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Abstract

Non-contact respiration and heartbeat rates detection could be applied to find survivors trapped in the disaster or
the remote monitoring of the respiration and heartbeat of a patient. This study presents an improved algorithm
that extracts the respiration and heartbeat rates of humans by utilizing the terahertz radar, which further lessens the
effects of noise, suppresses the cross-term, and enhances the detection accuracy. A human target echo model for
the terahertz radar is first presented. Combining the over-sampling method, low-pass filter, and Empirical Mode
Decomposition improves the signal-to-noise ratio. The smoothed pseudo Wigner-Ville distribution time-frequency
technique and the centroid of the spectrogram are used to estimate the instantaneous velocity of the target's
cardiopulmonary motion. The down-sampling method is adopted to prevent serious distortion. Finally, a second
time-frequency analysis is applied to the centroid curve to extract the respiration and heartbeat rates of the
individual. Simulation results show that compared with the previously presented vital sign sensing method, the
improved algorithm enhances the signal-to-noise ratio to 1 dB with a detection accuracy of 80%. The improved
algorithm is an effective approach for the detection of respiration and heartbeat signal in a complicated
environment.

Keywords: Terahertz; Empirical Mode Decomposition; Smoothed pseudo Wigner-Ville distribution; Respiration and
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1 Introduction
Respiration and heartbeat rates detection is required for
health examinations, particularly with aging society [1],
which is becoming an increasingly important issue.
Traditional products and methods are of the contact
type, that is, these approaches require contact with or at-
tachment of some sensors to the patient's body. These
techniques include electrocardiography (ECG), oximetry,
respiration belt, and so on. Such methods are difficult to
employ for infants and for severely scalded or burned
patients. Microwave technology can be utilized for non-
contact respiration and heartbeat rates detection, which
is not confronted by the aforementioned problems [2-5].
This technology supports respiration and heartbeat rates
detection in an out-of-hospital environment and fa-
cilitates remote monitoring in a hospital to improve
user satisfaction. Meanwhile, the detection process is
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unnoticeable and avoids the user's respiration and heart-
beat rates change caused by mood swing.
The terahertz (THz) radar has unique advantages in the

field of non-contract respiration and heartbeat rates detec-
tion. The THz wave has a shorter wavelength than other
bands. The Doppler shift is inversely proportional to the
wavelength. A shorter wavelength will generate a larger
micro-Doppler frequency for the same micro-motion. The
THz radar makes the features of the micro-Doppler more
visible and can thus improve the detection accuracy [6].
The THz photon has minimal energy. The THz wave dif-
fers from X-ray in that it has no ionization effect and does
not destroy the original structure of the material [7]. Thus,
the THz wave will not damage the human body. More-
over, the THz wave can penetrate some non-metallic
materials and can be reflected back from human targets.
The terahertz radar can be used to detect respiration and
heartbeat rates of survivors trapped in earthquakes and
avalanches [8].
The Empirical Mode Decomposition (EMD) can fil-

ter the noise from ECG signals [9,10]. Basing from
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Table 1 The respiration and heartbeat signal model
parameters

Parameter Value

Carrier frequency fc 240 GHz

Fixed distance R0 50 m

Respiration displacement r1 5 mm

Heartbeat displacement r2 0.8 mm

Respiration rate f1 0.23 Hz

Heartbeat rate f2 1 Hz

Heartbeat radius r 0.25 m

Heart rate shift τ 0

Time t 30 s

SNR −13 dB
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Figure 1 Real part of noised SMR(t).
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EMD, we propose an improved respiration and heart-
beat rates detection algorithm with THz radar that
can further enhance the signal-to-noise ratio (SNR).
This approach can effectively detect respiration and
heartbeat signals in complicated environments with
low SNR.
Section 2 introduces the heartbeat and respiration sig-

nal model. Section 3 introduces the Empirical Mode
Decomposition and presents the steps of the improved
respiration and heartbeat rates detection algorithm.
Section 4 discusses the performance analysis of the
improved respiration and heartbeat rates detection algo-
rithm. Section 5 presents the conclusion.

