems. 

In bronchial SMCs, LTD4-induced actin reorganization through a CysLT1R is extremely dependent 
on Rho GTPases and tyrosine phosphorylation pathways[78]. These experiments have been corroborated 
by the fact that cysteinyl-LTs play an augmentative role in human airway smooth muscle (ASM) 
migration, and the use of a phosphatidylinositol-3 kinase (PI3K) inhibitor suggests that this pathway is a 
key signaling mechanism in the chemotactic migration of ASM cells in response to cysteinyl-LTs[79]. 

Despite that airway constriction has always been considered the main function of CysLT1R in the 
respiratory tree, LTD4 also induces proliferation of human malignant hematopoietic cell lines[80], airway 
epithelial cells[81], airway SMCs[41,82,83,84,85], renal mesangial cells[76,86], eosinophil hematopoietic 
progenitor cells[87], and lung fibroblasts[88]. Many are the mechanisms through which GPCRs may 
induce cell proliferation. One of the possible pathways requires the phosphorylation of the extracellular-
signal regulated kinase 1/2 (ERK1/2), sometimes through the transactivation of a growth factor receptor. 
A first report suggested that LTD4 synergizes with the insulin grow factor (IGF) axis to induce airway 
SMC proliferation, demonstrating proteolysis of airway SMC-produced inhibitory IGF-binding proteins 
(IGFBP) by LTD4-induced matrix metalloproteinase (MMP)-1[82]. In the same system, LTD4 has been 
demonstrated to induce phosphorylation of apoptosis signal-regulating kinase 1 (ASK1)[85], an upstream 
kinase kinase of c-Jun-NH(2)-terminal kinase (JNK) and p38 MAPK, which in turn regulates 
transcription factor activator protein-1 (AP-1), an essential step for regulation of cell proliferation and 
differentiation. In line with these results, LTD4-induced airway SMC proliferation was recently 
demonstrated to require transactivation of the epidermal growth factor (EGF) receptor through generation 
of reactive oxygen species and ERK1/2 phosphorylation[41]. Furthermore, human lung fibroblasts have 
been demonstrated to proliferate in response to the conditioned medium obtained from epithelial cells in 
which LTC4 stimulates the production of transforming growth factor beta1 (TGF-β1) through a p38 
MAPK activation mechanism[88]. As mentioned before, LTD4 has been postulated to activate MAPK in 
THP-1 through a PKC-Raf-1–dependent pathway[40], whereas in dU937 cells ERK1/2 activation 
involves a RasGTP-dependent pathway, PLC, and Ca2+-dependent tyrosine kinase(s)[29]. In renal 
mesangial cell, LTD4-induced proliferation requires ERK and p38 activation, and is dependent on PI3K 
and PKC[76]. The same group also recognized that LTD4 transactivates the platelet-derived growth factor 
(PDGF) receptor beta, a process associated with c-Src recruitment and Ras activation, and that c-Src 
activation was insensitive to PTX[86]. In human MCs, LTD4 enhanced proliferation in a CysLT1- and 
ERK-dependent manner, which required transactivation of c-kit[77]. To our knowledge, there is only one 
report suggesting that cysteinyl-LTs may, on the contrary, inhibit the growth of a human cell line, i.e., the 
mammary cancer cells MCF-7[89]. 

In some systems, CysLT1R activation can contribute to the propagation of the inflammatory reaction 
by the release of various mediators. In U937 cells, LTD4 triggered a rapid release of arachidonic acid 
metabolites into the culture medium, which was suppressed by the CysLT1R antagonist SK&F 104353, by 
the topoisomerase I inhibitor camptothecin, and by staurosporine[90]. In ECs, CysLTR were linked to the 
formation of nitric oxide[91], which, however, is not completely blocked by CysLT1R antagonists[92]. In 
human MCs primed with IL-4, the CysLT1-selective receptor antagonist MK571 did inhibit, besides Ca2+ 
flux, production of IL-5, tumor necrosis factor (TNF)-alpha, and large quantities of macrophage 
inflammatory protein (MIP)-1beta[93]. Cysteinyl-LTs were demonstrated to induce the release of MCP-1 
in human monocytes/macrophages[94], an event that may occur also in cooperation with IL-4 and is 
mediated through the CysLT1R, because in IL-4–primed THP-1 cells, MCP-1 increase was effectively 
inhibited by the CysLT1R-selective antagonist MK571 and only partially by the nonselective antagonist 
BAY u9773[30]. Very recently, it has been shown that LTD4 could up-regulate the expression of IL-8 in 
monocytic cells via the CysLT1R[95]. The same group further studied CysLT1R signaling in HEK293, 
stably expressing the receptor showing modulation of IL-8 production by LTD4 and demonstrating of the 
involvement of the NF-κB and AP-1 pathways. 

