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Abstract
In this paper, a two-steps modifying Halpern iteration for Bregman strongly
nonexpansive multi-valued mappings in the framework of reflexive Banach spaces is
established. Under suitable limit conditions, some strong convergence theorems for
this iteration are proved. We apply our main results to solve classical equilibrium
problems in the framework of reflexive Banach spaces. The main results presented in
the paper improve and extend the corresponding results in the work by Suthep et al.
(Comput. Math. Appl. 64:489-499, 2012), Li et al. (Fixed Point Theory Appl. 2013:197,
2013) and Chang and Wang (Appl. Math. Comput. 228:38-48, 2014).
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1 Introduction
Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively. Let D be a nonempty and closed subset of a real Banach space X.
Let N(D) and CB(D) denote the family of nonempty subsets and nonempty, closed, and
bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined by

H(A,A) =max
{
sup
x∈A

d(x,A), sup
y∈A

d(y,A)
}

for all A,A ∈ CB(D), where d(x,A) = inf{‖x – y‖, y ∈ A}. The multi-valued mapping
T :D → CB(D) is called nonexpansive, if

H(Tx,Ty) ≤ ‖x – y‖, ∀x, y ∈D.

An element p ∈D is calledafixed point ofmulti-valuedmappingT :D →N(D) if p ∈ T(p).
The set of fixed points of T is denoted by F(T).
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In recent years, several types of iterative schemes have been constructed andproposed in
order to get strong convergence results for finding fixed points of nonexpansive mappings
in various settings. One classical and effective iteration process is defined by

xn+ = αnu + ( – αn)Txn, x,u ∈D,

where αn ∈ (, ). Such amethod was introduced in  by Halpern [] and is often called
Halpern’s iteration. In fact, he proved, in a real Hilbert space, strong convergence of {xn}
to a fixed point of the nonexpansive mapping T , where αn = n–a, a ∈ (, ).
Because of a simple construction, Halpern’s iteration is widely used to approximate fixed

points of nonexpansive mappings and other classes of nonlinear mappings by mathemati-
cians in different styles [–]. Reich [] also extended the result of Halpern from Hilbert
spaces to uniformly smooth Banach spaces. In , Halpern’s iteration for Bregman
strongly nonexpansive mappings in reflexive Banach spaces was introduced and strong
convergence theorem for Bregman strongly nonexpansivemappings byHalpern’s iteration
in the framework of reflexive Banach spaces were proved. Recently, strong convergence
theorem for Bregman strongly multi-valued nonexpansive mappings about Halpern’s it-
eration in the framework of reflexive Banach spaces was proved by Suthep et al. [], Li et
al. [], and Chang and Wang [].
The purpose of our work is continue to introduce two-steps modifying Halpern’s it-

eration for Bregman strongly nonexpansive multi-valued mappings in the framework of
reflexive Banach spaces and to prove strong convergence theorems for this iterations. We
use our results to solve equilibrium problems in the framework of reflexive Banach spaces.
The main results presented in the paper improve and extend the corresponding results in
the work by Suthep et al. [], Li et al. [], and Chang and Wang [].

2 Preliminaries
In the sequel, we begin by recalling some preliminaries and lemmas which will be used in
our proofs. Nowwefirst collect some basic concepts. LetX be a real reflexive Banach space
with a norm ‖ · ‖ and let X∗ be the dual space of X. Let f : X → (–∞, +∞] be a proper,
lower semi-continuous, and convex function. We denote dom f = {x ∈ X : f (x) < +∞} as
the domain of f .
Let x ∈ int dom f . The subdifferential of f at x is the convex set defined by

∂f (x) =
{
x∗ ∈ X∗ : f (x) +

〈
x∗, y – x

〉 ≤ f (y),∀y ∈ X
}
. (.)

The Fenchel conjugate of f is the function f ∗ : X∗ → (–∞, +∞] defined by

f ∗(x∗) = sup
{〈
x∗,x

〉
– f (x) : x ∈ X

}
.

We know that the Young-Fenchel inequality holds, that is,

〈
x∗,x

〉 ≤ f (x) + f ∗(x∗), ∀x ∈ X,x∗ ∈ X∗.

Furthermore, equality holds if x∗ ∈ ∂f (x). The set levf≤(r) := {x ∈ X : f (x) ≤ r} for some
r ∈R is called a sublevel of f .

