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Abstract
In this paper, we prove some unique fixed point results for an operator T satisfying
certain rational contraction condition in a partially ordered metric space. Our results
generalize the main result of Jaggi (Indian J. Pure Appl. Math. 8(2):223-230, 1977). We
give several examples to show that our results are proper generalization of the
existing one.
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1 Introduction
Fixed point theory is one of the famous and traditional theories in mathematics and has a
broad set of applications. In this theory, contraction is one of the main tools to prove the
existence and uniqueness of a fixed point. Banach’s contraction principle, which gives an
answer on the existence and uniqueness of a solution of an operator equation Tx = x, is
the most widely used fixed point theorem in all of analysis. This principle is constructive
in nature and is one of the most useful tools in the study of nonlinear equations. There
aremany generalizations of Banach’s contractionmapping principle in the literature [–].
These generalizations weremade either by using the contractive condition or by imposing
some additional conditions on an ambient space. There have been a number of general-
izations of metric spaces such as rectangular metric spaces, pseudo metric spaces, fuzzy
metric spaces, quasi metric spaces, quasi semi-metric spaces, probabilistic metric spaces,
D-metric spaces and cone metric spaces
The basic topological properties of ordered sets were discussed by Wolk [] and Mon-

jardet []. The existence of fixed points in partially ordered metric spaces was considered
by Ran and Reurings []. After this paper, Nieto et al. [–] published some new results.
Recently, many papers have been reported on partially ordered metric spaces (see, e.g.,
[–] and also [, –]).
The triple (X,d,�) is called partially ordered metric spaces (POMS) if (X,�) is a par-

tially ordered set and (X,d) is a metric space. Further, if (X,d) is a complete metric space,
the triple (X,d,≤) is called partially ordered complete metric spaces (POCMS). Through-
out the manuscript, we assume that X �= ∅. A partially ordered metric space (X,d,�) is
called ordered complete (OC) if for each convergent sequence {xn}∞n= ⊂ X, the following
condition holds: either
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• if {xn} is a non-increasing sequence in X such that xn → x∗ implies x∗ � xn ∀n ∈N,
that is, x∗ = inf{xn}, or

• if {xn} is a non-decreasing sequence in X such that xn → x∗ implies xn � x∗ ∀n ∈N,
that is, x∗ = sup{xn}.

In this manuscript, we prove that an operator T satisfying certain rational contraction
condition has a fixed point in a partially ordered metric space. Our results generalize the
main result of Jaggi [].

2 Main results
We start this section with the following definition.

Definition  Let (X,d,�) be a partially ordered metric space. A self-mapping T on X is
called an almost Jaggi contraction if it satisfies the following condition:

d(Tx,Ty) ≤ αd(x,Tx) · d(y,Ty)
d(x, y)

+ βd(x, y) + Lmin
{
d(x,Ty),d(y,Tx)

}
()

for any distinct x, y ∈ X with x� y, where L ≥  and α,β ∈ [, ) with α + β < .

Theorem  Let (X,d,�) be a complete partially ordered metric space. Suppose that a self-
mapping T is an almost Jaggi contraction, continuous and non-decreasing. Suppose there
exists x ∈ X with x � Tx. Then T has a unique fixed point.

Proof Let x ∈ X and set xn+ = Txn. If xn = xn+ for some n ∈ N, then T has a fixed
point. In particular, xn is a fixed point of T . So, we assume that xn �= xn+ for all n. Since
x � Tx, then

x � x � · · · � xn � xn+ � · · · . ()

Now

d(xn+,xn) = d(Txn,Txn–)

≤ αd(xn–,Txn–)d(xn,Txn)
d(xn,xn–)

+ βd(xn,xn–)

+ Lmin
{
d(xn,xn),d(xn–,xn+)

}
,

which implies that

d(xn+,xn) ≤
(

β

 – α

)
d(xn,xn–) ≤ · · · ≤

(
β

 – α

)n

d(x,x).

By the triangle inequality, form ≥ n we have

d(xn,xm) ≤ d(xn,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

≤ (
kn + kn+ + · · · + km–)d(x,Tx).

