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1 Introduction
In this short paper, we study the bounds of the logarithmic mean which is defined by

L(a,b)≡ a – b
loga – logb

=
∫ 


aνb–ν dν, a �= b ()

for two positive numbers a and b. (We conventionally define L(a,b) = a if a = b.) In the
paper [], the following relations were shown:

√
ab ≤ L(a,b)≤

(
a/ + b/



)

, a,b > . ()

We now have the following lemma.

Lemma . For a,b > , we have

L(a,b)≤
(
a/ + b/



)

≤ 

√
ab +



a + b


. ()

Proof The second inequality of () can be proven easily. Indeed, we put f (t)≡ 
 t

 + 
 ( +

t) – 
 ( + t). Then we have f ′(t) <  for  < t <  and f ′(t) >  for t > . Thus we have

f (t) ≥ f () =  for t > . �

The first inequality of () refines the inequality

L(a,b)≤ 

√
ab +



a + b


, a,b >  ()

which is known as the classical Pólya inequality [, ].
Throughout this paper, we use the notationM(n,C) as the set of all n×nmatrices on the

complex fieldC. We also use the notationM+(n,C) as the set of all n×n positive semidefi-
nite matrices. Here, A ∈M+(n,C) means we have 〈φ|A|φ〉 ≥  for any vector |φ〉 ∈C

n. For
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A ∈M(n,C), the Frobenius norm (Hilbert-Schmidt norm) ‖·‖F is defined by

‖A‖F ≡
( n∑

i,j=

|aij|
)/

=
(
Tr

[
A∗A

])/. ()

In the paper [], the following norm inequality was shown.

Theorem. ([]) For A,B ∈M+(n,C),X ∈M(n,C) and the Frobenius norm ‖·‖F ,we have∥∥∥∥
∫ 


AνXB–ν dν

∥∥∥∥
F

≤ 


∥∥∥∥A/XB/ +
AX +XB



∥∥∥∥
F
. ()

From Lemma ., we have the following proposition.

Proposition . For A,B ∈M+(n,C), X ∈M(n,C) and the Frobenius norm ‖·‖F , we have
∥∥∥∥
∫ 


AνXB–ν dν

∥∥∥∥
F

≤
∥∥∥∥AX + A/XB/ + A/XB/ +XB



∥∥∥∥
F

≤ 


∥∥∥∥A/XB/ +
AX +XB



∥∥∥∥
F
.

To the first author’s best knowledge, the first inequality in Proposition . was suggested
in [].
This proposition can be proven in a similar way to the proof of Theorem . (or the

proof of Theorem . which will be given in the next section), and this refines inequality
() shown in [].

2 Lower bound of the logarithmic mean
The following inequalities were given in []. Hiai and Kosaki gave the norm inequalities
for Hilbert space operators in []. See also [, ]. Here we give them as a matrix setting to
unify the description of this paper.

Theorem . ([]) For A,B ∈ M+(n,C), X ∈ M(n,C), m ≥  and every unitarily invariant
norm ‖|·‖|, we have

∥∥∥∥
∣∣∣∣
∫ 


AνXB–ν dν

∥∥∥∥
∣∣∣∣ ≥ 

m

∥∥∥∥∥
∣∣∣∣∣

m∑
k=

Ak/(m+)XB(m+–k)/(m+)

∥∥∥∥∥
∣∣∣∣∣ ≥ ∥∥∣∣A/XB/∥∥∣∣.

The Frobenius norm is one of unitarily invariant norms. We give the refinement of the
lower bound of the first inequality above for the Frobenius norm. That is, we have the
following inequalities.

Theorem . For A,B ∈ M+(n,C), X ∈ M(n,C), m ≥  and the Frobenius norm ‖·‖F , we
have

∥∥∥∥
∫ 


AνXB–ν dν

∥∥∥∥
F

≥ 
m

∥∥∥∥∥
m∑
k=

A(k–)/mXB(m–(k–))/m

∥∥∥∥∥
F

≥ 
m

∥∥∥∥∥
m∑
k=

Ak/(m+)XB(m+–k)/(m+)

∥∥∥∥∥
F

≥ ∥∥A/XB/∥∥
F . ()
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To prove Theorem ., we need a few lemmas.

