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Abstract

Background: Social interactions have been increasingly recognized as one of the major factors that contribute to the
dynamics and function of bacterial communities. To understand their functional roles and enable the design of robust
synthetic consortia, one fundamental step is to determine the relationship between the social interactions of
individuals and the spatiotemporal structures of communities.

Results: We present a systematic computational survey on this relationship for two-species communities by
developing and utilizing a hybrid computational framework that combines discrete element techniques with
reaction-diffusion equations. We found that deleterious interactions cause an increased variance in relative
abundance, a drastic decrease in surviving lineages, and a rough expanding front. In contrast, beneficial interactions
contribute to a reduced variance in relative abundance, an enhancement in lineage number, and a smooth
expanding front. We also found that mutualism promotes spatial homogeneity and population robustness while
competition increases spatial segregation and population fluctuations. To examine the generality of these findings, a
large set of initial conditions with varying density and species abundance was tested and analyzed. In addition, a
simplified mathematical model was developed to provide an analytical interpretation of the findings.

Conclusions: This work advances our fundamental understanding of bacterial social interactions and population
structures and, simultaneously, benefits synthetic biology for facilitated engineering of artificial microbial consortia.
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Background
Bacteria are single-celled organisms but are highly social
when they live in natural environments. They interact
with each other in different habitats, across different
species, and also through different modes [1–5], thereby
generating a stunningly wide spectrum of social behaviors
from cooperation and communication to synchroniza-
tion [3, 6, 7]. For instance, even for a simple ecosystem
consisting of only two species (Fig. 1a), there are six
possible distinct types of interaction (Fig. 1b) includ-
ing neutralism, commensalism, amensalism, competition,
mutualism, and parasitism [8].
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The social interactions of bacteria alter the physiol-
ogy, gene expression, and survival of individual cells
and also enable the collective behaviors of populations,
therefore significantly impacting the dynamics and func-
tionality of an entire community. For instance, through
cooperation–one of the major forms of cellular interac-
tions, bacteria can achieve diverse goals: Pseudomonas
bacteria cooperate to form biofilms to shed planktonic,
disperser cells into the water under a diurnal rhythm [9];
Salmonella releases virulence factors collectively upon
reaching a threshold density [3]; and Myxobacteria form
fruiting bodies to protect from attack while facilitating
dispersal [10]. Similarly, bacteria also acquire benefits via
competition–another common mode of interaction. For
example, Lactobacillus salivarius exerts positive effects on
host health by producing a bacteriocin in vivo against the
invasive foodborne pathogen Listeria monocytogenes [4],
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Fig. 1 Pairwise social interactions in bacteria. a Cell interactions
implemented through the production of diffusible chemicals. The
chemicals from one species may be deleterious (e.g, toxin), beneficial
(e.g., public good), or neutral to the growth of the other. b Six distinct
types of social interactions in a two-species population, including
commensalism, neutralism (control), amensalism, mutualism,
parasitism, and competition

Pseudomonas fluorescens mutants overproduce extracel-
lular polysaccharide to gain enhanced accessibility to oxy-
gen [1, 11], and Burkholderia thailandensismediates their
own biofilm formation by excluding competing species
through contact-dependent inhibition [12]. These com-
plex and intriguing phenomena enabled by cellular inter-
actions motivate us to ask the following question: How do
bacterial social interactions impact the functionality of an
entire community?
To answer this question, one fundamental step is to

determine the relationship between the social interac-
tions of individuals and the spatiotemporal structures
of communities. The underlying reason is that the abil-
ity of a community to perform a specific function relies
upon the collective behaviors of individual cells with a
given spatiotemporal arrangement and a corresponding
relative abundance. Additionally, understanding the cellu-
lar interaction-community structure relationship will be
instrumental to social evolution theory in the context of
microbes [2, 6, 7, 13, 14]. It will also advance the under-
standing of disease pathogenesis as well as the develop-
ment of better treatment strategies. Moreover, it will offer
invaluable knowledge for the design and construction of

engineered microbial consortia for desired functionality,
thereby advancing synthetic biology for community-based
gene circuit engineering.
Recently, there has been considerable interest in under-

standing the relationship between bacterial community
structure and individual social interactions. For instance,
researchers have attempted to understand the emergence
of spatial segregation in expanding microbial colonies [15]
and the patch length scale of mutualistic species [16].
Additionally, a variety of engineeredmicrobial ecosystems
have been developed to implement various social inter-
actions [17–20] and further applied to study population
dynamics and spatial structure [18, 21–24].
Simulations of social interactions in spatially structured