2. Heartbeat and respiration signal model
For the THz continuous wave radar, we assume that the
transmitter and receiver are located at the origin. The
signal transmitted at time t can be defined as

ST tð Þ ¼ ej2πf ct ð1Þ

where fc is the frequency of the transmitted signal. In
practice, fc is 240 GHz. The signal received at time t is

SR tð Þ ¼ ej2πf c t−2R tð Þ
cð Þ ð2Þ

where c is the speed of light, and the delay of the radar
echo is 2R(t)/c. This assumption is known as the start-
stop approximation. The speed of light is significantly
faster than that of the subject body. Thus, the cor-
rectness of the assumption becomes more accurate to a
higher degree.
Once the radar signal bounces off the subject, its

energy is collected by the receiver. The signal is then
demodulated with a local oscillator. The modulated re-
ceived signal is expressed as

SMR tð Þ ¼ SR tð Þ⋅e−j2πf ct ¼ e−j2π 2λ−1R tð Þð Þ ð3Þ

where λ = c/fc is the wavelength of the radar wave.
Some harmonic components also exist aside from the

main frequencies referred to by the ECG data. The pe-
riodic motion of respiration can be considered as a
sinusoidal model. The analysis is simplified by assuming
that the human body is stationary, that is, the speed of
the target is zero. The human target model can be estab-
lished as

R tð Þ ¼ R0 þ r1 sin 2πf 1tð Þ þ r2δ f 2t−τð Þ ð4Þ

where R0 is the overall fixed distance from the person
to the radar; r1 and r2 are the displacements of res-
piration and heartbeat, respectively; f1 and f2 is the
frequencies of respiration and heartbeat, respectively;
and τ is the heart rate shift. Meanwhile, δ is defined
as

δ tð Þ ¼ 1
1−2a

t−
1
2
−btc

����
����−aþ t−

1
2
−btc

����
����−a

����
����

� �
ð5Þ

for a = 1/2 − r ⋅ f2, where r is the heartbeat radius.
The parameters are shown in Table 1, and the real part

of noised SMR(t) is shown in Figure 1.

3 Improved detection algorithms
Combining the EMD and the previously reported respi-
ration and heartbeat rates detection algorithm [11] sig-
nificantly improves the latter.

3.1 EMD method
EMD, a new adaptive and effective data decomposition
method aiming at non-linear and non-stationary data,
was presented by NE Huang in 1998 [12]. The decom-
position process involves the sifting of the intrinsic
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oscillatory modes with their characteristic time scales in
the signal, which is fully driven by the data. Any given
signal can be decomposed into a series of intrinsic mode
functions (IMFs). Every IMF confirms a certain fre-
quency band of the signal s(t). The IMF sifted earlier
represents a higher frequency band than that sifted
later. The IMF should satisfy two conditions: (1) the
number of local extrema and that of zero crossings can
differ by one at most for the whole data, and (2) the
mean value of the envelope defined by the local maxima
and that defined by the local minima should be zero at
any point [13]. These conditions indicate that the intrin-
sic mode function is a single-component signal. That is,
any given multi-component signal s(t) can be decom-
posed into several single-component signals with the
EMD approach.
For any given signal s(t), the EMD process is as

follows:
Step 1: All the local extrema of s(t) are located. The

local maxima and minima of s(t) are interpolated by
Figure 2 IMFs and residual decomposed from the noised SMR(t) (Figu
second column images are imf9(t) ~ imf14(t) and the residue.
cubic spline to compute for the upper envelope smax(t)
and the lower envelope smin(t) of s(t). m(t) is the enve-
lope mean of smax(t) and smin(t), whereas h(t) is the dif-
ference between s(t) and m(t).

m tð Þ ¼ smax tð Þ þ smin tð Þ½ �=2 ð6Þ
h tð Þ ¼ s tð Þ−m tð Þ ð7Þ

Step 2: h(t) is considered as s(t). Step 1 is repeated
until h(t) satisfies the intrinsic mode function conditions.
We set imf1(t) = h(t), and imf1(t) is an IMF. The residue
is given by

r1 tð Þ ¼ s tð Þ−imf1 tð Þ ð8Þ
Step 3: r1(t) is regarded as s(t). Step 1 and step 2 are

repeated to identify other IMFs imf2(t), imf3(t)…, and re-
siduals r2(t), r3(t)…, in sequence. If the amplitude of
imfN(t) is small enough or the number of extrema of
rN(t) is less than a predetermined number, the whole de-
composition process stops.
re 1) by the EMD. The first column images are imf1(t) ~ imf8(t); the
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Figure 3 Improved initial algorithm flowchart.

Figure 4 Detailed algorithm flowchart.
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With the EMD approach, s(t) is represented as linear
superposition of IMFs imfi(t) and the residue rN(t).

s tð Þ ¼
XN
i¼1

imf i tð Þ þ rN tð Þ ð9Þ

Figure 2 shows the decomposition of the noised SMR(t)
(Figure 1) into IMFs and the residue by the EMD.
The IMF is not a single-component signal but contains

a certain frequency band of the noised SMR(t) (Figure 1)
because of the interpolation error and end effect.