Lemma . Let u, v, w be nonnegative integers such that w ≥ u, and let x be a positive real
number. Then we have

xu
(
 – xv

)
+ xw

(
xv – 

) ≥ . ()

Proof It is trivial for the case x =  or v = . We prove for the case x �=  and v �= . In
addition, for the case that u = w, the equality holds. Thus we may assume w > u and v ≥ .
Then the lemma can be proven in the following way.

xu
(
 – xv

)
+ xw

(
xv – 

)
=

(
xv – 

)(
xw – xu

)
= xu

(
xv – 

)(
xw–u – 

)
= xu(x – )

(
xv– + xv– + · · · + 

)(
xw–u– + xw–u– + · · · + 

)
≥ . �

Lemma . For a positive real number x and a natural number m, we have

m∑
k=

x(k–)(m+) ≥
m∑
k=

xkm. ()

Proof For the case x = , the equality holds. So we prove this lemma for x �= . If m is an
odd number, then we have m = m/� + . Since we then have m +  = (m/� + ) and
(m/� + ) –  =m, we have

{

(m/� + 

)
– 

}
(m + ) = 

(m/� + 
)
m.

If we put k̃ = m/�+, then the abovemeans (k̃–)(m+) = k̃m. Then the difference of
the k̃th term of the both sides in inequality () is equal to . For the case thatm is an even
number, it never happens that the difference of the k̃th term of the both sides in inequality
() is equal to . Therefore we have

m∑
k=

x(k–)(m+) –
m∑
k=

xkm =
m/�∑
l=

{
xal

(
 – xbl

)
+ xcl

(
xbl – 

)}
, ()

where al = (l – )(m + ), bl =m – (l – ) and cl = {m – (l – )}m for l = , , . . . , m/�.
Here we have cl –al = {m– (l–)}(m+)≥ , whenever bl ≥ . By Lemma ., if bl ≥ ,
then we have xal ( – xbl ) + xcl (xbl – ) ≥ . Thus the proof of this lemma is completed. �

If we put t = xm(m+) > , then we have

m∑
k=

t(k–)/m ≥
m∑
k=

tk/(m+) (t > ,m ∈N),

which implies

m∑
k=

a(k–)/mb(m–(k–))/m ≥
m∑
k=

ak/(m+)b(m+–k)/(m+) (a,b > ,m ∈N). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/535
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We then have the following lemma.

Lemma . For a,b >  and m ≥ , we have

L(a,b)≥ 
m

m∑
k=

a(k–)/mb(m–(k–))/m ≥ 
m

m∑
k=

ak/(m+)b(m+–k)/(m+) ≥ √
ab. ()

Proof The second inequality follows by inequality (). We use the famous inequality
(x – )/logx≥ √

x for x > . We put x = t/m in this inequality. Then we have, for t > ,

t – 
log t

≥ t(m–)/m + t(m–)/m + · · · + t/m

m
, ()

which implies the first inequality. The third inequality can be proven by the use of the
arithmetic mean-geometric mean inequality. Thus the proof of this lemma is completed.

�

We give some basic properties of the right-hand side of inequality () in the Appendix.

Proof of Theorem . It is known that the Frobenius norm inequality immediately follows
from the corresponding scalar inequality []. However, we give here an elementary proof
for the convenience of the readers. Let U∗AU = D = diag{α, . . . ,αn} and V ∗BV = D =
diag{β, . . . ,βn}. Then α, . . . ,αn ≥  and β, . . . ,βn ≥ . We put U∗XV ≡ Y = (yij). By the
first inequality of (), we have


m

∥∥∥∥∥
m∑
k=

A(k–)/mXB(m–(k–))/m

∥∥∥∥∥
F

=

m

∥∥∥∥∥
m∑
k=

UD(k–)/m
 U∗XVD(m–(k–))/m

 V ∗
∥∥∥∥∥
F

=

m

∥∥∥∥∥
m∑
k=

D(k–)/m
 YD(m–(k–))/m



∥∥∥∥∥
F

=

m

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

∑m
k= α

(k–)/m
 yβ(m–(k–))/m

 · · · ∑m
k= α

(k–)/m
 ynβ(m–(k–))/m

n
...