populations have commonly utilized continuous partial
differential equations to model both cell movement and
diffusible molecules, with associated bulk diffusion con-
stants [16, 18, 22, 24, 25]. An alternative approach is
to track individual cell movements, which can be driven
by lattice-based rules [26, 27] or mechanical force cal-
culations [28–36]. In particular, incorporating force cal-
culations has been vital to accurately modeling the true
dynamics of expanding populations. However, despite the
great advances made by these efforts, there has been
a lack of systematic computational investigation into
the social interaction-community structure relationship
that incorporates both mechanical forces and diffusible
chemicals.
Here, we present a systematic survey on the relationship

between the spatial structure of bacterial communities
and the social interactions of individuals. We first develop
a hybrid computational framework for modeling bacterial
communities that combines discrete element techniques
for force calculations with reaction-diffusion equations.
We then employ the framework to simulate the structure
of growing colonies with different pairwise interactions
utilizing a two-species model system. A statistical investi-
gation of the resulting community patterns follows, with
key metrics including species abundance, colony mor-
phology, and number of surviving lineages. To examine
the generality of our findings, various initial conditions
are tested for community simulation and analysis. Fur-
thermore, we construct an ordinary differential equation
model for an analytical interpretation of our findings.

Results and discussion
A computational framework for modeling bacterial
communities
When considering a bacterial community, there are
two primary classes of cellular events, namely growth
dynamics (cell elongation, division, and movement) and
intercellular chemical interactions (e.g. competition or
cooperation). We therefore have constructed a computa-
tional framework that incorporates both classes of events
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to systematically explore the link between social interac-
tions at the single cell level and population structures.
To describe growth dynamics, a single bacterium (e.g.

E. coli) was modeled as a rigid rod surrounded by a
deformable shell with defined elastic properties (Fig. 2)
and movement in two-dimensional space, similar to pre-
vious modeling work [28–35]. Therefore, cellular growth
(i.e. elongation) can be described by increasing the rod
length with a rate determined by the local availability of
nutrients and chemicals; cellular division can be mim-
icked by dividing the rod into two once its length reaches
a threshold. To model cellular movement, a discrete ele-
ment technique [31, 33, 37] was employed to describe the
mechanical forces generated by spatial volume overlaps
due to cellular growth and division (Fig. 2b). By incorpo-
rating cellular growth, division, andmovement, the frame-
work is able to successfully mimic the spatiotemporal
dynamics of growing populations. Figure 2c shows time

snapshots of colony expansion for a two-species popula-
tion simulated using the framework.
To model intercellular chemical interactions, we clas-

sified them into two types, asocial and social. Asocial
interactions correspond to the coupling of cells with
the environment via the consumption of shared nutri-
tion. In contrast, social interactions require the pro-
duction and sensing of diffusible chemicals such as
toxins, public goods, and signaling molecules. Notably,
although the framework can be easily adapted to incor-
porate interactions through direct contact (e.g., contact-
dependent growth inhibition) [25, 38], in this study we
primarily focus on chemical interactions mediated by
diffusible molecules. Thus, in the model direct contact
does not affect cell growth but is responsible for gener-
ating cell movement. Reaction-diffusion equations were
adopted to describe the dynamic spatial distribution of
diffusible chemicals (including nutrition) as well as their

Fig. 2Mechanical modeling of bacterial growth dynamics. a Representation of individual cells. Each cell is modeled as a growing rod surrounded by
a deformable elastic shell. b Calculation of the mechanical forces between two contacting cells. The procedure includes finding the closest points
between the cells, computing the overlap between the deformable spheres at the closest points, and then calculating the corresponding Hertzian
force. c Snapshots of a representative simulation of two-species bacterial colony expansion
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interactions with cells in space. With this approach, dif-
ferent interaction types can be implemented by specifying
the coupling between local chemical concentration and
cellular growth rate. By incorporating reaction-diffusion
equations and a discrete element based description of
growth dynamics, the computational framework captures
realistic features of interacting bacterial communities.

Systematic survey of the roles of cellular interactions in
determining community structure
To examine how social interactions impact community
structure, we employed the above computational frame-
work to systematically survey spatiotemporal patterns
emerging from communities with different cellular inter-
actions. Here, the colony expansion of a two-species bac-
terial population was used as a model system because
it retains many key features of complex communities,
such as spatial expansion, nutrient shielding, and both
mechanical and chemical interactions.
Figure 3 shows the community structures of bacterial

populations for all possible distinct pairwise interactions,
including commensalism, neutralism (control), amensal-
ism, mutualism, parasitism, and competition as listed
in Fig. 1b. For simplicity, a fixed initial cell density, an
equal relative abundance, and a well-mixed spatial dis-
tribution (See “Simulation protocols” in “Methods”) were
used for all of the simulated communities. In addition, all
parameters governing growth, division, and nutrient con-
sumption were the same for both the green and the red

