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Abstract
In this paper, we introduce the concepts of lacunary statistical τ -convergence,
lacunary statistically τ -bounded and lacunary statistically τ -Cauchy in the framework
of locally solid Riesz spaces. We also define a new type of convergence, that is,
S∗(τ )-convergence in this setup and prove some interesting results related to these
notions.
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1 Introduction and preliminaries
In  Fast [] presented the following definition of statistical convergence for sequences
of real numbers. We shall denote by N the set of all natural numbers. Let K ⊆ N and
Kn = {k ≤ n : k ∈ K}. Then the natural density of K is defined by δ(K) = limn n–|Kn| if the
limit exists, where the vertical bars indicate the number of elements in the enclosed set.
The sequence x = (xk) is said to be statistically convergent to L if for every ε > , the set
Kε := {k ∈N : |xk – L| ≥ ε} has natural density zero (cf. Fast []), i.e., for each ε > ,

lim
n


n

∣∣{j ≤ n : |xj – L| ≥ ε
}∣∣ = .

In this case, we write L = st- limx. Note that every convergent sequence is statistically
convergent, but not conversely. For example, suppose that the sequence x = (xn) is defined
as

x = (xn) =

⎧⎨
⎩

√
n, if n is a square,

, otherwise.

It is clear that the sequence x = (xn) is statistically convergent to , but it is not convergent.
In  Fridy [] presented the notion of a statistically Cauchy sequence and proved that

it is equivalent to statistical convergence. Active research on this topicwas started after the
papers of Fridy. Mursaleen and Edely [] extended these concepts from single sequences
to double sequences by using two dimensional analogue of natural density. In the recent
past, Mursaleen and Mohiuddine [, ] defined these notions for double sequences in
locally solid Riesz spaces as well as in intuitionistic fuzzy normed spaces and proved some
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interesting results. Subsequently, the statistical convergence for sequences of real numbers
in several spaces has been extensively investigated by a number of authors, and there are
many interesting results concerning this concept. For more details related to this concept,
we refer to [–] and references therein.
Now, we recall some basic definitions and notions related to the concept of locally solid

Riesz spaces. Let X be a real vector space and ≤ be a partial order on this space. Then X
is said to be an ordered vector space if it satisfies the following properties:

(i) if x, y ∈ X and y ≤ x, then y + z ≤ x + z for each z ∈ X .
(ii) if x, y ∈ X and y ≤ x, then λy≤ λx for each λ ≥ .

If in addition X is a lattice with respect to the partial order ≤, then X is said to be a Riesz
space (or a vector lattice) [].
For an element x of a Riesz space X, the positive part of x is defined by x+ = x ∨ θ =

sup{x, θ}, the negative part of x by x– = (–x)∨θ and the absolute value of x by |x| = x∨ (–x),
where θ is the zero element of X.
A subset S of a Riesz space X is said to be solid if y ∈ S and |x| ≤ |y| implies x ∈ S.
A topological vector space (X, τ ) is a vector spaceX, which has a (linear) topology τ , such

that the algebraic operations of addition and scalar multiplication in X are continuous.
Continuity of addition means that the function f : X × X → X defined by f (x, y) = x + y
is continuous on X × X, and continuity of scalar multiplication means that the function
f :C×X → X defined by f (λ,x) = λx is continuous on C×X.
Every linear topology τ on a vector space X has a base N for the neighborhoods of θ

satisfying the following properties:

(C) Each Y ∈N is a balanced set, that is, λx ∈ Y holds for all x ∈ Y and every λ ∈ R with
|λ| ≤ .

(C) Each Y ∈ N is an absorbing set, that is, for every x ∈ X , there exists λ >  such that
λx ∈ Y .

(C) For each Y ∈N , there exists some E ∈N with E + E ⊆ Y .

A linear topology τ on a Riesz space X is said to be locally solid [] if τ has a base at
zero consisting of solid sets. A locally solid Riesz space (X, τ ) is a Riesz space equipped
with a locally solid topology τ .
The rest of the paper is organized as follows. In Section , first we recall the notion of

lacunary sequences and define the concepts of lacunary statistically τ -convergent and la-
cunary statistically τ -bounded and prove some interesting results. Section  is devoted to
introduce concept of lacunary statistically τ -Cauchy and to proving that a lacunary sta-
tistically τ -convergent sequence is lacunary statistically τ -Cauchy. Also, we define S∗

θ (τ )-
convergent and prove that it is equivalent to lacunary statistically τ -convergent for a first
countable space.

