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Abstract
In this paper, based on Yamada’s hybrid steepest descent method, a general iterative
method is proposed for solving constrained convex minimization problem. It is
proved that the sequences generated by proposed implicit and explicit schemes
converge strongly to a solution of the constrained convex minimization problem,
which also solves a certain variational inequality.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a
nonempty, closed and convex subset of H . We need some nonlinear operators which are
introduced below.
Let T ,A :H →H be nonlinear operators.
• T is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈H .
• T is Lipschitz continuous if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, for all x, y ∈H .
• A :H →H is monotone if 〈x – y,Ax –Ay〉 ≥ , for all x, y ∈H .
• Given is a number η > , A :H →H is η-strongly monotone if

〈x – y,Ax –Ay〉 ≥ η‖x – y‖, for all x, y ∈H .
• Given is a number υ > . A :H →H is υ-inverse strongly monotone (υ-ism) if

〈x – y,Ax –Ay〉 ≥ υ‖Ax –Ay‖, for all x, y ∈H .
It is known that inverse strongly monotone operators have been studied widely (see

[–]), and applied to solve practical problems in various fields; for instance, in traffic
assignment problems (see [, ]).

• T :H →H is said to be an averaged mapping if T = ( – α)I + αS, where α is a number
in (, ) and S :H →H is nonexpansive. In particular, projections are (/)-averaged
mappings.
Averaged mappings have received many investigations, see [–].

Consider the following constrained convex minimization problem:

min
x∈C f (x), (.)
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where f : C → R is a real valued convex function. Assume that the minimization problem
(.) is consistent, and let S denote its solution set. It is known that the gradient-projection
algorithm is one of the powerful methods for solving the minimization problem (.) (see
[–]), and sometimes the minimization problem (.) has more than one solution. So,
regularization is needed. We can use the idea of regularization to design an iterative algo-
rithm for finding the minimum-norm solution of (.).
We consider the regularized minimization problem:

min
x∈C fα(x) = f (x) +

α


‖x‖. (.)

Here, α >  is the regularization parameter, f is convex function with L-Lipschitz contin-
uous gradient ∇f . Let xmin be minimum-norm solution of (.), namely, xmin satisfies the
property:

‖xmin‖ =min
{‖x‖ : x ∈ S

}
.

xmin can be obtained by two steps. First, observing that the gradient∇fα = ∇f +αI is (L+α)-
Lipschitzian and α-strongly monotone, the mapping ProjC(I – γ∇fα) is a contraction with
coefficient

√
 – γ (α – γ (L + α)) ≤  – 

αγ , where  < γ ≤ α

(L+α) . So, the regularized
problem (.) has a unique solution, which is denoted as xα ∈ C and which can be ob-
tained via the Banach contraction principle. Secondly, letting α →  yields xα → xmin in
norm. The following result shows that for suitable choices of γ and α, theminimum-norm
solution xmin can be obtained by a single step.

Theorem . [] Assume that the minimization problem (.) is consistent and let S de-
note its solution set. Assume that the gradient ∇f is L-Lipschitz continuous. Let {xn}∞n= be
generated by the following iterative algorithm:

xn+ = ProjC(I – γn∇fαn )xn = ProjC
(
I – γn(∇f + αnI)

)
xn, n≥ . (.)

Let {γn} and {αn} satisfy the following conditions:
(i)  < γn ≤ αn/(L + αn) for all n;
(ii) αn →  (and γn → ) as n → ∞;
(iii)

∑∞
n= αnγn = ∞;

(iv) (|γn – γn–| + |αnγn – αn–γn–|)/(αnγn) →  as n → ∞.
Then xn → xmin as n→ ∞.

In the assumptions of Theorem ., the sequence {γn} is forced to tend to zero. If we
keep it as a constant, then we have weak convergence as follows.

Theorem . [] Assume that the minimization problem (.) is consistent and let S de-
note its solution set. Assume that the gradient ∇f is L-Lipschitz continuous. Let {xn}∞n= be
generated by the following iterative algorithm:

xn+ = ProjC(I – γ∇fαn )xn = ProjC
(
I – γ (∇f + αnI)

)
xn, n≥ . (.)

Assume that  < γ < /L and
∑∞

n= αn < ∞. Then {xn}∞n= converges weakly to a solution of
the minimization problem (.).
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In , Yamada [] introduced the following hybrid steepest descent method:

xn+ = (I – snμF)Txn, (.)

where F : H → H is k-Lipschitzian and η-strongly monotone, and  < μ < η/k. It is
proved that the sequence {xn}∞n= generated by (.) converges strongly to x∗ ∈ Fix(T),
which solves the variational inequality:

〈
F
(
x∗),x∗ – z

〉 ≤ , ∀z ∈ Fix(T).

In this paper, we introduce a modification of algorithm (.) which is based on Yamada’s
method. It is proved that the sequence generated by our proposed algorithm converges
strongly to a minimizer of (.), which is also a solution of a certain variational inequality.