species; only the parameters relating to social interactions
were varied (Detailed parameters are available in Sup-
porting Information (Additional file 1: Section 1). Clearly,
different social interactions resulted in qualitatively differ-
ent population structures for expanding colonies.
Interestingly, communities with asymmetrical social

interactions (commensalism, amensalism, and parasitism)
have an unbalanced structure where the species bene-
fiting from social interactions dominates the population,
such as the green cells in the commensal and parasitic
populations. Accordingly, the species hurt by social inter-
actions becomes the minority of a community or even
dies out, including the green cells for amensalism and the
red cells in parasitic populations. In contrast, communi-
ties with symmetrical interactions (mutualism, neutral-
ism, and competition) have roughly equal abundances for
the two species regardless of their interaction types. How-
ever, the spatial characteristics of these communities are
distinct: The mutualistic community has a higher degree
of spatial homogeneity (green-red mixing) compared with
control, consistent with a recent experimental report [16];
on the contrary, in the competing community, the two
species display a high degree of spatial segregation.
To obtain a statistical understanding of the above find-

ings, we decided to perform multiple runs for each of the
ecosystems. In addition to the spatially well-mixed initial
condition, we utilized a set of random initial conditions.
Maintaining an equal abundance and a fixed density, cells
were placed on a spatial grid with random orientation,

Fig. 3 Representative spatial structures emerged from two-species bacterial communities with different social interactions
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length, and species type. Furthermore, to achieve a quan-
titative statistical description of the differential structure
characteristics, we utilized a set of metrics to quantify
the outcomes of the simulations, including relative abun-
dance (e.g., fraction of green cells), colony roughness,
number of surviving cell lineages, and colony sectors (see
“Quantitative metrics” in “Methods”).
As shown in the top row of Fig. 4a as well as Table 1,

social interactions indeed resulted in a dramatic differ-
ence for relative species abundance (fraction of green
cells here). The community structures with asymmetri-
cal interactions (commensalism, ammensalism, and para-
sitism) have uneven relative abundance, with the species
having a growth advantage dominating the population;
those from symmetrical interactions (control, mutualism,
and competition) have an even species abundance on
average, consistent with our qualitative findings above.
More interestingly, we found that, among the three com-
munities with symmetric interactions, the mutualistic
community has the lowest variance and the competing
community has the largest variance, suggesting a strong
correlation between population robustness and the type
of social interaction.
Another key factor for expanding colonies is the mor-

phology. Here, we characterized morphology by deter-
mining the spatial fluctuations of the population edge

around the average radius (i.e. colony roughness). As
shown in the bottom row of Fig. 4a, all of the communi-
ties showed an approximately constant mean roughness
during colony growth, except for those with amensal-
ism and competition interactions, where a linear increase
in colony roughness was observed for increasing total
cell number. Associated with this finding, the vari-
ances for colony roughness with amensalism and com-
petition were also elevated over the other interaction
types.
We further examined the effects of interactions on

the diversity and spatial distribution of a community by
measuring the surviving lineages. Here, the number of
surviving lineages is defined as the number of seeding
cells which have viable progeny on the expanding colony
front with access to nutrients. Figure 4b shows that each
interaction type confers a characteristic decay for sur-
viving lineages. The following order is observed from
lowest to highest: competition, amensalism, parasitism,
control, commensalism, mutualism (Table 1). In addition
to the total number of surviving lineages, we also noticed
that the fraction of each species is also subject to inter-
action type. As shown in Fig. 4c, for the communities
with asymmetric interactions, amensalism and parasitism
displayed a large loss in lineages for the victim species
while commensalism maintained a lineage fraction close

Fig. 4 Statistical analysis of the role of social interactions in determining community structure. a Relative species abundance (the fraction of green
cells) and colony roughness as functions of total cells in the population. The solid lines correspond to the mean values, and the shaded regions
reflect two standard deviations. The statistics were obtained from six runs of simulations. b The number of surviving lineages as a function of total
cells. Communities with deleterious interactions (amensalism and competition) have a faster decay of lineage number compared with control
(neutralism), in contrast, those with beneficial interactions show a slower lineage decay. Control and parasitism have nearly indistinguishable plots.
c Fraction of green lineages in total lineages. d Colony radius as a function of time for all 36 simulations runs. Differential colony expansion rates
were observed for communities with different interactions. Control and parasitism have nearly indistinguishable radial expansion due to similar
overall growth rates
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Table 1 Statistics of the metrics for the six communities with an equal initial abundance and a high density. The mean and the
standard deviation are shown

Control Commensalism Amensalism Competition Mutualism Parasitism

Green Fraction 0.49 ± 0.05 0.71 ± 0.03 0.13 ± 0.04 0.49 ± 0.11 0.49 ± 0.02 0.93 ± 0.02