≤ kn

 – k
d(x,Tx), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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where k = β

–α
. Letting n → ∞ in the inequality (), we get d(xn,xm) = . Thus, the se-

quence {xn} is Cauchy. Since X is complete, there exists a point z ∈ X such that xn → z.
Furthermore, the continuity of T in X implies that

Tz = T
(
lim
n→∞xn

)

= lim
n→∞Txn

= lim
n→∞xn+

= z.

Therefore, z is a fixed point of T in X. Now, if there exists another point w �= z in X such
that Tw = w, then

d(w, z) = d(Tw,Tz)

≤ αd(w,Tw) · d(z,Tz)
d(w, z)

+ βd(w, z)

= βd(w, z) < d(w, z),

a contradiction. Hence u is a unique fixed point of T in X. �

Example  Let X = [, ] with the usual metric and usual order ≤. We define an operator
T : X → X as follows:

Tx =

⎧⎨
⎩

x
 if x ∈ [,  ],
x
 –


 if x ∈ (  , ].

ThenT is continuous and non-decreasing. Take β = 
 . Then, for any α ∈ [, ) with α+β <

, we have the result. Let us examine in detail. Without loss of generality, we assume that
y� x.
Case . If x, y ∈ [,  ], then

d(Tx,Ty) =



|x – y|

≤ 


|x – y| = 

d(x, y)

≤ αd(x,Tx) · d(y,Ty)
d(x, y)

+


d(x, y) + Lmin

{
d(x,Ty),d(y,Tx)

}

holds for any L≥  and any α ∈ [, ) with α +β < . Thus, all the conditions of Theorem 
are satisfied.
Case . If x, y ∈ (  , ], then

d(Tx,Ty) =


|x – y|

≤ 


|x – y| = 

d(x, y)

≤ αd(x,Tx) · d(y,Ty)
d(x, y)

+


d(x, y) + Lmin

{
d(x,Ty),d(y,Tx)

}

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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holds for any L ≥  and any α ∈ [, ) with α+β < . Hence, all the conditions of Theorem
are satisfied.
Case . If x ∈ (  , ] and y ∈ [,  ], then we can easily evaluate that 

 |x – | ≤ 
 .

Further, we have 
 ≤ d(x,Ty) = |x – y

 | ≤  and 
 ≤ d(y,Tx) = | x – 

 – y| ≤ 
 . By the

help of these observations, we derive that

d(Tx,Ty) =
∣∣∣∣x –




–
y


∣∣∣∣ =
∣∣∣∣ x –

y


+
x


–



∣∣∣∣
≤ 


|x – y| + 


|x – |

≤ αd(x,Tx) · d(y,Ty)
d(x, y)

+


d(x, y) + Lmin

{
d(x,Ty),d(y,Tx)

}
.

Notice that  ∈ X is the fixed point of T .

Definition  Let (X,d,�) be a partially ordered metric space. A self-mapping T on X is
called a Jaggi contraction if it satisfies the following condition:

d(Tx,Ty) ≤ αd(x,Tx) · d(y,Ty)
d(x, y)

+ βd(x, y) ()

for any distinct x, y ∈ X with x� y, where α,β ∈ [, ) with α + β < .

Corollary  Let (X,d,�) be a complete partially orderedmetric space. Suppose that a self-
mapping T is a Jaggi contraction, continuous and non-decreasing. Suppose that there exists
x ∈ X with x � Tx. Then T has a fixed point.

Proof Set L =  in Theorem . �

Example  Let X = [,∞), d : X ×X →R+ be defined by

d(x, y) =

⎧⎨
⎩
max{x, y} if x �= y,

 if x = y.

Then (X,d) is a complete metric space. Let T : X → X be defined by

Tx =

⎧⎨
⎩

x
(+x) if  ≤ x≤ ,
x
 if  < x.

Also, x � y iff x ≤ y. Clearly, T is an increasing and continuous self-mapping on X. We
shall prove that conditions of Corollary  hold and T has a fixed point.

Proof For the proof of this example, we have the following cases.