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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A function f onX is called coercive [], if the sublevel sets of f are bounded, equivalently,

lim‖x‖→+∞ f (x) = +∞.

A function f on X is said to be strongly coercive [], if

lim‖x‖→+∞
f (x)
‖x‖ = +∞.

For any x ∈ int dom f and y ∈ X, the right-hand derivative of f at x in the direction y is
defined by

f ◦(x, y) = lim
t→+

f (x + ty) – f (x)
t

.

The function f is said to beGâteaux differentiable at x, if limt→+
f (x+ty)–f (x)

t exists for any y.
In this case, f ◦(x, y) coincides with ∇f (x), the value of the gradient ∇f (x) of f at x. The
function f is said to be Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈
int dom f . The function f is said to be Fréchet differentiable at x, if this limit is attained
uniformly in ‖y‖ = . Finally, f is said to be uniformly Fréchet differentiable on a subset
D of X, if the limit is attained uniformly, for x ∈ D and ‖y‖ = . It is known that if f is
Gâteaux differentiable (resp. Fréchet differentiable) on int dom f , then f is continuous and
its Gâteaux derivative ∇f is norm-to-weak∗, continuous on int dom f (see [] and []).

Definition . (cf. []) The function f is said to be
(i) essentially smooth, if ∂f is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f )– is locally bounded on its domain and f is strictly

convex on every convex subset of dom ∂f ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark . (cf. []) Let X be a reflexive Banach space. Then we have
(a) f is essentially smooth if and only if f ∗ is essentially strictly convex;
(b) (∂f )– = ∂f ∗;
(c) f is Legendre if and only if f ∗ is Legendre;
(d) if f is Legendre, then ∂f is a bijection which satisfies ∇f = (∇f ∗)–,

ran∇f = dom∇f ∗ = int dom f ∗ and ran∇f ∗ = dom∇f = int dom f .

Examples of Legendre functions can be found in []. One important and interesting
Legendre function is 

p‖ · ‖p ( < p < +∞) when X is a smooth and strictly convex Banach
space. In this case the gradient ∇f of f is coincident with the generalized duality mapping
ofX, i.e.,∇f = Jp. In particular,∇f = I the identitymapping inHilbert spaces. In this paper,
we always assume that f is Legendre.
The following crucial lemma was proved by Reich-Sabach [].

Lemma . (cf. []) If f : X → R is uniformly Fréchet differentiable and bounded on
bounded subsets of X, then ∇f is uniformly continuous on bounded subsets of X from the
strong topology of X to the strong topology of X∗.

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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Let f : X → (–∞, +∞] be a convex and Gâteaux differentiable function. The function
Df : dom f × int dom f → [, +∞) defined by

Df (y,x) := f (y) – f (x) –
〈∇f (x), y – x

〉

is called the Bregman distance with respect to f .
Recall that the Bregman projection [] of x ∈ int dom f onto a nonempty, closed, and

convex set D ⊂ dom f is the necessarily unique vector projfD(x) ∈ D; for convenience, here
we use Pf

D(x) for proj
f
D(x) satisfying

Df
(
projfD(x),x

)
= inf

{
Df (y,x) : y ∈ D

}
.

The modulus of total convexity of f at x ∈ int dom f is the function vf (x, t) : [, +∞) →
[, +∞) defined by

vf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
.

The function f is called totally convex at x, if vf (x, t) >  whenever t > . The function
f is called totally convex, if it is totally convex at any point x ∈ int dom f , and it is said to
be totally convex on bounded sets, if vf (B, t) > , for any nonempty bounded subset B and
t > , where the modulus of totally convexity of the function f on the set B is the function
vf : int dom f × [, +∞)→ [, +∞) defined by

vf (B, t) = inf
{
vf (x, t) : x ∈ B∩ dom f

}
.

We know that f is totally convex on bounded sets if and only if f is uniformly convex on
bounded sets (see []).
Recall that the function f is said to be sequentially consistent [], if for any two se-

quences {xn} and {yn} in X such that the first sequence is bounded, the following implica-
tion holds:

lim
n→+∞Df (xn, yn) =  ⇒ lim

n→+∞‖xn – yn‖ = .

The following crucial lemma was proved by Butnariu-Iusem [].

Lemma . (cf. []) The function f is totally convex on bounded sets if and only if it is
sequentially consistent.