Roughness 0.90 ± 0.02 0.87 ± 0.02 1.05 ± 0.15 1.60 ± 0.26 0.87 ± 0.04 0.91 ± 0.02

Lineages 61.17 ± 1.33 73.33 ± 3.33 46.67 ± 1.97 44.83 ± 1.72 99.50 ± 3.56 54.00 ± 2.45

Green Lineages 28.50 ± 4.04 40.17 ± 2.23 14.17 ± 1.72 20.50 ± 2.88 48.00 ± 3.74 36.17 ± 3.37

Sectors 24.00 ± 5.02 20.00 ± 5.29 3.67 ± 1.97 7.50 ± 2.07 32.17 ± 8.18 1.83 ± 1.17

to the control case. The lineage fraction statistics for the
remaining interaction types are shown in Additional file 1:
Figure S1.
As a final measure to differentiate the roles of social

interactions in determining population structure, we con-
sidered the number of sectors on the expanding front of
each population, where sectors were defined as spatially
connected cell clusters that are greater than one hundred
cells from the same species. The mean sector number
provides another metric to distinguish the impacts of dif-
ferent interactions, with an order from lowest to highest
as: parasitism, amensalism, competition, commensalism,
control, mutualism (Table 1). Moreover, we noticed that
the number of sectors reflects the difference between the
symmetric interactions, with mutualism having the most
sectors and competition having the least (Table 1).
It is important to note that, although the above statis-

tics of colony structures have been presented as a function
of total cell number for consistent comparisons, our anal-
ysis can be directly applied to time series analysis. For
instance, different rates of radial expansion of the colonies
can be revealed (Fig. 4d), where the differences in over-
all growth originate from the interaction types. Additional
analysis of the community structures based on time series
is available in Additional file 1: Figure S2.
Taken together, the above metrics provide a comple-

mentary characterization of the impact of social inter-
actions on community structure. The mean species
abundance can be used to classify the communities with
asymmetric interactions while the variance can be applied
to differentiate between symmetric interactions (Fig. 4a).
The colony roughness can be employed to identify com-
munities with deleterious interactions such as amensalism
and competition (Fig. 4a). Counting surviving lineages
offers an ordering for all of the interactions (Fig. 4b).
Finally, sector number provides an additional metric
that distinguishes between the symmetric interactions
(Table 1).
From the perspective of interaction-structure rela-

tionship, deleterious interactions (amensalism and com-
petition) cause sizable variance in relative abundance
compared to the mean, a drastic decrease in surviving lin-
eages and a rough expanding front; beneficial interactions

(commensalism and mutualism), on the other hand, lead
to a reduced variance in abundance compared to the
mean, an enhancement in lineages, and a smooth expand-
ing front. In addition, the communities with asymmetric
interactions (commensalism, amensalism, and parasitism)
have differential mean relative abundance while those
with symmetrical interactions (control, mutualism, and
competition) are distinct in the variance of their relative
abundance. For the communities with symmetrical inter-
actions, mutualism promotes spatial homogeneity and
population robustness compared with control; in contrast,
competition results in spatial segregation and population
fluctuations.
Previous experimental efforts have examined the role

of competition [26], neutralism [15], and cooperation
[16, 26] respectively in shaping interspecies mixing
in expanding colonies. Perhaps as expected, cooper-
ation yields increased mixing over neutralism, which
yields increased mixing over competition. Our simulation
results reproduce this experimentally verified hierarchy,
as quantified by the number of surviving lineages and
colony sectors. More specifically, the control case results
in the formation of sectors over time due to the expanding
colony front [15]. Mutualism results in increased species
mixing [16, 26], and competition results in increased seg-
regation due to species exclusion [5, 26]. In addition, our
results show that all six pairwise interaction types yield
distinguishable community structures, with each metric
providing a predicted order for the interaction types. The
results (Fig. 4 and Table 1) provide concrete predictions
concerning the quantitative effects of social interactions
in natural and synthetic communities, guiding the rational
design of social microbial consortia with novel function-
alities.

Dependence of community structure on initial conditions
In both natural and experimental settings, there may exist
variations during initial colonization of bacterial popula-
tions in a new habitat. To examine how these variations
impact our findings, we performed and analyzed a series
of in silico colony development experiments for various
initial conditions, with a primary focus on total initial cell
density and relative species abundance.
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For total initial density, we studied three representa-
tive scenarios, corresponding to high, medium, and low
cell densities, while keeping an equal relative abundance.
Figure 5a shows the representative colony structures of
the communities with mutualism, neutralism, and com-
petition. Additional file 1: Figures S3–S4 and Additional
file 1: Tables S3–S4 show the systematic analysis of the
resulting community structures using the quantitative
metrics proposed in the above section. We found that,
although changes in the initial conditions can alter out-
comes, they typically do not destroy the characteristic
features of the interaction types for a given measured
quantity. For example, changes in initial density do not
alter the ordering of amensalism, commensalism, and par-
asitism for increasing fraction of green cells reported in
the previous case. In addition, the variance still increases
from mutualism to control and finally to competition.
The colony roughness also remains similar, with amen-
salism and competition displaying deviations from circu-
lar colonies (Additional file 1: Figure S5). Moreover, the
ordering for the surviving lineages is also roughly pre-
served for decreasing density, and the deleterious inter-
actions continue to cause decreased surviving lineages
compared with beneficial interactions.
However, a smaller initial density is correlated with a