3.2 The improved respiration and heartbeat rates
detection algorithm
A respiration and heartbeat rates detection algorithm
was previously presented [11]. For the continuous wave
after demodulation, the Doppler frequency is given by

f D ¼ d
dt

2λ−1R tð Þ� � ¼ 2R tð Þ•

λ
ð10Þ

where λ is the signal wavelength. Thus, the Doppler shift
in the received radar signal is proportional to the vel-
ocity of the target R tð Þ•

.
The smoothed pseudo Wigner-Ville distribution (SPWVD)

time-frequency technique is applied to the respiration and
heartbeat signal to measure the Doppler frequency of the
target. The centroid of the spectrogram estimates the in-
stantaneous velocity of target's cardiopulmonary motion

R tð Þ•
. Finally, the centroid curve undergoes a second time-

frequency analysis to extract the respiration and heartbeat
rates of the individual.
The maximum of the Doppler frequency is

f Dmax ¼ max
d
dt

2λ−1R tð Þ� �� �

¼ max
d
dt

2λ−1 R0 þ r1 sin 2πf 1tð Þ þ r2δ f 2t−τð Þð Þ� �� �

¼ 2λ−1 max 2πf 1r1 cos 2πf 1tð Þf g þ 2λ−1 max r2
d
dt

δ f 2t−τð Þð Þ
� �

¼ 2λ−1 max 2πf 1r1f g þ 2λ−1 max
r2
r

n o

ð11Þ
where λ is fixed. In practice, the ceiling limit values of f1,
r1, and r2 exist , the lower limit value of r exists. Thus,
the maximum of the Doppler frequency fD max can al-
most be confirmed.
An IMF confirms a certain frequency band of the

respiration and heartbeat signal. Utilizing fD max as thresh-
old, the IMFs constituted with the required frequency
components can be separated and the IMFs constituted
with noise can be eliminated. The noise from the noised
respiration and heartbeat signal can be further lessened
by the EMD method. The improved initial algorithm
processes are shown in Figure 3.
Given that the noised respiration and heartbeat signal

is a multi-component signal, the SPWVD based on the
EMD is applied to the respiration and heartbeat signal
to suppress the cross-term, and the centroid curve ex-

traction method is employed to approximate R tð Þ•
. The

improved detailed flowchart is shown in Figure 4.
The over-sampling method is employed in the echo

signal as pre-treatment. When the signal passes through



Table 2 Simulation parameters

Parameter Value

Carrier frequency fc 240 GHz

Time t 30 s

Sampling rate 1 fo 500 Hz

Sampling rate 2 fd 10 Hz

Window 1 h = hamming 127

Window 2 g = hamming 127

Frequency points N 512

Signal-to-noise ratio SNR −13 dB
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Figure 5 Comparison of previously presented detection algorithm an
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of centroid.
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the first time-frequency analysis, the sampling frequency
is larger than the maximal frequency component in the
signal. Noise components can be filtered out by a low-
pass filter, which can help improve the SNR of the initial
analysis of the weak signal and lessen the effects of noise
on the signal band.
The EMD method is employed to filter noise further.

Combined with the SPWVD time-frequency technique,
the instantaneous Doppler frequency of the target is
obtained. Utilizing fD max as threshold, the IMFs con-
stituted with noise are eliminated with the EMD ap-
proach. The retained IMFs and residue are respectively
(b)
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Figure 6 High spectral energy density areas.

Table 3 High spectral energy density areas and their
corresponding frequencies in Figure 6

High spectral
energy density
area σi

Corresponding
frequency fi (Hz)

Average of normalized
spectral energy
density Wσi

σ1 1.981 0.0078

σ2 1.003 0.0597

σ3 0.807 0.0132

σ4 0.592 0.0197

σ5 0.230 0.8387
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calculated by using SPWVD. The time-frequency result
of the reconstituted respiration and heartbeat signal
EMD _ SPWV(t, f ) is the sum of the time-frequency re-
sults of the retained IMFs and the residue.