. . .
...∑m

k= α
(k–)/m
n ynβ(m–(k–))/m

 · · · ∑m
k= α

(k–)/m
n ynnβ(m–(k–))/m

n

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
F

=

{ n∑
i,j=

(

m

m∑
k=

α
(k–)/m
i β

(m–(k–))/m
j

)

|yij|
}/

≤
{ n∑
i,j=

(∫ 


αν
i β

–ν
j dν

)
|yij|

}/

=
∥∥∥∥
∫ 


Dν
YD

–ν
 dν

∥∥∥∥
F
=

∥∥∥∥U
∫ 


Dν
YD

–ν
 dνV ∗

∥∥∥∥
F

=
∥∥∥∥
∫ 


UDν

U
∗XVD–ν

 V ∗ dν

∥∥∥∥
F
=

∥∥∥∥
∫ 


AνXB–ν dν

∥∥∥∥
F
.

Applying inequality (), we have the second inequality of () in a similar way. The third
inequality holds due to Theorem . (or the third inequality of ()). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/535
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3 Upper bound of the logarithmic mean
In the paper [], the following norm inequalities were also given for Hilbert space opera-
tors. Here we give them for matrices, as we mentioned in the beginning of Section .

Theorem . ([]) For A,B ∈M+(n,C), X ∈ M(n,C),m ≥  and every unitarily invariant
norm ‖|·‖|, we have

∥∥∥∥
∣∣∣∣
∫ 


AνXB–ν dν

∥∥∥∥
∣∣∣∣ ≤ 

m

∥∥∥∥∥
∣∣∣∣∣
m–∑
k=

Ak/(m–)XB(m––k)/(m–)

∥∥∥∥∥
∣∣∣∣∣ ≤ 


‖|AX +XB‖|.

We also give an improved upper bound of the logarithmic mean on Theorem . above,
only for the Frobenius norm. Namely, we can prove the following inequalities in a similar
way to the proof of Theorem ., by the use of scalar inequalities which will be given in
Lemma ..

Theorem . For A,B ∈ M+(n,C), X ∈ M(n,C), m ≥  and the Frobenius norm ‖·‖F , we
have

∥∥∥∥
∫ 


AνXB–ν dν

∥∥∥∥
F

≤ 
m

∥∥∥∥∥
m∑
k=

Ak/mXB(m–k)/m –


(AX +XB)

∥∥∥∥∥
F

≤ 
m

∥∥∥∥∥
m–∑
k=

Ak/(m–)XB(m––k)/(m–)

∥∥∥∥∥
F

≤ 

‖AX + BX‖F . ()

To prove Theorem ., we need to prove the following lemmas.

Lemma . For x >  and m ≥ , we have

m–∑
k=

(
xkm – xk(m–)) ≥ xm(m–) – 


(x > ). ()

Proof Form≥ , we calculate

m–∑
k=

(
xkm – xk(m–)) – xm(m–) – 



=


(
xm + 

){(
xm

)m– + · · · + xm + 
}
– xm–{(xm–)m– + · · · + xm– + 

}
≥ xm/{(xm)m– + · · · + xm + 

}
– xm–{(xm–)m– + · · · + xm– + 

}
. ()

Here, we put y ≡ x/ > , then we have

() = ym
{(
ym

)m– + · · · + ym + 
}
– y(m–){(y(m–))m– + · · · + y(m–) + 

}
= ym

(
 – ym–) + ym

(
 – ym–) + ym

(
 – ym–) + · · ·

+ y(m–)(m–)(ym– – 
)
+ y(m–)(m–)(ym– – 

)
+ y(m–)(ym– – 

)
=

m/�∑
l=

{
ypl

(
 – yrl

)
+ yql

(
yrl – 

)} ≥ , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/535


Furuichi and Yanagi Journal of Inequalities and Applications 2013, 2013:535 Page 6 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/535

where pl = (l – )m, ql = (m – )(m – l) and rl =m – l. The last inequality follows from
Lemma ., because we have ql – pl = (m – )(m – l)≥ whenever rl ≥ . �

Lemma . For a,b >  and m ≥ , we have

L(a,b)≤ 
m

{ m∑
k=

ak/mb(m–k)/m –
(
a + b


)}

≤ 
m

m–∑
k=

ak/(m–)b(m––k)/(m–) ≤ a + b


. ()

Proof To prove the first inequality, we have only to prove the following inequality:

t – 
log t

≤ 
m

{(
t + t(m–)/m + t(m–)/m + · · · + t/m + 

)
–

(
t + 


)}
(t > ). ()

Inequality () can be proven by putting x ≡ t/m >  in the famous inequality (x – )/
logx≤ (x + )/ for x > .
To prove the second inequality of (), it is sufficient to prove inequality () which

follows from Lemma .. We obtain actually the second inequality of () by putting
t = xm(m–) >  in inequality (), and then putting t = a/b.
To prove the third inequality of (), it is sufficient to prove the following inequality:

tm– + · · · + t +  ≤ m(tm– + )


(t > ). ()

This inequality can be proven by the induction onm. Indeed, we assume that the inequality
() holds for somem. Then we add tm >  to both sides of inequality (). Then we have

tm + tm– + · · · + t +  ≤ m(tm– + )


+ tm.