2 Preliminaries
In this section, we introduce some useful properties and lemmas which will be used in the
proofs for the main results in the next section.

Proposition . [, ] Let the operators S,T ,V :H →H be given:
(i) If T = ( – α)S + αV , for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) The composition of finitely many averaged mappings is averaged. That is, if each of

the mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if
T is α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite
TT is α-averaged, where α = α + α – αα.

(iii) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

Here, the notations Fix(T) denotes the set of fixed point of the mapping T ; that is,
Fix(T) := {x ∈H : Tx = x}.

Proposition . [, ] Let T :H →H be given.We have:
(i) T is nonexpansive, if and only if the complement I – T is (/)-ism;
(ii) If T is υ-ism, then for γ > , γT is (υ/γ )-ism;
(iii) T is averaged, if and only if the complement I – T is υ-ism for some υ > /; indeed,

for α ∈ (, ), T is α-averaged, if and only if I – T is (/α)-ism.

The so-called demiclosed principle for nonexpansive mappings will often be used.

Lemma . (Demiclosed Principle []) Let C be a closed and convex subset of a Hilbert
space H and let T : C → C be a nonexpansive mapping with Fix(T) = ∅. If {xn}∞n= is a
sequence in C weakly converging to x and if {(I – T)xn}∞n= converges strongly to y, then
(I – T)x = y. In particular, if y = , then x ∈ Fix(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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Recall themetric (nearest point) projection ProjC from a real Hilbert spaceH to a closed
convex subset C of H is defined as follows: given x ∈ H , ProjC x is the unique point in C
with the property

‖x – ProjC x‖ = inf
{‖x – y‖ : y ∈ C

}
.

ProjC is characterized as follows.

Lemma . Let C be a closed and convex subset of a real Hilbert space H . Given x ∈ H
and y ∈ C, then y = ProjC x if and only if there holds the inequality

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Lemma . Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n≥ ,

where {γn}∞n= and {βn}∞n= are sequences in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= γn|δn| < ∞;
(iii)

∑∞
n= βn < ∞.

Then limn→∞ an = .

We adopt the following notation:
• xn → xmeans that xn → x strongly;
• xn ⇀ xmeans that xn → x weakly.

3 Main results
Recall that throughout this paper, we use S to denote the solution set of constrained convex
minimization problem (.).
Let H be a real Hilbert space and C be a nonempty closed convex subset of Hilbert

space H . Let F : C →H be a k-Lipschitzian and η-strongly monotone operator with con-
stant k > , η >  such that  < μ < η/k. Suppose that ∇f is L-Lipschitz continuous. We
now consider a mapping Qs on C defined by:

Qs(x) = ProjC(I – sμF)Tλs (x), ∀x ∈ C,

where s ∈ (, ), and Tλs is nonexpansive. Let Tλs and λs satisfy the following conditions:
(i) ProjC(I – γ∇fλs ) = ( – θs)I + θsTλs and γ ∈ (, /L);
(ii) θs = +γ (L+λs)

 ;
(iii) λs is continuous with respect to s and λs = o(s).

It is easy to see that Qs is a contraction. Indeed, we have for each x, y ∈ C,

∥∥Qs(x) –Qs(y)
∥∥ =

∥∥ProjC(I – sμF)Tλs (x) – ProjC(I – sμF)Tλs (y)
∥∥

≤ ∥∥(I – sμF)Tλs (x) – (I – sμF)Tλs (y)
∥∥

≤ ( – sτ )‖x – y‖,

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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where τ = 
μ(η – μk). Hence, Qs has a unique fixed point in C, denoted by xs which

uniquely solves the fixed-point equation

xs = ProjC(I – sμF)Tλs (xs). (.)

The following proposition summarizes the properties of the net {xs}.

Proposition . Let xs be defined by (.). Then the following properties for the net {xs}
hold:
(a) {xs} is bounded for s ∈ (, );
(b) lims→ ‖xs – Tλsxs‖ = ;
(c) xs defines a continuous curve from (, ) into C.

Proof It is well known that: x̃ ∈ C solves the minimization problem (.) if and only if x̃
solves the fixed-point equation

x̃ = ProjC(I – γ∇f )x̃ =
 – γL


x̃ +

 + γL


Tx̃,

where  < γ < /L is a constant. It is clear that x̃ = Tx̃, i.e., x̃ ∈ S = Fix(T).
(a) Take a fixed p ∈ S, we obtain that

‖xs – p‖
=

∥∥ProjC(I – sμF)Tλs (xs) – ProjC p
∥∥

≤ ∥∥(I – sμF)Tλs (xs) – p
∥∥

=
∥∥(I – sμF)Tλs (xs) – (I – sμF + sμF)p

∥∥
≤ ∥∥(I – sμF)Tλs (xs) – (I – sμF)Tλs (p)

∥∥
+

∥∥(I – sμF)Tλs (p) – (I – sμF)T(p)
∥∥ + sμ

∥∥F(p)∥∥
≤ ( – sτ )‖xs – p‖ + ∥∥Tλs (p) – Tp

∥∥ + sμk
∥∥Tλs (p) – Tp

∥∥ + sμ
∥∥F(p)∥∥.