2 Lacunary statistical τ -convergence
By a lacunary sequence, we mean an increasing integer sequence θ = (kr) such that k = 
and hr := kr – kr– → ∞ as r → ∞. Throughout this paper, the intervals determined by θ

will be denoted by Ir := (kr–,kr], and the ratio kr/kr– will be abbreviated by qr .
Let K ⊆N. The number

δθ (K) = lim
r


hr

∣∣{k ∈ Ir : k ∈ K}∣∣
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is said to be the θ -density of K , provided the limit exists.
In  Fridy and Orhan [] defined the concept of lacunary statistical convergence as

follows.
Let θ be a lacunary sequence. Then a sequence x = (xk) is said to be Sθ -convergent to

the number L if for every ε > , the set K(ε) has θ -density zero, where

K(ε) :=
{
k ∈N : |xk – L| ≥ ε

}
.

In this case, we write Sθ - limx = L or xk → L(Sθ ).

Remarks . It is well known that every convergent sequence is lacunary statistically con-
vergent, but the converse is not true. For example, let the sequence x = (xk) be defined by

xk =

⎧⎨
⎩
k; for kr – [

√
hr] +  ≤ k ≤ kr , r ∈N,

; otherwise.

Then x is lacunary statistically convergent to , but it is not convergent.

We shall assume throughout this paper that the symbol Nsol will denote any base at
zero consisting of solid sets and satisfying the conditions (C), (C) and (C) in a locally
solid topology. For our convenience, here and in what follows, we shall write an LSR-space
instead of a locally solid Riesz space.

Definition . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. Then a sequence
x = (xj) in X is said to be lacunary statistically τ -convergent (or Sθ (τ )-convergent) to the
element ξ ∈ X if for every τ -neighborhood U of zero, δθ (KU ) = , where KU = {j ∈ N :
xj – ξ /∈U}, i.e.,

lim
r→∞


hr

∣∣{j ∈ Ir : xj – ξ /∈U}∣∣ = .

In this case, we write Sθ (τ )- limx = ξ or xj
Sθ (τ )–→ ξ .

Definition . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. We say that a
sequence x = (xj) in X is lacunary statistically τ -bounded (or Sθ (τ )-bounded) if for every
τ -neighborhoodU of zero there exists some λ >  such that the setMU = {j ∈N : λxj /∈U}
has θ -density zero (shortly, δθ (MU ) = ), i.e.,

lim
r→∞


hr

∣∣{j ∈ Ir : λxj /∈U}∣∣ = .

Theorem . Let (X, τ ) be a Hausdorff LSR-space and θ be a lacunary sequence. Suppose
that x = (xj) and y = (yk) are two sequences in X. Then the following hold:

(i) If Sθ (τ )- limj xj = ξ and Sθ (τ )- limj xj = ξ, then ξ = ξ.
(ii) If Sθ (τ )- limj xj = ξ , then Sθ (τ )- limj αxj = αξ , α ∈R.
(iii) If Sθ (τ )- limj xj = ξ and Sθ (τ )- limj yj = η, then Sθ (τ )- limj(xj + yj) = ξ + η.
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Proof (i) Suppose that Sθ (τ )- limj xj = ξ and Sθ (τ )- limj xj = ξ. Let U be any τ -neighbor-
hood of zero. Then there exists Y ∈ Nsol such that Y ⊆ U . Choose any E ∈ Nsol such that
E + E ⊆ Y . We define the following sets:

K = {j ∈N : xj – ξ ∈ E},
K = {j ∈N : xj – ξ ∈ E}.

Since Sθ (τ )- limj xj = ξ and Sθ (τ )- limj xj = ξ, we have δθ (K) = δθ (K) = . Thus δθ (K ∩
K) = , and in particular K ∩K �= ∅. Now, let j ∈ K ∩K. Then

ξ – ξ = ξ – xj + xj – ξ ∈ E + E ⊆ Y ⊆U .

Hence, for every τ -neighborhoodU of zero, we have ξ – ξ ∈U . Since (X, τ ) is Hausdorff,
the intersection of all τ -neighborhoods U of zero is the singleton set {�}. Thus, we get
ξ – ξ = �, i.e. ξ = ξ.
(ii) LetU be an arbitrary τ -neighborhood of zero and Sθ (τ )- limj xj = ξ . Then there exists

Y ∈Nsol such that Y ⊆U and also

lim
r→∞


hr

∣∣{j ∈ Ir : xj – ξ ∈ Y }∣∣ = .

Since Y is balanced, xj – ξ ∈ Y implies α(xj – ξ ) ∈ Y for every α ∈R with |α| ≤ . Hence,

{j ∈N : xj – ξ ∈ Y } ⊆ {j ∈N : αxj – αξ ∈ Y }
⊆ {j ∈N : αxj – αξ ∈U}.