Therefore we have only to prove the inequality

m(tm– + )


+ tm ≤ (m + )(tm + )


(t > ),

which is equivalent to the inequality

(m – )tm –mtm– +  ≥  (t > ).

We put fm(t) ≡ (m – )tm –mtm– + . Then we can prove fm(t) ≥ fm() =  by elementary
calculations. Thus inequality () holds form + . �

We give some basic properties of the right-hand side of inequality () in the Appendix.

4 Matrix inequalities on the geometric mean
Using Lemma ., Lemma . and Lemma ., we have following Proposition ., Propo-
sition . and Proposition ., respectively.

http://www.journalofinequalitiesandapplications.com/content/2013/1/535
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Proposition . For A,B ∈M+(n,C), we have

∫ 


A#νBdν ≤ 



{
A + B


+


(A#/B +A#/B)

}
≤ 



(
A + B


+ A#/B
)
,

where A#νB ≡ A/(A–/BA–/)νA/ (≤ ν ≤ ) is ν-weighted geometric mean introduced
in [].

Proposition . For A,B ∈M+(n,C) and m≥ , we have

∫ 


A#νBdν ≥ 

m

m∑
k=

A#(k–)/mB≥ 
m

m∑
k=

A#k/(m+)B ≥ A#/B.

Proposition . For A,B ∈M+(n,C) and m ≥ , we have

∫ 


A#νBdν ≤ 

m

( m∑
k=

A#k/mB –
A + B


)
≤ 

m

m–∑
k=

A#k/(m–)B≤ A + B


.

We give the proof of Proposition .. Proposition . and Proposition . are also proven
in a similar way, using Lemma . and Lemma .. In addition, by using the notion of
the representing function fm(x) = mx for the operator mean m, it is well known [] that
fm(x) ≤ fn(x) holds for x >  if and only if AmB ≤ AnB holds for all positive operators A
and B. However, we give an elementary proof for the convenience of the readers.

Proof of Proposition . Since T ≡ A–/BA–/ ≥ , there exists a unitary matrix U such
that U∗TU = D ≡ diag{λ, . . . ,λn}. Then λ, . . . ,λn ≥ . From Lemma ., for i = , . . . ,n,
we have

∫ 


λν
i dν ≤ 

m

{ m∑
k=

λk/m
i –

(
λi + 


)}
≤ 

m

m–∑
k=

λ
k/(m–)
i ≤ λi + 


.

Thus we have

∫ 


Dν dν ≤ 

m

{ m∑
k=

Dk/m –
(
D + I


)}
≤ 

m

m–∑
k=

Dk/(m–) ≤ D + I


.

Multiplying U and U∗ to both sides, we have

∫ 


Tν dν ≤ 

m

{ m∑
k=

Tk/m –
(
T + I


)}
≤ 

m

m–∑
k=

Tk/(m–) ≤ T + I


.

Inserting T ≡ A–/BA–/ and then multiplying two A/ to all sides from both sides, we
obtain the result. �

Closing this section, we give another matrix inequalities by the use of another lower
bound of the logarithmic mean. As another lower bound of the logarithmic mean, the

http://www.journalofinequalitiesandapplications.com/content/2013/1/535
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following inequalities are known:

t – 
log t

≥ t + t/

 + t/
≥ √

t, t > , t �= . ()

The proofs of the above inequalities are not so difficult (they can be done by putting x =
t/ >  and x = t/ > ), here we omit them. From inequalities (), we have

∫ 


tν dν ≥ t/ – t/ + 

(
t–/ + 

)– ≥ √
t, t > , t �= . ()

Inequalities () imply the following result in a similar way to the proof of Proposition ..