It follows that

‖xs – p‖ ≤ ( + sμk)‖Tλs (p) – T(p)‖
sτ

+
μ

τ

∥∥F(p)∥∥. (.)

For x ∈ C, note that

ProjC(I – γ∇fλs )x = ( – θs)x + θsTλsx

and

ProjC(I – γ∇f )x = ( – θ )x + θTx,

where θs = +γ (L+λs)
 and θ = +γL

 .
Then we get

∥∥(θ – θs)x + θsTλsx – θTx
∥∥ =

∥∥ProjC(I – γ∇fλs )x – ProjC(I – γ∇f )x
∥∥ ≤ γ λs‖x‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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Since θs = +γ (L+λs)
 and θ = +γL

 , there exists a real positive numberM >  such that

‖Tλsx – Tx‖ ≤ λsγ (‖x‖ + ‖Tx‖)
 + γ (L + λs)

≤ λsM‖x‖. (.)

It follows from (.) and (.) that

‖xs – p‖ ≤  + sμk
τ

· λs

s
·M‖p‖ + μ

τ

∥∥F(p)∥∥.

Since λs = o(s), there exists a real positive numberM′ >  such that λs
s ≤ M′, and

‖xs – p‖

≤  + sμk
τ

·M′ ·M‖p‖ + μ

τ

∥∥F(p)∥∥

≤  +μk
τ

MM′‖p‖ + μ

τ

∥∥F(p)∥∥.
Hence, {xs} is bounded.
(b) Note that the boundedness of {xs} implies that {FTλs (xs)} is also bounded. Hence, by

the definition of {xs}, we have

‖xs – Tλsxs‖
=

∥∥ProjC(I – sμF)Tλs (xs) – ProjC Tλsxs
∥∥

≤ ∥∥(I – sμF)Tλs (xs) – Tλsxs
∥∥

= s
∥∥μFTλs (xs)

∥∥ → .

(c) For γ ∈ (, /L), there exists

ProjC(I – γ∇fλs ) = ( – θs)I + θsTλs

and

ProjC(I – γ∇fλs ) = ( – θs )I + θsTλs
,

where θs = +γ (L+λs)
 and θs =

+γ (L+λs )
 .

So for xs ∈ C, we get

∥∥Tλs (xs) – Tλs
(xs)

∥∥
=

∥∥∥∥ProjC(I – γ∇fλs ) – [ – γ (L + λs)]I
 + γ (L + λs)

xs

–
ProjC(I – γ∇fλs ) – [ – γ (L + λs )]I

 + γ (L + λs )
xs

∥∥∥∥
≤

∥∥∥∥ProjC(I – γ∇fλs )
 + γ (L + λs)

xs –
ProjC(I – γ∇fλs )

 + γ (L + λs )
xs

∥∥∥∥
+

∥∥∥∥ [ – γ (L + λs)]I
 + γ (L + λs)

xs –
[ – γ (L + λs )]I
 + γ (L + λs )

xs
∥∥∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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=
∥∥∥∥[ + γ (L + λs )]ProjC(I – γ∇fλs ) – [ + γ (L + λs)]ProjC(I – γ∇fλs )

[ + γ (L + λs)][ + γ (L + λs )]
xs

∥∥∥∥
+

γ |λs – λs |
[ + γ (L + λs)][ + γ (L + λs )]

‖xs‖

=
∥∥∥∥ γ (λs – λs)ProjC(I – γ∇fλs )
[ + γ (L + λs)][ + γ (L + λs )]

xs

+
[ + γ (L + λs)](ProjC(I – γ∇fλs ) – ProjC(I – γ∇fλs ))

[ + γ (L + λs)][ + γ (L + λs )]
xs

∥∥∥∥
+

γ |λs – λs |
[ + γ (L + λs)][ + γ (L + λs )]

‖xs‖

≤ γ |λs – λs |‖ProjC(I – γ∇fλs )xs‖
[ + γ (L + λs)][ + γ (L + λs )]

+
[ + γ (L + λs)]‖ProjC(I – γ∇fλs )xs – ProjC(I – γ∇fλs )xs‖

[ + γ (L + λs)][ + γ (L + λs )]

+
γ |λs – λs |

[ + γ (L + λs)][ + γ (L + λs )]
‖xs‖

≤ |λs – λs |
[
γ
∥∥ProjC(I – γ∇fλs )xs

∥∥ + γ ‖xs‖ + γ ‖xs‖
]

≤ N |λs – λs |,

for some appropriate constant N >  such that

N ≥ γ
∥∥ProjC(I – γ∇fλs )xs

∥∥ + γ ‖xs‖.