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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• Let  ≤ x < y≤ . Then

d(Tx,Ty) =max{Tx,Ty} = y
( + y)

≤ 

(x + y) =




(
xy
y

+ y
)

=



[max{x, x
(+x) }max{y, y

(+y) }
max{x, y} +max{x, y}

]

=



(
d(x,Tx)d(y,Ty)

d(x, y)
+ d(x, y)

)
,

that is,

d(Tx,Ty) ≤ 

d(x,Tx)d(y,Ty)

d(x, y)
+


d(x, y).

• Let  < x < y. Then

d(Tx,Ty) = max{Tx,Ty} = y


≤ 

(x + y) =




(
xy
y

+ y
)

=



[
max{x, x

 }max{y, y
 }

max{x, y} +max{x, y}
]

=



(
d(x,Tx)d(y,Ty)

d(x, y)
+ d(x, y)

)
,

that is,

d(Tx,Ty) ≤ 

d(x,Tx)d(y,Ty)

d(x, y)
+


d(x, y).

• Let  ≤ x≤  and  < y. Then

d(Tx,Ty) = max{Tx,Ty} = y


≤ 

(x + y) =




(
xy
y

+ y
)

=



[max{x, x
(+x) }max{y, y

 }
max{x, y} +max{x, y}

]

=



(
d(x,Tx)d(y,Ty)

d(x, y)
+ d(x, y)

)
,

that is,

d(Tx,Ty) ≤ 

d(x,Tx)d(y,Ty)

d(x, y)
+


d(x, y).

Then conditions of Corollary  hold and T has a fixed point (here, x =  is a fixed point
of T ). �

In the next theorem, we establish the existence of a unique fixed point of a map T by
assuming only the continuity of some iteration of T .

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Theorem  Let (X,d,�) be a complete partially ordered metric space. Suppose that a self-
mapping T is non-decreasing and an almost Jaggi contraction. Suppose there exists x ∈ X
with x � Tx. If the operator Tp is continuous for some positive integer p, then T has a
unique fixed point.

Proof As in Theorem , we define a sequence xn and conclude that the sequence xn con-
verges to some point z ∈ X. Thus its subsequence xnk (nk = kp) also converges to z. Also,

Tpz = Tp
(
lim
k→∞

xnk
)

= lim
k→∞

xnk+

= z.

Therefore z is a fixed point of Tp. We now show that Tz = z. Letm be the smallest positive
integer such that Tmz = z but Tq �= z (q = , , . . . ,m – ). Ifm > , then

d(Tz, z) = d
(
Tz,Tmz

)

≤ αd(z,Tz) · d(Tm–z,Tmz)
d(z,Tm–z)

+ βd
(
z,Tm–z

)

+ Lmin
{
d
(
z,Tmz

)
,d

(
Tm–z,Tz

)}

which implies that

d(Tz, z) ≤ β

 – α
d
(
z,Tm–z

)
.

Regarding (), we have

d
(
z,Tm–z

)
= d

(
Tmz,Tm–z

)

≤ αd(Tm–z,Tmz) · d(Tm–z,Tm–z)
d(Tm–z,Tm–z)

+ βd
(
Tm–z,Tm–z

)
.

Inductively, we get

d
(
z,Tm–z

)
= d

(
Tmz,Tm–z

) ≤ kd
(
Tm–z,Tm–z

) ≤ · · · ≤ km–d(Tz, z),

where k = β

–α
. Notice that k < . Therefore,

d(Tz, z) ≤ kmd(Tz, z) ≤ d(Tz, z),

a contradiction. Hence Tz = z. The uniqueness of z follows as in Theorem . �

Corollary  Let (X,d,�) be a complete partially ordered metric space. Suppose that a
self-mapping T is non-decreasing and a Jaggi contraction. Suppose there exists x ∈ X with
x � Tx. If the operator Tp is continuous for some positive integer p, then T has a unique
fixed point.

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Proof Set L =  in Theorem . �

The following theorem generalizes Theorem .