smaller difference in the number of surviving lineages
(Fig. 5a, Additional file 1: Figures S3–S4) and a higher
colony roughness (Fig. 5c). This is because, for the same
initial seeding area, a smaller initial density corresponds
to a longer average cellular distance, enabling each seed

cell to grow into a larger clonal aggregate before inter-
actions play a role. For amensalism, lowering the density
results in the prolonged survival of green cells (Additional
file 1: Figure S6). For mutualism, lower densities result in
deviations from circular colonies due to a gradient in the
growth rate at the expanding front (Figs. 5a and 5c).
We also evaluated the impacts of relative species abun-

dance by conducting simulations for different initial ratios
(1:7, 1:3, 1:1, 3:1, 7:1) for a fixed total density, with the
corresponding analysis shown in Additional file 1: Figures
S7–S10 and Additional file 1: Tables S5–S8. The results
suggest that the relative abundance in initial cells has dif-
ferential influences depending on interaction type. For
instance, compared to control, the communities with
mutualism tend to minimize differences in the initial
abundance (Additional file 1: Figure S11) while competi-
tive communities intensify differences in the initial abun-
dance. Figure 5b shows representative colony structures
for competing communities with different initial ratios
and Fig. 5d shows the evolution of relative abundance of
the communities, both of which illustrate the exacerbated
effect from species competition.

Analytical interpretation of differential community
structures.
To gain analytical insights into our findings regarding
community structures and social interactions, we consid-
ered a simplified version of bacterial colony expansion–a
two-species, well-mixed community. As shown in Fig. 6a,
a mathematical model was constructed using ordinary

Fig. 5 Impacts of initial conditions on community structure. a Representative colony patterns emerged from cells with a high, medium, and low
initial density for the cases of mutualism, neutralism and competition. With the decrease of initial cell density, the general impacts of social
interactions on community structure remain but their magnitudes have been reduced. b Representative community structures simulated from
competing communities with different initial relative abundances. Alteration of the initial abundances resulted in dramatically different outcomes in
competing communities. cMean colony roughness of the mutualistic communities simulated in (a). d Fraction of green cells in the competing
communities in (b)
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Fig. 6 Analysis of a two-species community in the well-mixed case. a An ordinary differential equation model describing the growth dynamics of
two species, including nutrient consumption and interspecies interactions, and a shared nutrition source. b Phase diagram for the steady states of
the model. Qualitatively distinct outcomes may arise from communities with different interactions. Competition results in bistable exclusion,
mutualism leads to stable co-existence, and parasitism leads to the survival of the species with growth advantage. The origin, green colored axis and
red colored axis correspond to the cases of control (neutralism), commensalism, and amensalism respectively. c Simulations of the population
dynamics for the communities that are competing, mutualistic, and parasitic

differential equations (ODEs) to describe the population
dynamics of the system. In the ODEs, n represents a
shared nutrition source, with u and v as two interact-
ing cellular species. As in the full spatial model, the
two species interact through asocial (consumption of a
shared nutrient, αn

κ+n ) and social (production of toxins
or public goods, 1 − ξ1v and 1 − ξ2u) interactions. The
social interactions are quantified by the parameters
ξ1 and ξ2. For the well-mixed case, the production of
diffusible chemicals is assumed to be at steady-state so
that the interaction takes place through the cell den-
sity. Thus, the simplified ODEs mimic the full spatial
model and allow us to enhance our interpretation of the
results.
From the equations (Fig. 6a), we derived a phase dia-

gram (Fig. 6b, Additional file 1: Figure S12, Additional
file 1: Section 2) that describes the outcomes of the
well-mixed community. We found that, for the simpli-
fiedmodel, competition causes species exclusion although

either of the two may win, mutualism results in stable
co-existence, and parasitism leads to survival of only the
parasitic species. To confirm the results, we also per-
formed multiple runs of the ODE model with varying
initial conditions for each of the cases (Fig. 6c and Addi-
tional file 1: Figure S12), showing good consistency with
the phase diagram.
Although the simplified model neglects spatial informa-