Definition . (cf. []) Let D be a convex subset of int dom f and let T be a multi-valued
mapping of D. A point p ∈ D is called an asymptotic fixed point of T if D contains a se-
quence {xn} which converges weakly to p such that d(xn,Txn) →  (as n → ∞).

We denote by F̂(T) the set of asymptotic fixed points of T .

Definition . A multi-valued mapping T : D → N(D) with a nonempty fixed point set
is said to be

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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(i) Bregman strongly nonexpansive with respect to a nonempty F̂(T), if

Df (p, z) ≤Df (p,x), ∀x ∈D,p ∈ F̂(T), z ∈ T(x)

and, if whenever {xn} ⊂D is bounded, p ∈ F̂(T), and
limn→∞[Df (p,xn) –Df (p, zn)] = , then limn→∞ Df (xn, zn) = , where zn ∈ Txn;

(ii) Bregman firmly nonexpansive if

〈∇f
(
x∗)–∇f

(
y∗),x∗–y∗〉 ≤ 〈∇f (x)–∇f (y),x∗–y∗〉, ∀x, y ∈D,x∗ ∈ Tx, y∗ ∈ Ty.

In particular, the existence and approximation of Bregman firmly nonexpansive single
valuemappings was studied in []. It is also known that if T is Bregman firmly nonexpan-
sive and f is Legendre function which is bounded, uniformly Fréchet differentiable, and
totally convex on bounded subsets of X, then F(T) = F̂(T) and F(T) is closed and convex
(see []). It also follows that every Bregman firmly nonexpansive mapping is Bregman
strongly nonexpansive with respect to F(T) = F̂(T). The class of single-valued Bregman
strongly nonexpansive mappings was introduced first in []. There is a wealth of results
concerning this class of mappings (for example, see [–] and the references therein).

Remark . Let X be a uniformly smooth and uniformly convex Banach space, and D
is nonempty, closed, and convex subset. An operator T : C → N(D) is called a strongly
relatively nonexpansive multi-valued mapping on X, if F̂(T) �=� and

φ(p, z) ≤ φ(p,x), p ∈ F̂(T), z ∈ Tx,

and, if whenever {xn} ⊂ D is bounded, p ∈ F̂(T), and limn→∞[φ(p,xn) – φ(p, zn)] = , then
limn→∞ φ(xn, zn) = , where zn ∈ Txn and φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖.

Let D be a nonempty, closed, and convex subset of X. Let f : X →R be a Gâteaux differ-
entiable and totally convex function and x ∈ X. It is known from [] that z = Pf

D(x) if and
only if

〈∇f (x) –∇f (z), y – z
〉 ≤ , ∀y ∈D.

We also know the following characterization:

Df
(
y,Pf

D(x)
)
+Df

(
Pf
D(x),x

) ≤Df (y,x), ∀x, y ∈D.

Let f : X → R be a convex, Legendre, and Gâteaux differentiable function. Following
[] and [], we make use of the function Vf : X ×X∗ → [, +∞) associated with f , which
is defined by

Vf
(
x,x∗) = f (x) + f ∗(x∗) – 〈

x,x∗〉, ∀x ∈ X,x∗ ∈ X∗.

Then Vf is nonnegative and Vf (x,x∗) =Df (x,∇f ∗(x∗)) for all x ∈ X and x∗ ∈ X∗. Moreover,
by the subdifferential inequality (see [], Proposition (iii), p.),

Vf
(
x,x∗) + 〈

y∗,∇f ∗(x∗) – x
〉 ≤ Vf

(
x,x∗ + y∗), ∀x ∈ X,x∗, y∗ ∈ X∗.

http://www.journalofinequalitiesandapplications.com/content/2014/1/412


Liu and Li Journal of Inequalities and Applications 2014, 2014:412 Page 6 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/412

In addition, if f : X → (–∞, +∞] is a proper and lower semi-continuous function, then
f ∗ : X∗ → (–∞, +∞] is a proper, weak∗ lower semi-continuous, and convex function (see
[]). Hence Vf is convex in the second variable (see [], Proposition (i), p.). Thus,

Df
(
z,∇f ∗(t∇f (x) + ( – t)∇f (y)

))

≤ tDf (z,x) + ( – t)Df (z, y), ∀t ∈ (, ),∀x, y ∈ X. (.)

The properties of the Bregman projection and the relative projection operators were
studied in [] and [].
The following lemmas give some nice properties of sequences of real numbers which

will be useful for the forthcoming analysis.