Theorem  Let (X,d,�) be a complete partially ordered metric space and let T be a
non-decreasing self-mapping defined on X. Suppose that for some positive integer m, self-
mapping T satisfies the following condition:

d
(
Tmx,Tmy

) ≤ αd(x,Tmx) · d(y,Tmy)
d(x, y)

+ βd(x, y) + Lmin
{
d(x,Ty),d(y,Tx)

}
()

for any distinct x, y ∈ X with x � y and for some α,β ∈ [, ) with α + β <  and L ≥ .
Suppose there exists x ∈ X with x � Tmx. If Tm is continuous, then T has a unique fixed
point.

Proof Due to Theorem , we conclude that Tm has a unique fixed point, say z ∈ X. Con-
sider now

Tz = T
(
Tmz

)
= Tm(Tz).

Thus, Tz is also a fixed point of Tm. But, by Theorem , we know that Tm has a unique
fixed point z. It follows that z = Tz. Hence, z is the unique fixed point of T . �

Corollary  Let (X,d,�) be a complete partially ordered metric space and let T be a
non-decreasing self-mapping defined on X. Suppose that for some positive integer m, the
self-mapping T satisfies the following condition:

d
(
Tmx,Tmy

) ≤ αd(x,Tmx) · d(y,Tmy)
d(x, y)

+ βd(x, y) ()

for all distinct x, y ∈ X and for some α,β ∈ [, ) with α + β < . Suppose there exists x ∈ X
with x � Tmx. If Tm is continuous, then T has a unique fixed point.

Proof Set L =  in Theorem . �

Now, we give the following example.

Example  Let X = [, ] with the usual metric and usual order≤. We define an operator
T : X ← X as follows:

Tx =

⎧⎨
⎩
, x ∈ [,  ],

 , x ∈ (  , ].

It can be easily seen that T is discontinuous and does not satisfy () for any α,β ∈ [, )
with α + β ≺  when x = 

 , y = . Now T(x) =  for all x ∈ [, ]. It can be verified that T

satisfies the conditions of Theorem  and  is a unique fixed point of T.

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Theorem  Let (X,d,�) be a complete partially ordered metric space and let T be a
non-decreasing self-mapping defined on X. Suppose that a self-mapping T on X satisfies
the condition

d(Tx,Ty) ≤ αd(Ty, y)[ + d(x,Tx)]
 + d(x, y)

+ βd(x, y) + Lmin
{
d(x,Tx),d(x,Ty),d(y,Tx)

}
()

for any points x, y ∈ X with x � y, and for some α,β ∈ [, ) with α + β <  and L ≥ .
Suppose there exists x ∈ X with x � Tx. Then T has a fixed point.

Proof Define sequences xn as in Theorem . If xn = xn+ for some n ∈ N then T has a
fixed point. In particular, xn is a fixed point of T . Therefore, we assume that

xn �= xn+ for all n ∈ N. ()

Due to (), we have

d(xn,xn+) = d(Txn–,Txn)

≤ αd(xn,Txn)[ + d(xn–,Txn–)]
 + d(xn–,xn)

+ βd(xn–,xn)

+ Lmin
{
d(Txn–,xn–),d(xn–,Txn),d(xn,Txn–)

}

=
αd(xn+,xn)[ + d(xn,xn–)]

 + d(xn–,xn)
+ βd(xn–,xn),

+ Lmin
{
d(xn–,xn),d(xn–,xn+),d(xn,xn)

}
,

which implies that

d(xn+,xn) ≤
(

β

 – α

)
d(xn,xn–).

Recursively, we obtain that

d(xn+,xn) ≤
(

β

 – α

)n

d(x,x).

As in Theorem , we prove that {xn} is a Cauchy sequence. Indeed, by the triangle in-
equality, we have form ≥ n,

d(xn,xm) ≤ d(xn,xn+) + d(xn+, yn+) + · · · + d(xm–,xm)

≤ (
kn + kn+ + · · · + km–)d(x,Tx)

≤ kn

 – k
d(x,x),

()

where k = β

–α
< . Letting n→ ∞, then the right-hand side of the inequality () tends to .