Thus, we obtain

lim
r→∞


hr

∣∣{j ∈ Ir : αxj – αξ ∈U}∣∣ = ,

for each τ -neighborhoodU of zero.Now, let |α| >  and [|α|] be the smallest integer greater
than or equal to |α|. There exists E ∈Nsol such that [|α|]E ⊆ Y . Since Sθ (τ )- limj xj = ξ , the
set

K = {j ∈N : xj – ξ ∈ E}

has θ -density zero. Therefore,

|αξ – αxj| = |α||ξ – xj| ≤
[|α|]|ξ – xj| ∈

[|α|]E ⊆ Y ⊆U .

Since the set Y is solid, we have αξ – αxj ∈ Y . This implies that αξ – αxj ∈U . Thus,

lim
r→∞


hr

∣∣{j ∈ Ir : αxj – αξ ∈U}∣∣ = ,

for each τ -neighborhood U of zero. Hence, Sθ (τ )- limj αxj = αξ .
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(iii) Let U be an arbitrary τ -neighborhood of zero. Then there exists Y ∈Nsol such that
Y ⊆U . Choose E inNsol such that E + E ⊆ Y . Since Sθ (τ )- limj xj = ξ and Sθ (τ )- limj,k yjk =
η, we have δθ (H) =  = δθ (H), where

H = {j ∈ N : xj – ξ ∈ E},
H = {j ∈N : yj – η ∈ E}.

Let H =H ∩H. Hence, we have δθ (H) =  and

(xj + yj) – (ξ + y) = (xj – x) + (yj – η) ∈ E + E ⊆ Y ⊆U .

Therefore,

lim
r→∞


hr

∣∣{j ∈ Ir : (xj + yj) – (ξ + η) ∈ U
}∣∣ = .

Since U is arbitrary, we have Sθ (τ )- limj(xj + yj) = ξ + η. �

Theorem . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. If a sequence x =
(xj) is lacunary statistically τ -convergent, then it is lacunary statistically τ -bounded.

Proof Suppose x = (xj) is lacunary statistically τ -convergent to the point ξ ∈ X and let U
be an arbitrary τ -neighborhood of zero. Then there exists Y ∈ Nsol such that Y ⊆ U . Let
us choose E ∈Nsol such that E + E ⊆ Y . Since Sθ (τ )- limj→∞ xj = ξ , the set

K = {j ∈N : xj – ξ /∈ E}

has θ -density zero. Since E is absorbing, there exists λ >  such that λξ ∈ E. Let α be such
that α ≤  and α ≤ λ. Since E is solid and |αξ | ≤ |λξ |, we have αξ ∈ E. Since E is balanced,
xj – ξ ∈ E implies α(xj – ξ ) ∈ E. Then we have

αxj = α(xj – ξ ) + αξ ∈ E + E ⊆ Y ⊆U ,

for each j ∈N \K . Thus,

lim
r→∞


hr

∣∣{j ∈ Ir : αxj /∈U}∣∣ = .

Hence, (xj) is lacunary statistically τ -bounded. �

Theorem . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. If (xj), (yj) and (zj)
are three sequences such that

(i) xj ≤ yj ≤ zj, for all j ∈N,
(ii) Sθ (τ )- limj xj = ξ = Sθ (τ )- limj zj,

then Sθ (τ )- limj yj = ξ .
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Proof Let U be an arbitrary τ -neighborhood of zero, there exists Y ∈ Nsol such that
Y ⊆U . Choose E ∈ Nsol such that E + E ⊆ Y . From the condition (ii), we have δθ (A) =
 = δθ (B), where

A = {j ∈N : xj – ξ ∈ E},
B = {j ∈N : zj – ξ ∈ E}.

Also, we get δθ (A∩ B) = , and from (i), we have

xj – ξ ≤ yj – ξ ≤ zj – ξ

for all j ∈N. This implies that for all j ∈ A∩ B, we get

|yj – ξ | ≤ |xj – ξ | + |zj – ξ | ∈ E + E ⊆ Y .

Since Y is solid, we have yj – ξ ∈ Y ⊆U . Thus,

lim
r→∞


hr

∣∣{j ∈ Ir : yj – ξ ∈U}∣∣ = ,

for each τ -neighborhood U of zero. Hence, Sθ (τ )- limj yj = ξ . �

3 Lacunary statistically τ -Cauchy and S∗
θ (τ )-convergence

In the present section, first we define the concept of lacunary statistically τ -Cauchy in
locally solid Riesz spaces as follows.