Interestingly, some authors found that several-day stimulation of basophils in culture with LTD4 
reduced the frequency of CD95 Fas receptor expression, an effect that, albeit modest, was reversed by the 
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CysLT1R antagonist zafirlukast[51], suggesting that the cysteinyl-LT/CysLT1R system might have a 
direct effect on basophil accumulation in allergic tissues. 

Another interesting function that has been postulated for the cysteinyl-LT/CysLT1R system is the 
regulation of hematopoietic stem and progenitor cell mobilization and homing, as LTD4-induced 
CysLT1R activation seems to up-regulate adhesion of CD34+ progenitors to primary bone marrow ECs 
through the intervention of β1-integrins[96]. 

Finally, in human airway, CysLT1R activates PKC to modulate the beta2 adrenoreceptor (β2AR) 
activity, causing its desensitization and a reduced response to β2 agonists in vitro[97] (see also “Cross-
Talk with Other GPGRs”). This phenomenon, besides agonist-induced tolerance, might contribute to the 
progressive fading of β2 agonist efficacy observed in asthmatics[98] and may open up new strategies for 
asthma treatment[99]. 

CysLT2 Function and Cellular Signaling 

Detailed information about signal transduction systems involved in CysLT2R activation is still lacking 
and hampered by the absence of selective antagonists. Contrasting reports are present in the literature 
regarding Ca2+ signaling in HUVECs. LTC4 and LTD4 were reported to induce a rapid rise of [Ca2+]i, 
which is inhibited by the receptor antagonist SKF 104,353[100]. In agreement with these findings, 
another group has identified CysLT1R expression in these cells[26]. However, soon thereafter, it was 
demonstrated that these cells almost exclusively express the CysLT2R[60], which appears to be strongly 
up-regulated by IL-4[61] and responsible for the Ca2+ mobilization and contraction evoked by cysteinyl-
LTs[61] and BAY u9773[60]. 

As for the CysLT1R, the CysLT2R also appears to be coupled to PTX-insensitive G-proteins in 
recombinant systems (see above). Again, while this is true in HUVECs, where the Ca2+ mobilization 
elicited by CysLT2R activation is totally PTX insensitive (G.E. Rovati and A. Sala, unpublished 
observations), recently, Mellor and colleagues[57] demonstrated in human MCs that CysLT2R signaling 
was completely inhibited by PTX. This group reported that human MCs, besides CysLT1R, express 
CysLT2R as well, and that the selective function of CysLT2R was evident based on uninhibited IL-8 
secretion in IL-4–primed cells stimulated with cysteinyl-LTs or UDP by the presence of the selective 
CysLT1R antagonist MK571. IL-8 generation was evoked also by the CysLT2R partial agonist BAY 
u9773 and was inhibited by the selective p38 kinase inhibitor, SB203580[57]. 

In HUVECs, LTD4-induced CysLT2R activation was found to up-regulate 37 early inducible genes, 
among which the most strongly induced were early growth response (EGR), nuclear receptor subfamily 4 
group A transcription factors, E-selectin, CXC ligand 2, IL-8, a disintegrin-like and metalloprotease 
(reprolysin type) with thrombospondin type 1 motif 1 (ADAMTS1), Down syndrome critical region gene 
1 (DSCR1), tissue factor (TF), and cyclooxygenase 2 (COX-2)[101]. 