Lemma . (cf. [], Lemma ., p.) Let {αn} be a sequence of real numbers such that
there exists a nondecreasing subsequence αni of αn, that is, αni ≤ αni+ for all i ∈ N . Then
there exists a nondecreasing subsequence {mk} ⊂ N , such that mk → ∞ and the following
properties are satisfied for all (sufficiently large number sequences, k ⊂N ):

αmk ≤ αmk+ and αk ≤ αmk+.

In fact,mk =max{j ≤ k : αj ≤ αj+}.

Lemma . (see [], Lemma ., p.) Assume that {αn} is a sequence of nonnegative
real numbers such that

αn+ ≤ ( – γn)αn + γnδn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a) limn→∞ γn = ,

∑∞
n= γn =∞;

(b) lim supn→∞ δn ≤ .
Then limn→∞ αn = .

In , Yi Li and Jin-hua Zhu proved the following results, respectively.
Let X be a real reflexive Banach space and let f : X → (–∞, +∞] be a strongly coercive

Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex
on bounded subsets of X. Let D be a nonempty, closed, and convex subset of int dom f ,
αn ∈ (, ), limn→∞ αn = , and  < lim infn→∞ βn ≤ lim supn→∞ βn < .
() (see []) Let T :D →N(D) be a Bregman strongly nonexpansive mapping on X such

that F(T) = F̂(T) �= ∅. Suppose that u ∈ X and define the sequence {xn} by

x ∈D, xn+ =∇f ∗(αn∇f (u) + ( – αn)
(
βn∇f (xn) + ( – βn)∇f (Txn)

))
, n≥ .

Then {xn} strongly converges to Pf
F(T)(u).

() (see []) Let T :D →N(D) be a Bregman strongly nonexpansive multi-valued
mapping on X such that F(T) = F̂(T) �= ∅. Suppose that u ∈ X and define the
sequence {xn} by

x ∈D, xn+ =∇f ∗(αn∇f (u) + ( – αn)∇f (zn)
)
, zn ∈ Txn,n≥ .

Then {xn} strongly converges to Pf
F(T)(u).

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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Now, we improve the above results, and the following main results are obtained.

3 Main results
To prove our main result, we first give the following two propositions.

Proposition . (see [], Proposition .) Let D be a nonempty, closed, and convex subset
of a real reflexive Banach space X. Let f : X → R be a Gâteaux differentiable and totally
convex function, and let T : D → N(D) be a multi-valued mapping such that F(T) = F̂(T)
is nonempty, closed, and convex. Suppose that u ∈ D and {xn} is a bounded sequence in D
such that limn→∞ d(xn,Txn) = . Then

lim sup
n→∞

〈∇f (u) –∇f (p),xn – p
〉 ≤ , p = Pf

F(T)(u). (.)

The proof of the following result in the case of single-valued Bregman firmly nonex-
pansive mappings was done in ([], Lemma ., p.). In the multi-valued case the
proof is identical and therefore we will omit the exact details. The interested reader may
consult [].

Proposition . Let f : X → (–∞, +∞] be a Legendre function and let D be a nonempty,
closed, and convex subset of int dom f . Let T :D→N(D) be a Bregman firmly nonexpansive
multi-valued mapping with respect to f . Then F(T) is closed and convex.

We are now in a position to prove our main convergence results. We modify Halpern’s
iteration for finding a fixed point of a Bregman strongly nonexpansive mapping in a real
reflexive Banach spaces.

Theorem . Let X be a real reflexive Banach space and let f : X → (–∞, +∞] be a
strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and
totally convex on bounded subsets of X . Let D be a nonempty, closed, and convex subset of
int dom f and let T : D → N(D) be a Bregman strongly nonexpansive multi-valued map-
ping on X such that F(T) = F̂(T) �= ∅. Suppose that u ∈ X, x ∈ D, and define the sequence
{xn} by

⎧⎨
⎩
xn+ =∇f ∗(αn∇f (u) + ( – αn)∇f (yn)),

yn =∇f ∗(βn∇f (xn) + ( – βn)∇f (zn)), zn ∈ Txn,n≥ ,
(.)

where αn,βn ∈ (, ) satisfy
(C) limn→∞ αn =  and

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then the sequence {xn} strongly converges to Pf

F(T)(u).