tion, it does provide a set of valuable insights into our
findings. In this model, parasitism, commensalism and
amensalism all lead to the exclusive survival of the species
with higher fitness in a community, qualitatively consis-
tent with the findings from the computational framework
that the structures of the communities with asymmet-
rical interactions have a biased abundance towards the
species with a growth advantage. In contrast, competition,
mutualism, and neutralism in the simple model result
in the extinction of either species with an even chance,
perfect co-existence of the two species, and an initial
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condition-dependent random abundance respectively, all
of which have an equal relative species abundance upon
ensemble average (Additional file 1: Table S9). These
results are also in agreements with the equal relative
abundance observed in the spatial structures of the com-
munities with symmetrical interactions.
Additionally, given random initial conditions, compet-

ing communities always produce a steady species ratio of
either 1:0 or 0:1; mutualistic communities always result
in an equal 1:1 ratio, while neutralistic communities lead
to a random species ratio between 1:0 and 0:1. Therefore,
although the ensemble averages of the relative abundances
for the three symmetrical cases (competition, mutualism,
and neutralism) are the same, their variances shall be dis-
tinct with that of mutualism being minimal and that of
competition being maximal (Additional file 1: Table S9).
This result is again qualitatively consistent with the order
of the variances of the relative abundances for compet-
ing, mutualisitic and neutral communities in the spatial
setting.
In addition to relative abundance, the simplified model

can also be applied to understand the number of surviv-
ing lineages for the spatially expanding colonies. In the
spatial case, the numbers of surviving lineages for the
mutualisitic, neutral, and competing communities follow
an order from high to low. This is because the stable
co-existence for mutualism contributes to an enhance-
ment in total lineages at the expanding front. In contrast,
the exclusive nature of the competitive interaction drives
surrounding species to extinction, resulting in decreased
diversity at the population edge.

Conclusions
In this work, we performed a systematic survey on the
impacts of social interactions on the spatial structure
of bacterial communities. We developed and utilized
a hybrid community modeling framework that com-
bines discrete element techniques with reaction-diffusion
equations–the former for cellular force calculation and
the latter for social interaction computation. We found
that cellular social interactions have a profound impact on
bacterial communities, with different interactions lead-
ing to qualitatively distinct characteristics for colony
structures. Specifically, deleterious interactions (amensal-
ism and competition) can cause an increased variance
in relative abundance relative to the mean, a drastic
decrease in the number of surviving lineages, and a
rough expanding front; by contrast, beneficial interactions
(commensalism and mutualism) contribute to a reduced
variance in abundance relative to the mean, an enhance-
ment in lineage number, and a smooth expanding front.
In addition, the communities with asymmetric interac-
tions have a differential mean relative abundance while
those with symmetric interactions differ in the variance

of their relative abundance. Moreover, for the commu-
nities with symmetric interactions, mutualism promotes
spatial homogeneity and population robustness while
competition increases spatial segregation and population
fluctuations.
Due to the focus of this work on the interaction-

structure relationship as well as the computationally
intensive nature of the simulation framework, certain fea-
tures of natural populations were simplified. For instance,
toxin and public good production were assumed to be
constitutive, all cells were constrained to move within
two-dimensional space, and the number of cells within
a growing population was limited to 30,000. It will
thus be valuable to relax these constraints to study the
interaction-structure relationship in more complex set-
tings in the future. For example, social interactions, imple-
mented through the production of toxins or public goods,
are often subject to density-dependent mechanisms such
as quorum sensing. It will be interesting to examine how
the density dependence of cellular behaviors shapes our
conclusions regarding community structures. Addition-
ally, our framework allows the analysis of cellular density
over time as shown in Additional file 1: Figures S13–S24,
which provides the capacity to systematically examine the
role of density-dependent cellular behaviors in impacting
community structures.
In summary, this work provides a quantitative and sta-

tistical picture of the relationship between bacterial social
interactions and spatiotemporal community structures.
Such a picture will allow a comprehensive understand-
ing of the roles of pairwise social interaction, which sets
a basis for understanding more complex microbial com-
munities such as biofilms and the microbiome. There-
fore, this study advances our fundamental understanding
of microbial sociobiology and community structure. In
addition, from an engineering viewpoint, our systematic
study benefits the design and construction of synthetic
microbial consortia. For instance, the increased robust-
ness of population structure in a mutualistic community
compared to that of competitive and neutral communi-
ties suggests that researchers need to design cooperative
ecosystems for robust performance of desired cellular
functionality. Such knowledge will be instrumental for
engineering artificial microbial consortia towards various
applications.