Now take s, s ∈ (, ) and calculate

‖xs – xs‖
=

∥∥ProjC(I – sμF)Tλs (xs) – ProjC(I – sμF)Tλs
(xs )

∥∥
≤ ∥∥(I – sμF)Tλs (xs) – (I – sμF)Tλs

(xs )
∥∥

=
∥∥(I – sμF)Tλs

(xs) – (I – sμF)Tλs
(xs ) – (I – sμF)Tλs

(xs) + (I – sμF)Tλs (xs)
∥∥

≤ ∥∥(I – sμF)Tλs
(xs) – (I – sμF)Tλs

(xs )
∥∥

+
∥∥(I – sμF)Tλs (xs) – (I – sμF)Tλs

(xs)
∥∥

≤ ( – sτ )‖xs – xs‖ +
∥∥Tλs (xs) – Tλs

(xs)
∥∥ +μ|s – s|

∥∥FTλs (xs)
∥∥

+ sμk
∥∥Tλs (xs) – Tλs

(xs)
∥∥

≤ ( – sτ )‖xs – xs‖ + |λs – λs |N +μ|s – s|
∥∥FTλs (xs)

∥∥ + sμk|λs – λs |N
= ( – sτ )‖xs – xs‖ + |s – s|μ

∥∥FTλs (xs)
∥∥ + |λs – λs |N( + sμk).

It follows that

‖xs – xs‖ ≤ μ‖FTλs (xs)‖
sτ

|s – s| + ( + sμk)N
sτ

|λs – λs |.

Since {FTλs (xs)} is bounded, and λs is continuous with respect to s, xs defines a continuous
curve from (, ) into C. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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The following theorem shows that the net {xs} converges strongly as s →  to a mini-
mizer of (.), which solves some variational inequality.

Theorem. Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of Hilbert space H . Let F : C → H be a k-Lipschitzian and η-strongly monotone operator
with constant k > , η >  such that  < μ < η/k. Suppose that the minimization problem
(.) is consistent and let S denote its solution set. Assume that the gradient ∇f is Lips-
chitzian with constant L > . Let xs be defined by (.), where the parameter s ∈ (, ) and
Tλs is nonexpansive. Let Tλs and λs satisfy the following conditions:

(i) ProjC(I – γ∇fλs ) = ( – θs)I + θsTλs and γ ∈ (, /L);
(ii) θs = +γ (L+λs)

 ;
(iii) λs is continuous with respect to s and λs = o(s).

Then the net {xs} converges strongly as s →  to a minimizer x∗ of (.), which solves the
variational inequality

〈
Fx∗,x∗ – z

〉 ≤ , ∀z ∈ S. (.)

Equivalently, we have ProjS(I –μF)x∗ = x∗.

Proof It is easy to see the uniqueness of a solution of the variational inequality (.). In-
deed, suppose both x̃ ∈ S and x̂ ∈ S are solutions to (.), then

〈Fx̃, x̃ – x̂〉 ≤  (.)

and

〈Fx̂, x̂ – x̃〉 ≤ . (.)

Adding up (.) and (.) gets

〈Fx̃ – Fx̂, x̃ – x̂〉 ≤ .

The strong monotonicity of F implies that x̃ = x̂ and the uniqueness is proved. Below we
use x∗ ∈ S to denote the unique solution of the variational inequality (.).
Let us show that xs → x∗ as s → . Set

ys = (I – sμF)Tλs (xs).

Then we have xs = ProjC ys. For any given z ∈ S, we get

xs – z

= ProjC ys – z

= ProjC ys – ys + ys – z

= ProjC ys – ys + (I – sμF)Tλs (xs) – (I – sμF)z – sμF(z). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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Since ProjC is the metric projection from H onto C, we have

〈ys – xs, z – xs〉 ≤ .

Note that ProjC(I – γ∇f )z = z and ProjC(I – γ∇f ) = –γL
 I + +γL

 T , so we get z = Tz, i.e.,
z ∈ S = Fix(T).
It follows from (.) that

‖xs – z‖

= 〈ProjC ys – ys,ProjC ys – z〉 + s
〈
–μF(z),xs – z

〉
+

〈
(I – sμF)Tλs (xs) – (I – sμF)z,xs – z

〉
≤ s

〈
–μF(z),xs – z

〉
+

〈
(I – sμF)Tλs (xs) – (I – sμF)z,xs – z

〉
≤ s

〈
–μF(z),xs – z

〉
+

∥∥(I – sμF)Tλs (xs) – (I – sμF)z
∥∥ · ‖xs – z‖

≤ s
〈
–μF(z),xs – z

〉
+

(∥∥(I – sμF)Tλs (xs) – (I – sμF)T(xs)
∥∥

+
∥∥(I – sμF)T(xs) – (I – sμF)Tz

∥∥) · ‖xs – z‖
≤ s

〈
–μF(z),xs – z

〉
+

(
( – sτ )‖xs – z‖ + ∥∥Tλs (xs) – T(xs)

∥∥
+ sμk

∥∥Tλs (xs) – T(xs)
∥∥) · ‖xs – z‖.