Proof First, by Proposition ., we know that F(T) is closed and convex. Let p = Pf
F(T)(u) ∈

F(T) = F̂(T). Since yn =∇f ∗(βn∇f (xn) + ( – βn)∇f (zn)), then, by using (.),

Df (p, yn) ≤ βnDf (p,xn) + ( – βn)Df (p, zn)

≤ βnDf (p,xn) + ( – βn)Df (p,xn)

=Df (p,xn).

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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Since xn+ =∇f ∗(αn∇f (u) + ( – αn)∇f (yn)), we obtain

Df (p,xn+) ≤ αnDf (p,u) + ( – αn)Df (p, yn)

≤ αnDf (p,u) + ( – αn)Df (p,xn)

≤ max
{
Df (p,u),Df (p,xn)

}
.

By the induction, the sequence Df (p,xn) is bounded and hence Df (p, yn) is bounded.
Next, we show that the sequence {xn} is also bounded.We follow the proof in []. Since

Df (p,xn) is bounded, there exists L >  such that

f (p) –
〈∇f (xn),p

〉
+ f ∗(∇f (xn)

)
= Vf

(
p,∇f (xn)

)
=Df (p,xn) ≤ L.

Hence {∇f (xn)} is contained in the sublevel set levψ
≤(L – f (p)), where ψ = f ∗ – 〈·,p〉. Since

f is lower semi-continuous, f ∗ is weak∗ lower semi-continuous. Hence the function ψ is
coercive. This shows that {∇f (xn)} is bounded. Since f is strongly coercive, f ∗ is bounded
on bounded sets (see []). Hence ∇f ∗ is also bounded on bounded subsets of E∗ (see
[]). Since f is a Legendre function, it follows that xn = ∇f ∗(∇f (xn)), n ∈ N, is bounded.
Therefore {xn} is bounded. So are {yn}, {zn}, {∇f (yn)}, and {∇f (zn)}.
We next show that if there exists a subsequence {xnk } ⊂ {xn} such that

lim
k→∞

[
Df (p,xnk+) –Df (p,xnk )

]
= ,

then

lim
k→∞

[
Df (p, znk ) –Df (p,xnk )

]
= ,

where znk ∈ Txnk .
Since {∇f (yn)} is bounded, we have, from (.),

lim
k→∞

∥∥∇f (xnk+) –∇f (ynk )
∥∥ = lim

k→∞
αnk

∥∥∇f (u) –∇f (ynk )
∥∥ = . (.)

Since f is strongly coercive and uniformly convex on bounded subsets ofX, f ∗ is uniformly
Fréchet differentiable on bounded subsets of X∗ (see []). Moreover, f ∗ is bounded on
bounded sets. Since f is Legendre, by Lemma ., we obtain

lim
k→∞

‖xnk+ – ynk‖ = lim
k→∞

∥∥∇f ∗(∇f (xnk+)
)
–∇f ∗(∇f (ynk )

)∥∥ = . (.)

On the other hand, since f is uniformly Fréchet differentiable on bounded subsets of X, f
is uniformly continuous on bounded subsets of X (see []). It follows that

lim
k→∞

∣∣f (xnk+) – f (ynk )
∣∣ = . (.)

The following equality holds:

Df (p, ynk ) –Df (p,xnk ) = f (p) – f (ynk ) –
〈∇f (ynk ),p – ynk

〉
–Df (p,xnk )

= f (p) – f (xnk+) + f (xnk+) – f (ynk ) –
〈∇f (xnk+),p – xnk+

〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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+
〈∇f (xnk+),p – xnk+

〉
–

〈∇f (ynk ),p – ynk
〉
–Df (p,xnk )

= Df (p,xnk+) +
(
f (xnk+) – f (ynk )

)
+

〈∇f (xnk+),p – xnk+
〉

–
〈∇f (ynk ),p – ynk

〉
–Df (p,xnk )

=
(
Df (p,xnk+) –Df (p,xnk )

)
+

(
f (xnk+) – f (ynk )

)

+
〈∇f (xnk+) –∇f (ynk ),p – xnk+

〉
–

〈∇f (ynk ),xnk+ – ynk
〉
.

It follows from (.), (.), and (.) that

lim
k→∞

(
Df (p, ynk ) –Df (p,xnk )

)
= .

Now, by virtue of condition (C), we have

Df (p, ynk ) –Df (p,xnk ) ≤ βnkDf (p,xnk ) + ( – βnk )Df (p, znk ) –Df (p,xnk )

= ( – βnk )
(
Df (p, znk ) –Df (p,xnk )

)
.