Previous studies in ECs postulated that cysteinyl-LTs may be relevant to inflammation, hemostasis, 
thrombosis, and mechanisms of vascular injury, including atherosclerosis, as it was demonstrated that 
cysteinyl-LTs can trigger several other functional responses, such as synthesis of PAF, secretion of von 
Willebrand factor, and expression of P-selectin[102,103,104]. In light of recent findings, it is clear why 
the expression of endothelial P-selectin induced by either LTC4 or LTD4 was not blocked by pretreatment 
of HUVECs with selective CysLT1R antagonists[104]. Significance of cysteinyl-LT involvement in the 
pathogenesis and clinical manifestations of atherosclerosis has also come from the observation that 
cysteinyl-LTs induce contractions of human atherosclerotic coronary arteries, whereas nonatherosclerotic 
arteries are unresponsive[105]. Furthermore, with the identification of a distinctive expression pattern for 
the human CysLT2R in heart and vascular district, we have observed a renewed interest for cysteinyl-LT 
functions in the cardiovascular system. In human coronary artery, LTC4-induced elevation of [Ca2+]i was 
not blocked by CysLT1R classical antagonists, but blocked by the Ca2+ channel blocker nicardipine, a 
known vascular relaxant[58]. Additionally, these cells showed chemotactic responses to LTC4[58]. Taken 
together, these results strongly suggest that the activation of CysLT2R can induce profound effects in 
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cardiac as well as in hemodynamic and microcirculatory pathophysiology, and that this receptor subtype 
will definitely represent an interesting pharmacological target for the future. 

A recent study postulates that in a model of oxygen glucose deprivation (OGD)-induced cell death in 
PC12 cells, CysLT2R stimulation may facilitate the cell death, an event that was inhibited by BAY u9773, 
whereas CysLT1R reduces it[106].  

RECENT DISCOVERIES EXPANDING THE REPERTOIRE OF CYSLTR 
ACTIVITY/FUNCTIONS 

Despite the classic view that the activity of cysteinyl-LTs is mainly due to the interaction with their two 
specific plasma membrane receptors, alternative pathways have been postulated, including localization of 
CysLTR at nuclear level, cross-talk with other membrane receptors, the possibility that CysLTR might 
exist as homo/heterodimers, and the existence of additional CysLTR subtypes (see the specific paragraphs 
below). All these experimental observations suggest major unanticipated roles for the cysteinyl-
LT/CysLTR system in cellular signaling and function. 

Signaling at the Nucleus 

The intracrine CysLTR-induced signaling was first postulated in eosinophils[107], where LTC4 was 
found to be tenfold more potent than LTD4 in eliciting IL-4 release. This response was PTX sensitive, but 
more importantly insensitive to MK571 and BAY u9773, providing pharmacological evidence that the 
intracrine signaling of LTC4 should be mediated by neither of the two known CysLTRs. Furthermore, 
CysLT1R was found to be located in the outer nuclear membrane in colon cancer cells or to be 
translocated into the nucleus after prolonged exposure to the agonist in nontransformed intestinal 
epithelial cells[108]. A nuclear localization sequence localized in the C-tail of the CysLT1R is essential 
for the targeting to the nucleus, as already demonstrated for other GPCRs[109,110], or proteins that 
normally localize to the nucleus[111]. 

It is tempting to speculate that nuclear CysLTR may exert peculiar and yet undiscovered roles as the 
existence of a functional intracellular GPCR population has already been observed for other GPCRs[112], 
which are also known to modulate gene expression of specific proinflammatory genes[113]. 

Cross-Talk with Other GPCRs 

The activation of a number of receptors does not always lead to a direct effect on a particular signaling 
pathway, but rather to amplification or inhibition of the response produced by separate coincident signals 
within the same cell or tissue. It is now widely accepted that stimulation of particular GPCRs results in 
activation of signaling pathways that can subsequently interact with those activated by other receptors. 
This increase in complexity of signaling is expected considering cell diversity and the adjustments they 
have to exert in order to adapt to changes that take place during health and disease[114]. 

For example, cysteinyl-LTs may be postulated to play a role in the origin of the β2AR dysfunction 
caused by antigen challenge in sensitized human bronchi[115], because the dysfunction can be prevented 
by pretreatment with a CysLT1R antagonist[116]. Thus, it is possible that the presence of high levels of 
cysteinyl-LTs in the airways of asthmatic patients might desensitize the β2AR[98], thus reducing the 
clinical efficacy of β2 agonists. Accordingly, LTD4 is indeed able to heterologously desensitize the β2AR 
in human airway SMCs and isolated human bronchi through the activation of PKC[97]. 

Recently, native human CysLT1R has been demonstrated to be the target for extracellular nucleotide-
mediated heterologous desensitization[43]. Interestingly, ATP/UDP-induced CysLT1R desensitization, 
which was dependent on PKC, did not cause receptor internalization and induced a very fast recovery of 
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CysLT1R functionality with respect to LTD4-induced homologous desensitization and trafficking[43]. 
Moreover, in the same system, CysLT1R antagonists inhibit the effects of nucleotides acting at P2Y 
receptors[117]. 