Definition . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. A sequence x =
(xj) in X is lacunary statistically τ -Cauchy if for every τ -neighborhood U of zero there
exists p ∈N such that

lim
r→∞


hr

∣∣{j ∈ Ir : xj – xp /∈U}∣∣ = .

Theorem . Let (X, τ ) be an LSR-space and θ be a lacunary sequence. If a sequence x =
(xj) is lacunary statistically τ -convergent, then it is lacunary statistically τ -Cauchy.

Proof Suppose that Sθ (τ )- limj→∞ xj = ξ . Let U be an arbitrary τ -neighborhood of zero,
there exists Y ∈Nsol such that Y ⊆U . Choose E ∈Nsol such that E + E ⊆ Y . Then

lim
r→∞


hr

∣∣{j ∈ Ir : xj – ξ /∈ E}∣∣ = .

Also, we have

xj – xp = xj – ξ + ξ – xp ∈ E + E ⊆ Y ⊆U ,

for all j,p ∈N \K , where

K = {j ∈N : xj – ξ /∈ E}.

http://www.journalofinequalitiesandapplications.com/content/2012/1/225


Mohiuddine and Alghamdi Journal of Inequalities and Applications 2012, 2012:225 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2012/1/225

Therefore, the set

{j ∈N : xj – xp /∈U} ⊆ K .

For every τ -neighborhood U of zero, there exists N ∈N such that for all j,p≥ N ,

lim
r


hr

{j ∈ Ir : xj – xp /∈ U} = .

Hence, (xj) is lacunary statistically τ -Cauchy. �

Now, we define another type of convergence in locally solid Riesz spaces.

Definition . Let θ be a lacunary sequence. A sequence (xj) in an LSR-space (X, τ ) is
said to be S∗

θ (τ )-convergent to ξ ∈ X if there exists an index set K = {jn} ⊆ N, n = , , . . . ,
with δθ (K) =  such that limn→∞ xjn = ξ . In this case, we write ξ = S∗

θ (τ )- limx.

Theorem . Let θ be a lacunary sequence. A sequence x = (xj) is lacunary statistically
τ -convergent to a number ξ if it is S∗

θ (τ )-convergent to ξ in a locally solid Riesz space (X, τ ).

Proof Let U be an arbitrary τ -neighborhood of ξ . Since x = (xj) is S∗
θ (τ )-convergent to ξ ,

there is an index set K = {jn} ⊆N, n = , , . . . , with δθ (K) =  and j = j(U), such that j ≥ j
and j ∈ K imply xj – ξ ∈U . Then

KU = {j ∈N : xj – ξ /∈U} ⊆N – {jN+, jN+, . . .}.

Therefore,

δθ (KU )≤  –  = .

Hence, x is lacunary statistically τ -convergent to ξ . �

Note that the converse holds for a first countable space.
Recall that a first countable space is a topological space satisfying the ‘first axiom of

countability’. Specifically, a spaceX is said to be first countable if each point has a countable
neighborhood basis (local base). That is, for each point x in X there exists a sequence
U,U, . . . of open neighborhoods of x such that for any open neighborhood V of x there
exists an integer i with Ui contained in V .

Theorem . Let (X, τ ) be a first countable LSR-space and θ be a lacunary sequence. If
a sequence x = (xj) is lacunary statistically τ -convergent to a number ξ , then it is S∗

θ (τ )-
convergent to ξ .

Proof Let x be lacunary statistically τ -convergent to a number ξ . Fix a countable local
base U ⊃U ⊃U ⊃ · · · at ξ . For every i ∈N, put

Ki = {j ∈N : xj – ξ /∈Ui}

http://www.journalofinequalitiesandapplications.com/content/2012/1/225
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and

Mi = {j ∈N : xj – ξ ∈Ui} (i = , , , . . .).

Then δθ (Ki) =  and
() M ⊃M ⊃ · · · ⊃Mi ⊃Mi+ ⊃ · · ·

and
() δλ(Mi) = , i = , , , . . . .
Now, we have to show that for j ∈ Mi, (xjn ) is convergent to ξ . Suppose that (xjn ) is not

convergent to ξ . Therefore, xjn – ξ /∈Ui for infinitely many terms. Let

Mr = {j ∈N : xjn – ξ ∈Ur} (r > i).

Then
() δθ (Mr) = ,

and by (), Mi ⊂ Mr . Hence, δθ (Mi) = , which contradicts (). Therefore, (xjn ) is conver-
gent to ξ . Hence, by Definition ., x is S∗

θ (τ )-convergent to ξ . �
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