Thus, the sequence {xn} is Cauchy.
Since X is complete, there exists a z ∈ X such that

lim
n→∞xn = lim

n→∞Txn = z. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Consider ()

d(Tz,xn+) = d(Tz,Txn)

≤ αd(z,Tz)[ + d(xn,Txn)]
 + d(z,xn)

+ βd(z,Txn)

+ Lmin
{
d(z,Tz),d(z,Txn),d(xn,Tz)

}
. ()

Letting n→ ∞ in (), we get

d(Tz, z) ≤ αd(z,Tz)[ + d(z, z)]
 + d(z, z)

+ βd(z, z)

= αd(Tz, z),

which is possible only if d(Tz, z) = . Thus, Tz = z.
Now, we show that z is the unique fixed point of T . Assume, on the contrary, that the

operator T has another fixed point u �= z. Keeping () in mind, we obtain that

d(z,u) = d(Tz,Tu)

≤ αd(Tu,u)[ + d(z,Tz)]
 + d(z,u)

+ βd(z,u)

+ Lmin
{
d(z,Tz),d(z,Tu),d(u,Tz)

}

=
αd(u,u).[ + d(z, z)]

d(z,u)
+ βd(z,u)

= βd(z,u),

a contradiction. Hence z is a unique fixed point of T in X. �

Corollary  Let (X,d,�) be a complete partially ordered metric space and let T be a
non-decreasing self-mapping defined on X. Suppose that a self-mapping T on X satisfies
the condition

d(Tx,Ty) ≤ αd(Ty, y)[ + d(x,Tx)]
 + d(x, y)

+ βd(x, y) ()

for any points x, y ∈ X with x � y, and for some α,β ∈ [, ) with α + β < . Then T has a
fixed point.

Proof Set L =  in Theorem . �

Example  Let X = [, ], d : X ×X →R+ be defined by

d(x, y) = |x – y|.

Then (X,d) is a complete metric space. Let T : X → X be defined by

Tx =


x.

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Also, x � y iff x ≤ y. Suppose that β = 
 and α ∈ [, ) such that α + β < . Clearly, T is

an injective, continuous and sequentially convergent mapping on X. We shall prove that
conditions of Corollary  hold and T has a fixed point.

Proof For the proof of this example, we have the following cases.
Let x, y ∈ [, ]. Then

d(Tx,Ty) =



∣∣x – y
∣∣ = 


∣∣(x – y)

(
x + xy + y

)∣∣ ≤ 

|x – y| = 


d(x, y).

That is,

d(Tx,Ty) ≤ α
d(y,Ty)[ + d(x,Tx)]

 + d(x, y)
+ βd(x, y).

Hence, conditions of Corollary  hold and T has a fixed point (here x =  is a fixed point
of T ). �

3 Further results
Theorem  Let (X,d,�) be a complete partially orderedmetric space and let T be a non-
decreasing, continuous self-mapping defined on X. Suppose that a self-mapping T satisfies
the following condition:

d(Tx,Ty) ≤
⎧⎨
⎩

λd(x, y) +μ
d(x,Tx)d(x,Ty)+d(y,Tx)d(y,Ty)

d(y,Tx)+d(x,Ty) if A �= ,

 if A = ,
()

for all x, y ∈ X with y� x,where A = d(y,Tx) +d(x,Ty) and λ,μ are non-negative reals such
that λ +μ < . If there exists x ∈ X with x � Tx, then T has a fixed point.

Proof By assumption, there exists x ∈ X with x � Tx. If x = Tx, then the proof is
finished. So, we suppose that x ≺ Tx. Since T is a non-decreasing mapping, we get

x ≺ Tx � Tx � · · · � Tnx � Tn+x � · · · ()

by iteration. Put xn+ = Txn. If there exists n ∈ N such that xn = xn+, then from xn =
xn+ = Txn , we get xn is a fixed point, and the proof is finished. Suppose that xn �= xn+
for n ∈ N . Since the points xn and xn– are comparable for all n ∈ N due to (), we have
the following two cases.
Case . If A = d(xn–,Txn) + d(xn,Txn–) �= , then using the contractive condition (),

we get

d(xn+,xn) = d(Txn,Txn–)