By (.), we obtain that

‖xs – z‖

≤ 
sτ

∥∥Tλs (xs) – T(xs)
∥∥ · ‖xs – z‖ + μk

τ

∥∥Tλs (xs) – T(xs)
∥∥ · ‖xs – z‖

+

τ

〈
–μF(z),xs – z

〉

≤ ‖xs – z‖
τ

λs

s
·M‖xs‖ + μk

τ
λs ·M‖xs‖ · ‖xs – z‖

+

τ

〈
–μF(z),xs – z

〉
. (.)

Since {xs} is bounded, it is obvious that if {sn} is a sequence in (, ) such that sn → , and
xsn ⇀ x̄.
By Proposition .(b) and (.), we have

‖xsn – Txsn‖
≤ ‖xsn – Tλsn xsn‖ + ‖Tλsn xsn – Txsn‖
≤ ‖xsn – Tλsn xsn‖ + λsnM‖xsn‖ → .

So, by Lemma ., we get x̄ ∈ Fix(T) = S.
Since λs = o(s), we obtain from (.) that xsn → x̄ ∈ S.
Next, we show that x̄ solves the variational inequality (.). Observe that

xs = ProjC ys = ProjC ys – ys + (I – sμF)Tλs (xs).

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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Hence, we conclude that

μF(xs) =

s
(ProjC ys – ys) +


s
[
(I – sμF)Tλs (xs) – (I – sμF)(xs)

]
.

Since Tλs is nonexpansive, I – Tλs is monotone. Note that, for any given z ∈ S, z = Tz and
〈ProjC ys – ys,ProjC ys – z〉 ≤ .
By (.), it follows that

〈
μF(xs),xs – z

〉

=

s
〈ProjC ys – ys,xs – z〉 + 

s
〈
(I – sμF)Tλs (xs) – (I – sμF)xs,xs – z

〉

≤ –

s
〈
(I – sμF)xs – (I – sμF)Tλs (xs),xs – z

〉

= –

s
〈
(I – Tλs )xs – sμ

(
F(xs) – FTλs (xs)

)
,xs – z

〉

= –

s
〈
(I – Tλs )xs,xs – z

〉
+μ

〈
F(xs) – FTλs (xs),xs – z

〉

= –

s
〈
(I – Tλs )xs – (I – Tλs )z,xs – z

〉
–

s
〈
(I – Tλs )z,xs – z

〉

+μ
〈
F(xs) – FTλs (xs),xs – z

〉

≤ –

s
〈
(I – Tλs )z,xs – z

〉
+μ

〈
F(xs) – FTλs (xs),xs – z

〉

≤ 
s
‖Tλs z – Tz‖‖xs – z‖ +μ

∥∥F(xs) – FTλs (xs)
∥∥ · ‖xs – z‖

≤ λs

s
M‖z‖‖xs – z‖ +μk‖xs – Tλsxs‖‖xs – z‖. (.)

Since λs = o(s), by Proposition .(b), we obtain from (.) that

〈
μF(x̄), x̄ – z

〉 ≤ .

So x̄ ∈ S is a solution of the variational inequality (.).We get x̄ = x∗ by uniqueness. There-
fore, xs → x∗ as s → .
The variational inequality (.) can be rewritten as

〈
(I –μF)x∗ – x∗,x∗ – z

〉 ≥ , ∀z ∈ S.

So in terms of Lemma ., it is equivalent to the following fixed point equation:

ProjS(I –μF)x∗ = x∗.

Next, we study the following iterative method. For a given arbitrary initial guess x ∈ C,
we propose the following explicit scheme that generates a sequence {xn}∞n= in an explicit
way:

xn+ = ProjC(I – snμF)Tλn (xn), (.)

where the parameters {sn} ⊂ (, ). Let Tλn and λn satisfy the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/105
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(i) ProjC(I – γ∇fλn ) = ( – θn)I + θnTλn and  < γ < /L;
(ii) θn = +γ (L+λn)

 ;
(iii) λn = o(sn).

It is proved that the sequence {xn}∞n= converges strongly to a minimizer x∗ ∈ S of (.),
which also solves the variational inequality (.). �

Theorem . Let H be a real Hilbert space and C be a nonempty, closed and convex sub-
set of Hilbert space H . Let F : C → H be a k-Lipschitzian and η-strongly monotone oper-
ator with constant k > , η >  such that  < μ < η/k. Suppose that the minimization
problem (.) is consistent and let S denote its solution set. Assume that the gradient ∇f
is Lipschitzian with constant L > . Let {xn}∞n= be generated by algorithm (.) and the
parameters {sn} ⊂ (, ). Let Tλn , λn and sn satisfy the following conditions:
(C) ProjC(I – γ∇fλn ) = ( – θn)I + θnTλn and γ ∈ (, /L);
(C) θn = +γ (L+λn)

 for all n;
(C) limn→∞ sn =  and

∑∞
n= sn = ∞;

(C)
∑∞

n= |sn+ – sn| < ∞;
(C) λn = o(sn) and

∑∞
n= |λn+ – λn| < ∞.