Because T is a Bregman strongly nonexpansive multi-valued mapping,

lim
k→∞

[
Df (p, znk ) –Df (p,xnk )

]
= .

The rest of the proof will be divided into two parts.
Case . Suppose {Df (p,xn)} is eventually decreasing, i.e. there exists a sufficiently large

k >  such that Df (p,xn) > Df (p,xn+) for all n > k. In this case limn→∞ Df (p,xn) exists.
In this situation, we see that limn→∞ Df (p,xn) exists. This shows that limn→∞(Df (p,xn) –
Df (p,xn+)) =  and hence limn→∞(Df (p, zn) –Df (p,xn)) = .
Since T is a Bregman strongly nonexpansive multi-valued mapping, then

lim
n→∞

(
Df (xn, zn)

)
= .

Since f is totally convex on bounded subsets of E, by Lemma ., we have

lim
n→∞‖xn – zn‖ = .

From (.), we have

Df (zn, yn) = Df
(
zn,∇f ∗(βn∇f (xn) + ( – βn)∇f (zn)

))

≤ βnDf (zn,xn) + ( – βn)Df (zn,xn)

= Df (zn,xn) → 

and

Df (yn,xn+) ≤ αnDf (yn,u) + ( – αn)Df (yn, yn) = αnDf (yn,u) → .

So are limn→∞ ‖zn – xn‖ =  and limn→∞ ‖yn – xn+‖ = .
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By Proposition ., we obtain

lim sup
n→∞

〈∇f (u) –∇f (p),xn – p
〉 ≤ .

Finally, we show that xn → p as n→ ∞. Indeed

Df (p,xn+) = Vf
(
p,αn∇f (u) + ( – αn)∇f (yn)

)

≤ Vf
(
p,αn∇f (u) + ( – αn)∇f (yn) – αn

(∇f (u) –∇f (p)
))

+
〈
αn

(∇f (u) –∇f (p)
)
,xn+ – p

〉

= Vf
(
p,αn∇f (p) + ( – αn)∇f (yn)

)
+ αn

〈∇f (u) –∇f (p),xn+ – p
〉

≤ αnVf
(
p,∇f (p)

)
+ ( – αn)Vf

(
p,∇f (yn)

)
+ αn

〈∇f (u) –∇f (p),xn+ – p
〉

= ( – αn)Df (p, zn) + αn
〈∇f (u) –∇f (p),xn+ – p

〉

≤ ( – αn)Df (p,xn) + αn
〈∇f (u) –∇f (p),xn+ – p

〉
.

By Lemma ., we conclude that limn→∞ Df (p,xn) = . Therefore, by Lemma ., since f
is totally convex on bounded subsets of X, we obtain xn → p as n→ ∞.
Case . If {Df (p,xn)} is not eventually decreasing, there exists a subsequence {Df (p,

xnj )} ⊂ {Df (p,xn)} such thatDf (p,xnj ) <Df (p,xnj+) for all j ∈N . By Lemma ., there exists
a strictly increasing sequence {mk} of positive integers such that the following properties
by all k ∈N :

Df (p,xmk ) ≤Df (p,xmk+), Df (p,xk) ≤Df (p,xmk+).

Since inequalityDf (p, zn) –Df (p,xn) ≤  holds by Definition ., hence, by Lemma ., we
have

 ≤ lim
k→∞

(
Df (p,xmk+) –Df (p,xmk )

)

≤ lim sup
n→∞

(
Df (p,xn+) –Df (p,xn)

)

≤ lim sup
n→∞

(
αnDf (p,u) + ( – αn)Df (p, yn) –Df (p,xn)

)

≤ lim sup
n→∞

(
αnDf (p,u) + ( – αn)

(
βnDf (p,xn) + ( – βn)Df (p, zn)

)
–Df (p,xn)

)

= lim sup
n→∞

(
αn

(
Df (p,u)( – αn)( – βn)

(
Df (p, zn)

)
–Df (p,xn)

)
– αnDf (p,xn)

)

≤ lim sup
n→∞

αn
(
Df (p,u) –Df (p,xn)

)
= .

This implies that

lim sup
k→∞

(
Df (p,xmk+) –Df (p,xmk )

)
= . (.)

Following the proof of Case , we have

lim sup
k→∞

〈∇f (u) –∇f (p),xmk – p
〉 ≤ 

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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and

Df (p,xmk+) ≤ ( – αmk )Df (p,xmk ) + αmk

〈∇f (u) –∇f (p),xmk+ – p
〉
.