≤ λd(xn,xn–) +μ
d(xn,Txn)d(xn,Txn–) + d(xn–,Txn)d(xn–,Txn–)

d(xn–,Txn) + d(xn,Txn–)

≤ λd(xn,xn–) +μ
d(xn,xn+)d(xn,xn) + d(xn–,xn+)d(xn–,xn)

d(xn–,xn+) + d(xn,xn)

≤ λd(xn,xn–) +μ
d(xn–,xn+)d(xn–,xn)

d(xn–,xn+)

≤ (λ +μ)d(xn,xn–).

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Hence, we derive that

d(xn+,xn) ≤ hnd(x,x),

where h = (λ +μ) < . Moreover, by the triangular inequality, we have, form ≥ n,

d(xm,xn) ≤ d(xm,xm–) + d(xm–,xm–) + · · · + d(xn+,xn)

≤ (
hm– + hm– + · · · + hn

)
d(x,x) ≤ hn

 – h
d(x,x),

and this proves that d(xm,xn) →  asm,n→ ∞.
So, {xn} is a Cauchy sequence and, since X is a complete metric space, there exists z ∈ X

such that limn→∞ xn = z. Further, the continuity of T implies

Tz = T
(
lim
n→∞xn

)
= lim

n→∞Txn = lim
n→∞xn+ = z.

Thus z is a fixed point.
Case . If A = d(xn–,Txn) + d(xn,Txn–) = , then d(xn+,xn) = . This implies that xn =

xn+, a contradiction. Thus there exists a fixed point z of T . �

Example  Let X = [, ] with the usual metric and usual order≤. We define an operator
T : X → X in the following way:

Tx =
x + 

(x + x + 
 )
. ()

It is clear that T is continuous on [, ]. Now, for λ = 
 and any μ ∈ [, ) such that

λ +μ < . Without loss of generality, we assume that x≤ y. So, we have

d(Tx,Ty) =



∣∣∣∣ x + 
x + x + 


–

y + 
y + y + 



∣∣∣∣

=
∣∣∣∣xy(y – x) + (y – x)(x + y) + (y – x) – 

 (y – x)
(x + x + 

 )(y + y + 
 )

∣∣∣∣

=
∣∣∣∣ xy + (x + y) + 



(x + x + 
 )(y + y + 

 )

∣∣∣∣|x – y|

≤ 


|y – x| = 


d(x, y)

for all x, y ∈ X. Also, there exists x =  ∈ X such that

x =  ≤ Tx

is satisfied. This shows that conditions of Theorem  hold and T has a fixed point 
 ∈

[, ].

We may remove the continuity criteria on T in Theorem  as follows.
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Theorem  Let (X,d,�) be a complete partially ordered metric space and let T be a non-
decreasing self-mapping defined on X. Suppose that a self-mapping T satisfies the following
condition:

d(Tx,Ty) ≤
⎧⎨
⎩

λd(x, y) +μ
d(x,Tx)d(x,Ty)+d(y,Tx)d(y,Ty)

d(y,Tx)+d(x,Ty) if A �= ,

 if A = ,
()

for all x, y ∈ X with y � x, where A = d(x,Tx) + d(y,Ty) and λ, μ are non-negative reals
with λ + μ < . And also suppose that X has the (OC) property. If there exists x ∈ X with
x � Tx, then T has a fixed point.

Proof We only have to check that z = Tz. As {xn} ⊂ X is a non-decreasing sequence and
xn → z ∈ X, then z = sup{xn} for all n ∈ N . Since T is a non-decreasing mapping, then
Txn � Tz for all n ∈ N or, equivalently, xn+ � Tz for all n ∈ N . Moreover, as x ≺ x � Tz
and z = sup{xn}, we get z � Tz. Suppose that z ≺ Tz. Using a similar argument as that in the
proof of Theorem  for x � Tx, we obtain that {Tnz} is a non-decreasing sequence and
limn→∞ Tnz = y for certain y ∈ X. Again, using (OC), we have that y = sup{Tnz}. Moreover,
from x � z, we get xn = Tnx � Tnz for n ≥  and xn ≺ Tnz for n ≥  because xn � z ≺
Tz � Tnz for n ≥  as xn and Tnz are comparable and distinct for n≥ .
Case . If d(Tnz,Txn) +d(xn,Tn+z) �= , then applying the contractive condition (), we

get

d
(
xn+,Tn+z

)
= d

(
Txn,T

(
Tnz

))