Then the sequence {xn} generated by the explicit scheme (.) converges strongly to a min-
imizer x∗ of (.), which is also a solution of the variational inequality (.).

Proof It is well known that:
(a) x̃ ∈ C solves the minimization problem (.) if and only if x̃ solves the fixed-point

equation

x̃ = ProjC(I – γ∇f )x̃ =
 – γL


x̃ +

 + γL


Tx̃,

where  < γ < /L is a constant. It is clear that x̃ = Tx̃, i.e., x̃ ∈ S = Fix(T).
(b) the gradient ∇f is /L-ism.
(c) ProjC(I – γ∇fλn ) is

+γ (L+λn)
 averaged for γ ∈ (, /L), in particular, the following

relation holds:

ProjC(I – γ∇fλn ) =
 – γ (L + λn)


I +

 + γ (L + λn)


Tλn = ( – θn)I + θnTλn .

We observe that {xn} is bounded. Indeed, take a fixed p ∈ S, we get

‖xn+ – p‖
=

∥∥ProjC(I – snμF)Tλn (xn) – ProjC p
∥∥

≤ ∥∥(I – snμF)Tλn (xn) – p
∥∥

=
∥∥(I – snμF)Tλn (xn) – (I – snμF)p – snμF(p)

∥∥
≤ ∥∥(I – snμF)Tλn (xn) – (I – snμF)p

∥∥ + sn
∥∥μF(p)

∥∥
≤ ∥∥(I – snμF)Tλn (xn) – (I – snμF)Tλn (p)

∥∥
+

∥∥(I – snμF)Tλn (p) – (I – snμF)Tp
∥∥ + sn

∥∥μF(p)
∥∥

≤ ( – snτ )‖xn – p‖ + ∥∥Tλn (p) – T(p)
∥∥ + snμk

∥∥Tλn (p) – T(p)
∥∥ + sn

∥∥μF(p)
∥∥.
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It follows that

‖xn+ – p‖ ≤ ( – snτ )‖xn – p‖ + ( + snμk)
∥∥Tλn (p) – T(p)

∥∥ + sn
∥∥μF(p)

∥∥.
Note that, by using the same argument as in the proof of (.), there exists a real positive
numberM >  such that

‖Tλnp – Tp‖ ≤ λnγ (‖p‖ + ‖Tp‖)
 + γ (L + λn)

≤ λnM‖p‖. (.)

Since λn = o(sn), there exists a real positive numberM′ >  such that λn
sn ≤ M′ and by (.)

we get

‖xn+ – p‖
≤ ( – snτ )‖xn – p‖ + ( + snμk)λnM‖p‖ + sn

∥∥μF(p)
∥∥

≤ ( – snτ )‖xn – p‖ + ( +μk)snM′M‖p‖ + sn
∥∥μF(p)

∥∥
= ( – snτ )‖xn – p‖ + snτ

‖μF(p)‖ + ( +μk)M′M‖p‖
τ

.

It follows from induction that

‖xn – p‖ ≤ max

{
‖x – p‖, ‖μF(p)‖ + ( +μk)M′M‖p‖

τ

}
, n≥ . (.)

Consequently, {xn} is bounded. It implies that {Tλn (xn)} is also bounded.
We claim that

‖xn+ – xn‖ → . (.)

Indeed, since

ProjC(I – γ∇fλn ) =
 – γ (L + λn)


I +

 + γ (L + λn)


Tλn ,

we obtain that

Tλn =
ProjC(I – γ∇fλn ) – [ – γ (L + λn)]I

 + γ (L + λn)
.

By using the same argument as in the proof of Proposition .(c), we obtain that

∥∥Tλn (xn–) – Tλn– (xn–)
∥∥

=
∥∥∥∥ProjC(I – γ∇fλn ) – [ – γ (L + λn)]I

 + γ (L + λn)
(xn–)

–
ProjC(I – γ∇fλn– ) – [ – γ (L + λn–)]I

 + γ (L + λn–)
(xn–)

∥∥∥∥
≤ |λn – λn–| ·

[
γ
∥∥ProjC(I – γ∇fλn )(xn–)

∥∥ + γ ‖xn–‖
]

≤ K |λn – λn–|,
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for some appropriate constant K >  such that

K ≥ γ
∥∥ProjC(I – γ∇fλn )(xn–)

∥∥ + γ ‖xn–‖, n≥ .