Oligomerization 

Some experimental evidence indicates the possibility that CysLTR might exist as homo- and/or 
heterodimers, starting from the observation of dimeric and oligomeric forms of CysLT1R in western blot 
and the punctate appearance of the immunohistochemical signal in PBLs[24] or U937 cells[70]. In human 
MCs, which can express both receptor subtypes, Mellor and colleagues observed that under conditions 
where CysLT1R is blocked, IL-5 generation results only from stimulation with BAY u9773 and not with 
cysteinyl-LTs[57], leading the authors to speculate that this could arise from stimulation of a 
CysLT1/CysLT2 heterodimer at a site inaccessible to interference from MK571. These speculations have 
been recently confirmed by assessing the formation of a CysLT1/CysLT2 heterodimer at the nuclear 
envelope of human MCs (J.A. Boyce, personal communication). Finally, Beller and colleagues[118], 
based on the magnitude of the attenuation in IgE-dependent, MC-mediated passive cutaneous anaphylaxis 
(PCA) in CysLT1R and CysLT2R null mice, postulated that the effect observed in wild-type littermates 
was mediated through CysLT1/CysLT2 heterodimers. 

Though these observations are of potential interest considering that GPCR oligomerization offers new 
horizons to study important aspects of GPCR biology and possibly to develop new drugs[119,120], it has 
yet to be established if CysLTRs form homo/heterodimers. If so, how this influences their pharmacology 
and function, or is of any importance in cell physiology, is an issue that will clearly need to be addressed. 

CysLTR: Additional Subtypes 

Over the years, several data were reported in the literature suggesting the existence of additional CysLTR 
subtypes in human tissues[5,121,122]. This proposal was based on the observation that one ligand 
(LTE4[71,123,124] or LTC4[76,125]) failed to activate a CysLTR or that the dual antagonist BAY u9773 
failed to antagonize all cysteinyl-LT functional responses[124,126]. Furthermore, some authors have 
reported LTC4 to be more potent than LTD4 in inducing specific cellular functions[104,107], which, in the 
light of the known pharmacology from cloned receptors, does not fit with either CysLT1R or CysLT2R 
profile (see also below). These studies are supported by the results obtained from ligand binding studies 
that indicate the existence of a specific LTC4 binding site in human lung parenchyma distinct from that of 
LTD4[34], and which is not coupled to contraction[127]. Further support comes from the observation that 
in the same tissue, the most advanced CysLT1R antagonists display a different behavior toward LTC4 and 
LTD4[128]. In a report demonstrating that cysteinyl-LTs induced contractions of human atherosclerotic 
coronary arteries, Allen and colleagues[105] also suggest the involvement of a LT binding site specific 
for LTC4. 

In the light of the recent progress on the GPCR heterodimer pharmacology and their possible 
physiological significance, it is possible that these additional CysLTR subtypes might be the result of the 
formation of heterodimers with a different pharmacological profile, rather than representing new distinct 
proteins. 

DEORPHANIZATION OF A NEW DUAL CYSLT/UDP RECEPTOR 

In 2001, in an intriguing report, Mellor and colleagues[53] suggested that both the CysLT1R and a yet-
unidentified elusive receptor up-regulated by treatment with the proinflammatory cytokine IL-4 were 
responsive to both cysteinyl-LTs and UDP. Pharmacological studies performed with classical CysLT1R or 
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the dual CysLT1/CysLT2R antagonists excluded the possibility that this additional receptor was the 
CysLT2R subtype[53]. Very recently, we tested this hypothesis and screening for orphan GPCRs at an 
intermediate phylogenetic position between P2Y and CysLT receptor families, and found that the 
heterologous expression of GPR17 in different cell lines results in the appearance of highly specific and 
concentration-dependent responses to both cysteinyl-LTs and extracellular nucleotides[129]. 
Phylogenetically, GPR17 is equally distant from the P2Y12,13,14 subgroup, and the CysLT1 and CysLT2 
group[20], and consists of an open reading frame of 339 aa, as previously reported[130]. The basic 
characteristics of the human GPR17 receptor are summarized in Table 1. 