≤ λd(xn, y) +μ
d(xn,Txn)d(xn,Tnz) + d(Tnz,Txn)d(Tnz,Tn+z)

d(Tnz,Txn) + d(xn,Tn+z)

≤ λd
(
xn,Tnz

)
+μ

d(xn,xn+)d(xn,Tnz) + d(Tnz,xn+)d(Tnz,Tn+z)
d(Tnz,xn+) + d(xn,Tn+z)

.

Making n→ ∞ in the above inequality, we obtain

d(z, y) ≤ λd(z, y).

As λ < , d(x, z) = , thus z = y. Particularly, z = y = sup{Tnz} and consequently, Tz � z
which is a contradiction. Hence, we conclude that Tz = z.
Case . If A = d(Tnz,Txn) + d(xn,Tn+z) = , then d(xn+,Tn+z) = . Taking the limit as

n → ∞, we get d(z, y) = . Then z = y = sup{Tnz}, which implies that Tz � z, a contradic-
tion. Thus Tz = z. �

Now we prove the sufficient condition for the uniqueness of the fixed point in Theo-
rem  and Theorem , that is,
U: for any y, z ∈ X , there exists x ∈ X which is comparable to y and z.

Theorem  Adding the above mentioned condition to the hypothesis of Theorem  (or
Theorem ), one obtains the uniqueness of the fixed point of T .

Proof We distinguish two cases.

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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Case . If y and z are comparable and y �= z. Nowwe have two subcases that are as follows:
(i) If d(z,Ty) + d(y,Tz) �= , then using the contractive condition, we have

d(y, z) = d(Ty,Tz) ≤ λd(y, z) +μ
d(y,Ty)d(y,Tz) + d(z,Ty)d(z,Tz)

d(z,Ty) + d(y,Tz)

≤ λd(y, z) +μ
d(y, y)d(y, z) + d(z, y)d(z, z)

d(z, y) + d(y, z)
= λd(y, z).

As λ < , so by the last inequality, we have a contradiction. Thus y = z.
(ii) If d(z,Ty) + d(y,Tz) = , then d(y, z) = , a contradiction. Thus y = z.
Case . If y and z are not comparable, then by a given condition there exists x ∈ X com-

parable to y and z. Monotonicity implies that Tnx is comparable to Tny = y and Tnz = z
for n = , , , . . . .
If there exists n ≥  such that Tnx = y, then as y is a fixed point, the sequence {Tnx :

n ≥ n} is constant, and consequently limn→∞ Tnx = y. On the other hand, if Tnx �= y for
n≥ . Now we have two subcases as follows:
(i) If d(Tn–y,Tnx) + d(Tn–x,Tny) �= , then using the contractive condition, we obtain,

for n≥ ,

d
(
Tnx, y

)
= d

(
Tnx,Tny

)
≤ λd

(
Tn–x,Tn–y

)

+μ
d(Tn–x,Tnx)d(Tn–x,Tny) + d(Tn–y,Tnx)d(Tn–y,Tny)

d(Tn–y,Tnx) + d(Tn–x,Tny)

≤ λd
(
Tn–x, y

)
+μ

d(Tn–x,Tnx)d(Tn–x, y) + d(Ty,Tnx)d(y, y)
d(y,Tnx) + d(Tn–x, y)

≤ λd
(
Tn–x, y

)
+μ

d(Tn–x,Tnx)d(Tn–x, y)
d(y,Tnx) + d(Tn–x, y)

.