Methods
Cell growth and division
Cellular growth rate is determined by the local concentra-
tions of related chemicals including nutrients, toxins, and
public goods. The Monod equation [39] is used to model
the dependence of cellular growth on nutrients, while for
toxins and public goods, a linear relationship is assumed.
Cell length expansion is based on growth rate and cell area
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until division [40] using the following equation for a given
cell i:

dli
dt

= gAi
n

κ + n
(1 − ξT) (1)

where li is the cell length, g is the growth rate, Ai is the
cell area, n is nutrient concentration, κ is nutrient sen-
sitivity, T is toxin or public good concentration, and ξ

is the interaction strength. Any possible negative values
for the derivative of li with respect to time were set to
zero. The dependence of all cells in the simulation on the
same nutrition source (n) leads to a slower growth rate in
the high density, nutrient depleted core of the expanding
population than on the edge. The total length at division
follows a truncated normal distribution (mean of 4.0 μm
and standard deviation of 0.3μm), with a random division
length assigned to each cell upon creation. Values outside
of [ 3.1, 4.9] were set to the respective extreme values.

Mechanical cell interactions
Intercellular mechanical forces are calculated using a soft
particle technique [41] with the following equation [42]:

Fij =
{
Ed

1
2 h

3
2
ij : hij > 0

0 : hij ≤ 0
(2)

where hij is the overlap between spheres of diameter d
placed at the closest points between cells i and j; E is
an elasticity constant. The spheres have a radius identical
to that of the corresponding cell, making sphere overlap
equivalent to cell overlap. The resulting force is normal
to the plane of contact, and forces are applied on the axis
of each respective cell, resulting in both translational and
rotational motion following Newton’s Laws. All motion
for the simulations was constrained to two-dimensional
space (see Additional file 1: Section 1.1).
The parameter values used in the simulation to model

cells expanding on a solid substrate (see Additional file 1:
Section 1.1 and [33]) allow us to neglect the inertial terms
in the equations of motion. Thus, the motion for a given
cell (i) is determined by the following equations:

d�qi
dτ

=
∑

contacts

(
Etc
βρ

) (
(1 − |�qci − �qcj|) 3

2

Li

)
q̂ij (3)

dφi
dτ

=
∑

contacts

(
Etc
βρ

) (
12(1 − |�qci − �qcj|) 3

2

L3i

)
q̂ij×(�qci−�qi)

(4)

where �qi is the center of mass position of the cell in two-
dimensional space, φi is the orientation of the cell, �qci and
�qcj are the closest points of contact between cells i and j,
q̂ij is a unit vector in the direction of (�qci − �qcj), Li is the

length of the cell, and (Etc/βρ) is a dimensionless param-
eter depending on the elasticity (E), chosen timescale (tc),
viscous drag (β), and mass density per unit length for
the cell (ρ). The sum over contacts consists of cells that
have a nonzero contact force (i.e. hij > 0). For all of the
spatial variables, the length scale is chosen to be 1 μm.
The time scale is chosen to be 30 min. See the Additional
file 1: (Table S1 and Section 1.1) for a full list of all
parameter values used and a derivation of the equations of
motion.

Chemical diffusion
The spatiotemporal distribution of chemicals is subject to
diffusion as well as system-specific reactions with other
chemicals and cells at a given spatial grid point. In general,
the time evolution of a chemical c is determined by:

dc
dt

= Dc∇2c + αcf (ρc, c) − βcc (5)

where Dc is the diffusion constant, αc and f (ρc, c) deter-
mine production (or consumption) by cells, ρc is the
density of cells that interact with the chemical, and βc
determines degradation. The parameters are chosen to
give realistic values for the active layer of growing cells
during expansion and a well-defined spatial scale for inter-
actions. (see Additional file 1: Section 1.2).
In the framework, nutrient is a diffusible chemical

species that is shared by all of the cells. A constant bound-
ary condition is assumed for the nutrient to represent an
external source. The time evolution equation for nutrient
is given by:

dn
dt

= Dn∇2n − αn
ρn

κ + n
(6)

where n is nutrient concentration, Dn is the diffusion con-
stant, αn is the cell consumption rate, κ is the nutrient
sensitivity, and ρ is the total density of all species at a grid
point in space, defined as the area of all cells within a grid
divided by the area of the grid. The value for nutrition
is scaled relative to the constant nutrient boundary con-
dition. See Additional file 1: Section 1.2 for a full list of
parameter values used.
For other chemicals, which are produced by cells, a reac-

tive boundary condition is assumed to account for flow
out of the system and production is assumed to be con-
stitutive. The boundary conditions, however, shall have
negligible effects on the time evolution of the system
for a sufficiently large spatial area. The time evolution
equations for produced chemicals are given by:

dc
dt

= Dc∇2c + ρc − βcc (7)

where c is the chemical concentration under consider-
ation, Dc is the diffusion constant, ρc is the density of
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producing cells at a grid point in space, and βc deter-
mines degradation. The concentration c is scaled so that
the production term does not have an additional parame-
ter. Notice thatDc and βc set a length scale for interactions
mediated by the diffusible chemical. See Additional file 1:
Section 1.2 for a full list of parameter values used.