Pharmacological Characterization and Signal Transduction 

[35S]GTPγS binding assay of human GPR17 receptor transiently transfected in 1321N1 cells showed that 
LTC4 was more potent (EC50 = 0.33 nM) than LTD4 (EC50 = 7.2 nM). In the same cells, hGPR17 
expression induced the appearance of concentration-dependent responses to UDP, UDP-glucose, and 
UDP-galactose with the rank order of potency UDP-galactose = UDP > UDP-glucose typically in the 
micromolar range. Thus, the agonist response profile of GPR17 is different from that of CysLT1 and 
CysLT2 receptors[7], and, for nucleotides, is intermediate between P2Y6 and P2Y14 receptors[131]. Both 
the cysteinyl-LT and nucleotide [35S]GTPγS binding response were PTX sensitive, suggesting a 
functional coupling with a Gi/o-protein. In line with these results in 1321N1 cells expressing hGPR17, 
both cysteinyl-LTs and nucleotides show inhibition of forskolin-induced cAMP formation. Furthermore, 
in the same cell line, both agonists were also able to induce an increase in cytosolic [Ca2+]i. 

The LTD4 functional response is potently inhibited by the selective CysLT1R antagonists montelukast 
and pranlukast, with the latter sixfold more potent than the former. Moreover, cangrelor (formerly AR-
C69931MX), a P2Y12/P2Y13 antagonist, and the P2Y1-receptor antagonist MRS2179 concentration-
dependently inhibited [35S]GTPγS binding in cells expressing hGPR17, with IC50 in the nanomolar range. 

Distribution and Functional Significance 

In line with previous expression data[132], both human and rat GPR17 were highly present in brain and 
in other organs typically undergoing ischemic damage, such as kidney and heart, and with very low 
expression in liver and lung. These data are consistent with the demonstration that inhibition of GPR17 
either by receptor antagonists (both CysLT1R and P2Y receptors) or in vivo receptor knock-down protects 
against brain damage in an established model of ischemic damage (the permanent monolateral middle 
cerebral artery occlusion in the rat[129]). 

These data also add complexity to the already-established “cross-talk” between the purinergic and the 
LT receptor systems (see above), suggesting GPR17 as an additional means by which these two signaling 
systems interact with each other. It might be worth mentioning here that Nonaka and coworkers also 
reported that LTE4 acted as an agonist at the P2Y12 receptor[133], adding another fragment to a picture 
that is becoming more and more complicated, yet more and more intriguing. Whether GPR17 is really a 
dualistic receptor (a single protomer responding to two different classes of ligands) or this new 
“pharmacological entity” is, in fact, a heterodimer between two distinct heptahelical proteins is a matter 
deserving further investigation.  

CONCLUSIONS 

Cysteinyl-LTs exert a range of proinflammatory effects, such as constriction of airways and vascular 
smooth muscle, increase of endothelial cell permeability, induction of eosinophils chemotaxis, and 
enhanced mucus secretion. They have proved to be important mediators in asthma, allergic rhinitis, and 
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other inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. 
With the cloning of CysLT1R and CysLT2R, it has been confirmed that both were members of the GPCR 
superfamily, and that their localization, despite some overlapping, was peculiar. Recombinant CysLTRs 
couple to the Gq/11 pathway modulating IP hydrolysis and Ca2+ mobilization, whereas in native systems, 
they also activate a PTX-sensitive Gi/o-protein, or are promiscuously coupled to both G-proteins. In 
constitutive human systems, CysLT1R increases [Ca2+]i and PI metabolism, activates MAPKs, induces 
cell proliferation and differentiation, actin reorganization, chemotactic migration, release of various 
inflammatory mediators, and regulation of hematopoietic stem cells mobilization. CysLT2R, besides 
increasing [Ca2+]i, stimulates IL-8 secretion; up-regulates early inducible genes; may be relevant to 
inflammation, hemostasis, thrombosis, and vascular injury; and facilitates cell death. Furthermore, 
alternative pathways have been postulated, including localization of CysLTR at nuclear level, cross-talk 
with other membrane receptors (EGF-R, β2AR, P2Y-R), and the possibility that CysLTRs might exist as 
homo/heterodimers. These data seem to suggest major unanticipated roles for the cysteinyl-LT/CysLTR 
system in cellular signaling and function. Interestingly, recent data provide evidence for the existence of 
an additional receptor subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides. GPR17 
seems to be functionally coupled to a Gi/o-protein and to be implicated in ischemic damage. 

In light of the recent progress on the GPCR heterodimer pharmacology and their possible 
physiological significance, it is possible that postulated additional CysLTR subtypes might be the result 
of the formation of heterodimers, rather than represent new distinct protein entities. If this is the case, a 
completely new array of physiological implications and, thus, of possible therapeutic interventions, is 
foreseen in the near future. 
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