Thus, we get

‖xn+ – xn‖
=

∥∥ProjC(I – snμF)Tλn (xn) – ProjC(I – sn–μF)Tλn– (xn–)
∥∥

≤ ∥∥(I – snμF)Tλn (xn) – (I – sn–μF)Tλn– (xn–)
∥∥

=
∥∥(I – snμF)Tλn (xn) – (I – snμF)Tλn (xn–) + (I – snμF)Tλn (xn–)

– (I – sn–μF)Tλn– (xn–)
∥∥

≤ ∥∥(I – snμF)Tλn (xn) – (I – snμF)Tλn (xn–)
∥∥

+
∥∥(I – snμF)Tλn (xn–) – (I – sn–μF)Tλn– (xn–)

∥∥
≤ ( – snτ )‖xn – xn–‖ +

∥∥Tλn (xn–) – Tλn– (xn–)
∥∥

+
∥∥snμFTλn (xn–) – sn–μFTλn (xn–)

∥∥ +
∥∥sn–μFTλn (xn–) – sn–μFTλn– (xn–)

∥∥
≤ ( – snτ )‖xn – xn–‖ +K |λn – λn–| +μ|sn – sn–|

∥∥FTλn (xn–)
∥∥

+μ|sn–|k ·K |λn – λn–|
= ( – snτ )‖xn – xn–‖ + |sn – sn–|μ

∥∥FTλn (xn–)
∥∥ + |λn – λn–|

(
K +μ|sn–|k ·K)

≤ ( – snτ )‖xn – xn–‖ + |sn – sn–|μ
∥∥FTλn (xn–)

∥∥ + |λn – λn–|(K +μk ·K)

for some appropriate constant E >  such that

E ≥ ∥∥FTλn (xn–)
∥∥, n≥ .

Consequently, we get

‖xn+ – xn‖ ≤ ( – snτ )‖xn – xn–‖ +μE|sn – sn–| + |λn – λn–|(K +μk ·K).

By Lemma ., we obtain ‖xn+ – xn‖ → .
Next, we show that

‖xn – Tλnxn‖ → . (.)

Indeed, it follows from (.) that

‖xn – Tλnxn‖
≤ ‖xn+ – xn‖ + ‖xn+ – Tλnxn‖
= ‖xn+ – xn‖ +

∥∥ProjC(I – snμF)Tλn (xn) – ProjC Tλn (xn)
∥∥

≤ ‖xn+ – xn‖ +
∥∥(I – snμF)Tλn (xn) – Tλnxn

∥∥
= ‖xn+ – xn‖ + sn

∥∥μFTλn (xn)
∥∥ → .
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Now we show that

lim sup
n→∞

〈
xn – x∗, –μF

(
x∗)〉 ≤ , (.)

where x∗ ∈ S is a solution of the variational inequality (.).
Indeed, take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
xn – x∗, –μF

(
x∗)〉 = lim

k→∞
〈
xnk – x∗, –μF

(
x∗)〉. (.)

Without loss of generality, we may assume that xnk ⇀ x̃.
We observe that

‖xn – Txn‖ ≤ ∥∥xn – Tλn (xn)
∥∥ +

∥∥Tλn (xn) – Txn
∥∥.

It follows from (.) that

‖xn – Txn‖ ≤ ∥∥xn – Tλn (xn)
∥∥ + λnM‖xn‖.

By (.), we get ‖xn – Txn‖ → .
In terms of Lemma ., we get x̃ ∈ Fix(T) = S.
Consequently, from (.) and the variational inequality (.), it follows that

lim sup
n→∞

〈
xn – x∗, –μF

(
x∗)〉 = 〈

x̃ – x∗, –μF
(
x∗)〉 ≤ .

Finally, we show that xn → x∗.
As a matter of fact, set

yn = (I – snμF)Tλn (xn), n≥ .

Then, xn+ = ProjC yn – yn + yn.
In terms of Lemma . and (.), we obtain

∥∥xn+ – x∗∥∥

=
〈
ProjC yn – yn + yn – x∗,xn+ – x∗〉

=
〈
ProjC yn – yn,ProjC yn – x∗〉 + 〈

yn – x∗,xn+ – x∗〉
≤ 〈

yn – x∗,xn+ – x∗〉
= sn

〈
–μF

(
x∗),xn+ – x∗〉 + 〈

(I – snμF)Tλn (xn) – (I – snμF)Tx∗,xn+ – x∗〉
≤ sn

〈
–μF

(
x∗),xn+ – x∗〉 + ∥∥(I – snμF)Tλn (xn) – (I – snμF)Tx∗∥∥∥∥xn+ – x∗∥∥

≤ sn
〈
–μF

(
x∗),xn+ – x∗〉 + (∥∥(I – snμF)Tλn (xn) – (I – snμF)Tλn

(
x∗)∥∥

+
∥∥(I – snμF)Tλn

(
x∗) – (I – snμF)T

(
x∗)∥∥)∥∥xn+ – x∗∥∥

≤ sn
〈
–μF

(
x∗),xn+ – x∗〉 + (

( – snτ )
∥∥xn – x∗∥∥ +

∥∥Tλn

(
x∗) – T

(
x∗)∥∥

+ snμk
∥∥Tλn

(
x∗) – T

(
x∗)∥∥) · ∥∥xn+ – x∗∥∥
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≤ ( – snτ ) · 
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)

+ sn
〈
–μF

(
x∗),xn+ – x∗〉 + (λnM + snμk · λnM)