EMD SPWV t; fð Þ ¼
XN
i¼L

SPWVimf i t; fð Þ þ SPWVrN t; fð Þ

ð12Þ
where imf1(t)⋯ imfL − 1(t) are the eliminated IMFs, the
frequency band confirmed by imfL(t) includes fD max,
SPWVimf i t; fð Þ is the time-frequency result of imfi(t),
and SPWVrN t; fð Þ is the time-frequency result of the
residue rN(t).
Numerous frequency components exist at any moment

in the time-frequency diagram. The estimated R tð Þ•
can-

not be obtained through a simple time-frequency ana-
lysis. Spectral centroid method can be used to estimate

R tð Þ•
. The weighted average of the spectrogram for each

time t and the pair of (t, f ) can be identified to deter-
mine the centroid of the spectrogram. The formula is as
follows:

Centroid tð Þ ¼

Z ∞

−∞
x fð ÞEMD SPWV t; fð ÞdfZ ∞

−∞
EMD SPWV t; fð Þdf

ð13Þ

where x(f ) is the weighting function of the frequency,
and the default value is f for simplicity.
Before the second time-frequency analysis is executed,

we extracted the centroid curve, which is close to the
speed signal of the human body to a certain extent.
Down-sampling is adopted to obtain a sampling fre-
quency down to 10 Hz, which also satisfies the Nyquist
sampling theorem. If the sampling frequency of the sec-
ond time-frequency analysis does not undergo down-
sampling, the final time-frequency diagram will exhibit
serious distortion.
In the second time-frequency analysis of the centroid

curve, the respiration and heartbeat frequencies become
separated.
The parameters in Table 2 are utilized for simulation.

A comparison of the previously presented detection al-
gorithm and the improved detection algorithm is shown
in Figure 5.
The time-frequency diagram of Figure 5e is purer than

that of Figure 5f. The improved algorithm enhances the
SNR and suppresses the cross-term.

4 Analysis of performance
The width of the high spectral energy density areas is
noticeable. The exact frequency cannot be determined.
To extract the respiration and heartbeat frequencies, the
following solution is required: the spectral energy dens-
ity of the time-frequency diagram is normalized; the ap-
propriate threshold is selected, and the high spectral
energy density areas are sifted out as Figure 6 illustrated;
for each frequency f and the pair of (t, f ) in each high
spectral energy density area, the maximal average of
spectral energy density W σ i and its corresponding fre-
quency fi are identified as

f i ¼ max
f ∈σ i

1
Tdur

Zþ∞

−∞

SPWV t; fð Þdt ð14Þ

W σ i ¼
1

Tdur

Zþ∞

−∞

SPWV t; f ið Þdt ð15Þ

where Tdur is the signal observation time, and SPWV(t, f )
is the normalized spectral energy density after the second
time-frequency analysis. The fi corresponding to the lar-
gest W σ i is the respiration frequency, whereas fi co-
rresponding to the second largest W σ i is the heartbeat
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frequency. Table 3 provides the extract resolution of
Figure 6.
As shown in Table 3, the respiration and heartbeat fre-

quencies are 0.230 and 1.003 Hz, respectively.
The threshold fD max will affect the choice of IMFs. As

fD max approaches the authentic maximum of the Doppler
frequency, the detection result becomes more ideal, as
shown in Figure 7.
The frequency band confirmed by imf4 is close to the

practical maximum of the Doppler frequency, and the
detection result shown in Figure 7c is better.
According to the simulation parameters shown in

Table 1, the authentic maximum of Doppler frequency
(e
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Figure 7 Choice of IMF effect on the detection result. (a) Detection resul
the first two IMFs. (c) Detection result after elimination of the first three IMFs.
result after elimination of the first five IMFs.
is about 17 Hz. In order to avoid the loss of the Doppler
frequency, the value of fD max is appropriately larger
than 17 Hz. Employing Equations 14 and 15, the accur-
ate respiration and heartbeat frequencies can be ex-
tracted. When the respiration and heartbeat frequencies
are 0.23 and 1.00 Hz, respectively, the detection is suc-
cessful; otherwise, the detection is failed. The perfor-
mance curves of the improved algorithm based on the
EMD and the previously reported algorithm are shown
in Figure 8.
Compared with the previously presented vital sign

sensing method, the improved algorithm enhances the
SNR to 1 dB with a detection accuracy of 80%.
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5 Conclusions
In this paper, a vital sign sensing method based on the
EMD in THz band is proposed. The over-sampling
method and low-pass filter sift out the noise components.
The EMD further improves the SNR, and the down-
sampling method prevents serious distortion. Combining
the SPWVD and the centroid curve method facilitates the
extraction of the respiration and heartbeat rates with low
SNR. Meanwhile, the detection performance of this
method is analyzed. The improved respiration and heart-
beat rates detection method is an effective approach for
the analysis of the THz radar signal for vital sign sensing
in a complicated environment.
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