Simulation protocols
A 60 by 60 μm2 square was used for initial seeding.
For random initial conditions, cellular orientation, length,
number, and species type at each grid were randomly
chosen but the overall species abundance and cell num-
ber were preserved to follow specific simulation require-
ments. For well-mixed initial conditions, species were
placed in an alternating pattern in grids with the over-
all species abundance and cell number following defined
requirements. A total of 256, 64, and 16 initial cells were
used to represent the case of high, medium, and low ini-
tial cell densities. All of the initial conditions tested were
generated using Mathematica. All of the simulations exit
when the overall cell number reaches 30,000 cells. Val-
ues for all parameters in the simulations can be found in
Additional file 1: Section 1.

Quantitative metrics
Colony roughness was used as a measure for the mor-
phology of a bacterial population. It was determined by
first locating the edge of the colony–Each spatial grid
point containing at least one cell was considered occu-
pied and the occupied grids with empty nearest neighbors
were classified as the edge. Subsequently, the center of the
colony was calculated by averaging over the positions for
all cells, weighted by the two-dimensional area for each
cell. Afterwards, the mean and standard deviation of the
edge grid points from the colony center were computed.
Here, the standard deviation serves as the quantitative
metric of the colony roughness, whose scale is the size
of one grid point (side length of 5 μm). The mean gives
an estimate of the colony radius, which can also be esti-
mated by calculating the moment of inertia of the colony
and solving for the radius assuming a disc with constant
density (as in Fig. 4).
Surviving lineages are defined as the lineages that

remain active. We thus first identified active cells in a
community–In our analysis, we considered a cell to be
currently active if it has a nutrient availability that allows
its growth rate to be within two exponential decays of the
maximum.Meanwhile, as the lineage information of every
cell is retained during a single simulation, we leveraged
this information to identify the ancestors of the active
cells. The number of ancestors counted is the number the
surviving lineages.
Similar to surviving lineages, we determined the colony

sectors by considering the layer of actively growing cells.

First, the image of the actively growing cells in the final
simulation snapshot was imported in Mathematica. The
remaining pixels were directly set as black in Mathemat-
ica. Then, a convolution was performed with a constant
kernel which averages nearest neighbor pixels. After-
wards, each pixel was classified as either green, red, or
background based on the dominant color (red, green,
or completely black). Finally, spatially connected compo-
nents and the number of pixels for each component for the
figure were obtained. The number of sectors was deter-
mined by counting the number of pixel clusters represent-
ing groups of more than 100 cells. The sector analysis was
performed for the final population states at 30,000 cells.
In addition to the metrics used to quantify the spatial

structures of the expanding colonies (i.e. relative abun-
dance, morphology, surviving lineages, and colony sec-
tors), we have also considered the time evolution of the
cell density. As shown in Additional file 1: Figures S13–
S21, the total cell density, defined as the number of cells
per unit area in two-dimensional space, follows a some-
what standard trajectory in time. After an initial transient
period, the cells form a dense quasi-circular structure
with a well-defined edge. Within the expanding colony,
the density is approximately constant, representing a well-
packed spatial limit, while the density decreases rapidly to
zero at the colony edge. Also shown in Additional file 1:
Figures S13–S21, the density for each individual cellular
species shows the formation of distinct spatial structures
according to interaction type. Given the two-dimensional
nature of the simulations, the cell density at a given time
can be inferred from images showing each cell colored
according to type (Additional file 1: Figures S22–S24). The
metrics analyzed and discussed throughout the text (e.g.
Figure 4) are used to give a thorough characterization of
the spatial structures produced by each interaction type
over time.

Implementation
Simulations in the work were implemented using C++,
with additional testing and prototyping performed in
Mathematica. OpenMP was used for parallelization of the
code, with parallel force calculations utilized for the simu-
lation of large systems. The default container used to hold
data was an instance of the standard vector class. Each cell
in the simulation constituted an instance of a particle class
including data members position, velocity, force, length,
cell type, and growth rate.

Visualization and analysis
All data concerning cells, nutrients, and toxins were writ-
ten to files for later analysis and visualization. Individual
frames were rendered in VMD [43], a program commonly
used for visualizing molecular dynamics. Colony data
analysis was performed in Mathematica, with customized
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functions developed to determine species abundance,
colony morphology, cell lineages, and segregated sectors.
Details of the methods are available in the Supporting
Information.

Additional file

Additional file 1: Supporting Information. The file contains two text
sections detailing the equations and parameters used for simulations and
ODE analysis. Figures S1–S24 and Tables S1–S9 are included with further
simulation data.
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