∥∥x∗∥∥∥∥xn+ – x∗∥∥.
It follows that

∥∥xn+ – x∗∥∥

≤  – snτ
 + snτ

∥∥xn – x∗∥∥ +
sn

 + snτ
〈
–μF

(
x∗),xn+ – x∗〉

+
(λnM + snμk · λnM)

 + snτ
∥∥x∗∥∥∥∥xn+ – x∗∥∥

≤ ( – snτ )
∥∥xn – x∗∥∥ +

sn
 + snτ

〈
–μF

(
x∗),xn+ – x∗〉

+ (λnM + snμk · λnM)
∥∥x∗∥∥∥∥xn+ – x∗∥∥

= ( – snτ )
∥∥xn – x∗∥∥

+ sn
[


 + snτ

〈
–μF

(
x∗),xn+ – x∗〉 + λn

sn
(M +μkM)

∥∥x∗∥∥∥∥xn+ – x∗∥∥]
,

since {xn} is bounded, we can take a constant L′ >  such that

L′ ≥ (M +μkM)
∥∥x∗∥∥∥∥xn+ – x∗∥∥, n≥ .

It then follows that

∥∥xn+ – x∗∥∥ ≤ ( – snτ )
∥∥xn – x∗∥∥ + snδn, (.)

where δn = 
+snτ

〈–μF(x∗),xn+ – x∗〉 + λn
sn L′.

By (.) and λn = o(sn), we get lim supn→∞ δn ≤ . Now applying Lemma . to (.)
concludes that xn → x∗ as n→ ∞. �

4 Application
In this section, we give an application of Theorem . to the split feasibility problem (say
SFP, for short), which was introduced by Censor and Elfving []. Since its inception in
, the split feasibility problem (SFP) has received much attention (see [, , ]) due
to its applications in signal processing and image reconstruction, with particular progress
in intensity-modulated radiation therapy.
The SFP can mathematically be formulated as the problem of finding a point x with the

property

x ∈ C and Bx ∈Q, (.)

where C and Q are nonempty, closed and convex subset of Hilbert space H and H, re-
spectively. B :H → H is a bounded linear operator.
It is clear that x∗ is a solution to the split feasibility problem (.) if and only if x∗ ∈ C

and Bx∗ – ProjQ Bx∗ = . We define the proximity function f by

f (x) =


‖Bx – ProjQ Bx‖,
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and consider the constrained convex minimization problem

min
x∈C f (x) =min

x∈C


‖Bx – ProjQ Bx‖. (.)

Then x∗ solves the split feasibility problem (.) if and only if x∗ solves the minimization
problem (.) with the minimize equal to . Byrne [] introduced the so-called CQ algo-
rithm to solve the (SFP).

xn+ = ProjC
(
I – γB∗(I – ProjQ)B

)
xn, n ≥ , (.)

where  < γ < /‖B‖. He obtained that the sequence {xn} generated by (.) converges
weakly to a solution of the (SFP).
In order to obtain strong convergence iterative sequence to solve the (SFP), we propose

the following algorithm:

xn+ = ProjC(I – snμF)Tλn (xn), (.)

where the parameters {sn} ⊂ (, ) and {Tλn} satisfy the following conditions:
(C) ProjC(I – γ (B∗(I – ProjQ)B + λnI)) = ( – θn)I + θnTλn and γ ∈ (, /L);
(C) θn = +γ (L+λn)

 for all n,
where F : C →H is k-Lipschitzian and η-stronglymonotone operator with constant k > ,
η >  such that  < μ < η/k. We can show that the sequence {xn} generated by (.)
converges strongly to a solution of the (SFP) (.) if the sequence {sn} ⊂ (, ) and the
sequence {λn} of parameters satisfy appropriate conditions.
Applying Theorem ., we obtain the following result.

Theorem . Assume that the split feasibility problem (.) is consistent. Let the sequence
{xn} be generated by (.). Where the sequence {sn} ⊂ (, ) and the sequence {λn} satisfy
the conditions (C)-(C). Then the sequence {xn} converges strongly to a solution of the split
feasibility problem (.).

Proof By the definition of the proximity function f , we have

∇f (x) = B∗(I – ProjQ)Bx,

and ∇f is Lipschitz continuous, i.e.,

∥∥∇f (x) –∇f (y)
∥∥ ≤ L‖x – y‖,

where L = ‖B‖.
Set fλn (x) = f (x) + λn

 ‖x‖, consequently

∇fλn (x) = ∇f (x) + λnI(x)

= B∗(I – ProjQ)Bx + λnx.
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Then the iterative scheme (.) is equivalent to

xn+ = ProjC(I – snμF)Tλn (xn),

where the parameters {sn} ⊂ (, ). {Tλn} satisfy the following conditions:
(C) ProjC(I – γ∇fλn ) = ( – θn)I + θnTλn and γ ∈ (, /L);
(C) θn = +γ (L+λn)

 for all n.
Due to Theorem ., we have the conclusion immediately. �
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