This implies that

d
(
Tnx, y

) ≤ λd
(
Tn–x, y

)
+μd

(
Tn–x, y

)
= λd

(
Tn–x,Tn–y

)
+μd

(
Tn–x,Tn–y

)
≤ λ

(
λd

(
Tn–x, y

)
+μd

(
Tn–x, y

))
+μ

(
λd

(
Tn–x, y

)
+μd

(
Tn–x, y

))
= λd

(
Tn–x, y

)
+ λμd

(
Tn–x, y

)
+μd

(
Tn–x, y

)
= (λ +μ)d(x, y).

By induction we get

d
(
Tnx, y

) ≤ (λ +μ)nd(x, y).

Taking limit as n→ ∞ in the above inequality, we get

lim
n→∞Tnx = y

http://www.journalofinequalitiesandapplications.com/content/2013/1/248
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as λ +μ < . Using a similar argument, we can prove that

lim
n→∞Tnx = z.

Now, the uniqueness of the limit gives that y = z.
(ii) If d(Tn–y,Tnx) + d(Tn–x,Tny) = , then d(Tnx, y) = . Then

lim
n→∞Tnx = y.

Using a similar argument, we can prove that

lim
n→∞Tnx = z.

Now, the uniqueness of the limit gives that y = z. This completes the proof. �

Remark  If inTheorem-Theoremμ = , thenweobtainTheorem.-Theorem.
of [].

We get the following fixed point theorem in partially ordered metric spaces if we take
λ =  in the theorems of Section .

Theorem Let (X,d,�) be a complete partially orderedmetric space and let T be a non-
decreasing self-mapping defined on X. Suppose that a self-mapping T satisfies the following
condition:

d(Tx,Ty) ≤
⎧⎨
⎩

μ
d(x,Tx)d(x,Ty)+d(y,Tx)d(y,Ty)

d(y,Tx)+d(x,Ty) if A �= ,

 if A = ,
()

for all x, y ∈ X with y � x, where A = d(y,Tx) + d(x,Ty) and μ is a non-negative real with
 ≤ μ < . Suppose also that either T is continuous or X satisfies the condition (OC). If there
exists x ∈ X with x � Tx, then T has a fixed point.

If (X,�) satisfies the condition used in Theorem , then the uniqueness of a fixed point
can be proved.

4 Applications
In this section we state some applications of the main results. The first result is the con-
sequence of Theorem .

Corollary  Let (X,d,�) be a T-orbitally complete partially orderedmetric space and let
T be a non-decreasing self-mapping defined on X. Suppose that a self-mapping T satisfies
the following condition:

∫ d(Tx,Ty)


ds≤ α

∫ d(x,Tx)·d(y,Ty)
d(x,y)


ds + β

∫ d(x,y)


ds + L

∫ min{d(x,Tx),d(y,Tx)}


ds ()

for all distinct x, y ∈ X with x � y and for α,β ∈ [, ) with α + β < , where L ≥ . If there
exists x ∈ X with x � Tx then T has at least one fixed point.
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Similarly, the following result is the consequence of Corollary .

Corollary  Let T be a continuous, non-decreasing self-map defined on a complete par-
tially ordered metric space (X,d,�). Suppose that T satisfies the following condition:

∫ d(Tx,Ty)


ds≤ α

∫ d(x,Tx)·d(y,Ty)
d(x,y)


ds + β

∫ d(x,y)


ds ()

for any distinct x, y ∈ X with x � y, where α,β ∈ [, ) with α + β < . Suppose there exists
x ∈ X with x � Tx. Then T has a fixed point.

The following result is the consequence of Theorem .

Corollary  Let (X,d,�) be a partially ordered metric space. Let T : X → X be a non-
decreasing, continuous mapping. Suppose that a self-mapping T satisfies

∫ d(Tx,Ty)


ds≤ α

∫ αd(Ty,y)[+d(x,Tx)]
+d(x,y)


ds + β

∫ d(x,y)


ds + L

∫ min{d(x,Tx),d(x,Ty),d(y,Tx)}


ds ()

for any x, y ∈ X with x� y, and for some α,β ∈ [, ) with α +β <  and L ≥ . Suppose that
there exists x ∈ X with x � Tx. Then T has a fixed point.
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