This implies that

αmkDf (p,xmk ) ≤ Df (p,xmk ) –Df (p,xmk+) + αmk

〈∇f (u) –∇f (p),xmk+ – p
〉

≤ αmk

〈∇f (u) –∇f (p),xmk+ – p
〉
.

Hence

lim
k→∞

Df (p,xmk ) = .

Using this and (.) together, we conclude that

lim sup
k→∞

Df (p,xk)≤ lim
k→∞

Df (p,xmk+) = .

The proof of Theorem . is now completed. �

As a direct consequence of Theorem . and Remark ., we obtain the convergence
result concerning strongly relatively nonexpansive multi-valued mappings in a uniformly
smooth and uniformly convex Banach space.

Corollary . Let X be a uniformly smooth and uniformly convex Banach space and
J : X → X∗ is the normalized duality mapping. Let D be a nonempty, closed, and con-
vex subset on X and let T : D → N(D) be a strongly relatively nonexpansive multi-valued
mapping on X such that F(T) = F̂(T) �= ∅. Suppose that u ∈D and define the sequence {xn}
as follows: x ∈D and

⎧⎨
⎩
xn+ = J–(αnJ(u) + ( – αn)Jyn),

yn = J–(βnJxn + ( – βn)Jzn), zn ∈ Txn,∀n≥ ,

where αn,βn ∈ (, ) satisfy
(C) limn→∞ αn =  and

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to
F(T)u,where
F(T) is the generalized projection onto F(T).

4 Application
In order to emphasize the importance of Theorem ., we illustrate an applicationwith the
following important example, which concerns the equilibrium problems in the framework
of reflexive Banach spaces.
Let X be a smooth, strictly convex, and reflexive Banach space, let D be a nonempty,

closed, and convex subset of X and let G : D×D → R be a bifunction satisfying the con-
ditions: (A) G(x,x) = , for all x ∈ D; (A) G(x, y) + G(y,x) ≤ , for any x, y ∈ D; (A) for
each x, y, z ∈ D, limt→G(tz + ( – t)x, y) ≤ G(x, y); (A) for each given x ∈ D, the function

http://www.journalofinequalitiesandapplications.com/content/2014/1/412
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y �−→ f (x, y) is convex and lower semi-continuous. The so-called equilibrium problem for
G is to find a x∗ ∈D such thatG(x∗, y) ≥ , for each y ∈D. The set of its solutions is denoted
by EP(G).
The resolvent of a bifunction G [] is the operator ResfG : X → D defined by

ResfG(x) =
{
z ∈D,G(z, y) +

〈∇f (z) –∇f (x)z, y – z
〉 ≥ ,∀y ∈D

}
, ∀x ∈ X. (.)

If f : X → (–∞, +∞] is a strongly coercive and Gâteaux differentiable function, and G
satisfies conditions (A)-(A), then dom(ResfG) = X (see []). We also know:
() ResfG is single-valued;
() ResfG is a Bregman firmly nonexpansive mapping;
() F(ResfG) = EP(G);
() EP(G) is a closed and convex subset of D;
() for all x ∈ X and for all p ∈ F(ResfG), we have

Df
(
p,ResfG(x)

)
+Df

(
ResfG(x),x

) ≤Df (p,x). (.)

In addition, by Reich-Sabach [], if f is uniformly Fréchet differentiable and bounded on
bounded subsets of X, then we find that F(ResfG) = F̂(ResfG) = EP(G) is closed and convex.
Hence, by replacing T = ResfG in Theorem ., we obtain the following result.

Theorem . Let D be a nonempty, closed, and convex subset of a real reflexive Banach
space X. Let f be a strongly coercive Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subsets of X . Let G :D×D → R be a bifunc-
tion which satisfies the conditions (A)-(A) such that EP(G) �= ∅. Suppose that u ∈ X and
define the sequence {xn} by

⎧⎨
⎩
xn+ =∇f ∗(αn∇f (u) + ( – αn)∇f (yn)),

yn =∇f ∗(βn∇f (xn) + ( – βn)∇f (zn)), zn ∈ ResfG xn,n≥ ,
(.)

with αn,βn ∈ (, ) satisfying
(C) limn→∞ αn =  and

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Pf

EP(G)u. Here P
f
EP(G)u is the Bregman projection of X onto

EP(G).
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