Proposition . For A,B ∈M+(n,C), we have

∫ 


A#νBdν ≥ A#/B –A#/B + 

{
(A#/B)– +A–}– ≥ A#/B.

5 Comments
Proposition . given in the Appendix shows that our upper bound is tighter than the
standard upper bound for the case t >  and our lower bound is tighter than the standard
lower bound for any t > . In addition, our lower bound αm(t) of the logarithmic mean
L(t, ) is tighter than the lower bound

√
t given by Lin in [] for m ≥ . However, it may

be a difficult problem to find the minimumm ∈ N such that βm(t) ≤ ((t/ + )/) for any
t > . The right-hand side of the above inequality is the upper bound given by Lin in [].
(See inequalities ().)

Appendix
Here we note some basic properties of the following scalar sums:

αm(t)≡ 
m

m∑
k=

t(k–)/(m), βm(t)≡ 
m

( m∑
k=

tk/m –
t + 


)

for t > .

Proposition . For any t > , we have following properties:
(i) αm(t) ≤ αm+(t).
(ii) βm+(t) ≤ βm(t).
(iii) αm(t) and βm(t) converges to L(t, ) as m → ∞. In addition, we have αm(t)≤ βm(t).

Proof We prove (i)-(iii) for t �= , since it is trivial for the case t = .
(i) Since

αm(t) =
t/(m)(t – )
m(t/m – )

,

for t �= , we prove

αm+(t)
αm(t)

=
mt/((m+))(t/m – )

(m + )t/(m)(t/(m+) – )
> 

http://www.journalofinequalitiesandapplications.com/content/2013/1/535


Furuichi and Yanagi Journal of Inequalities and Applications 2013, 2013:535 Page 9 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/535

for t >  and t �= . We first prove the case t > . Then we put s ≡ t/(m(m+)) and

fm(s)≡m
(
sm+ – 

)
– (m + )

(
sm+ – s

)
(s > ).

By elementary calculations, we have fm(s) > fm() = , which implies

msm
(
sm+ – 

)
> (m + )sm+(sm – 

)
.

We can prove similarly

msm
(
sm+ – 

)
< (m + )sm+(sm – 

)
for the case  < s < .

(ii) Since

βm(t) =
(t/m + )(t – )
m(t/m – )

,

for t �= , we prove

βm+(t)
βm(t)

=
m(t/(m+) + )(t/m – )

(m + )(t/m + )(t/(m+) – )
< 

for t >  and t �= . We first prove the case t > . Then we put r ≡ t/(m(m+)) and

gm(r)≡ rm+ – (m + )rm+ + (m + )rm –  (r > ).

Since

g ′
m(r) = (m + )rm–(rm+ – (m + )r +m

)
> ,

we have gm(r) > gm() = , which implies

m
(
rm + 

)(
rm+ – 

)
< (m + )

(
rm+ + 

)(
rm – 

)
.

We can prove similarly

m
(
rm + 

)(
rm+ – 

)
> (m + )

(
rm+ + 

)(
rm – 

)
for the case  < r < .

(iii) Since we have

lim
m→∞m

(
t/m – 

)
= lim

p→

tp – 
p

= log t

for t >  and t �= , we have

lim
m→∞αm(t) = L(t, ), lim

m→∞βm(t) = L(t, ).

The arithmetic-geometric mean inequality proves αm(t) < βm(t) for t >  and t �= . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/535
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As standard bounds of the Riemann sum for the integral
∫ 
 t

ν dν , we have

γm(t) <
∫ 


tν dν < δm(t) ( < t < )

and

δm(t) <
∫ 


tν dν < γm(t) (t > ),

where

γm(t) ≡ 
m

m∑
k=

tk/m, δm(t) ≡ 
m

m–∑
k=

tk/m.

Then we have the following relations.

Proposition .
(i) For  < t < , we have αm(t) > γm(t) and βm(t) > δm(t).
(ii) For t > , we have αm(t) > δm(t) and βm(t) < γm(t).

Proof
(i) For the case  < t < , the following calculations show assertion:

αm(t) – γm(t) =
(t – )(t/(m) – t/m)

m(t/m – )
> , βm(t) – δm(t) =

t + 
m

> .

(ii) For the case t > , the following calculations show assertion:

αm(t) – δm(t) =
t + t/(m)

m(t/(m) + )
> , βm(t) – γm(t) =

 – t
m

< . �
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