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Abstract 

 

This paper evaluates cost and scale efficiencies of Switzerland’s regulated rural bus 

companies operating in regional networks. The adopted methodology can be used in 

benchmarking analyses applied to incentive regulation systems. Moreover, the 

estimations can be used to evaluate the bidding offers for the tendering processes 

predicted by the ongoing reform policies. Since these companies operate in different 

regions with various characteristics that are only partially observed, it is crucial for 

the regulator to distinguish between inefficiency and exogenous heterogeneity that 

influences the costs. A number of stochastic cost frontier models are applied to a 

panel of 94 companies over a 12-year period from 1986 to 1997. The main focus lies 

on the ability of these models to distinguish inefficiency from the unobserved firm-

specific heterogeneity in a network industry. The estimation results are compared and 

the effect of unobserved heterogeneity on inefficiency estimates is analyzed. 
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1. Introduction 

 

In many European countries the regional public bus services are being 

reorganized. In line with the EU policy the Swiss government has introduced 

important regulatory reforms in the public transport system, including regional bus 

companies. The new policy act predicts a tendering process for the provision of 

regional bus services. With the implementation of the new system, the applying 

companies will bid in competitive auctions and the access rights will be granted to the 

company with the lowest subsidies request. This system is believed to introduce 

greater incentives for competitive behavior. However, given the limited number of 

bidding companies in most regions, it is not clear to what extent the new policies lead 

to efficient production. Moreover, the incumbents, mostly public companies, might 

have an advantageous position in such auctions. Benchmarking methods can be used 

to evaluate the requested subsidies and proposed costs by individual companies or to 

adjust the minimum bidding prices.  

Benchmarking analysis is based on comparing the costs of individual 

companies to the ‘best’ (most cost-efficient) observed practice. These deviations, 

often labeled as ‘cost-inefficiency’ can also be used to adjust the amount of subsidies 

paid to individual bus operators. Moreover, predicted costs of the benchmark practice 

could be used to gain information regarding the future evolution of costs incurred by 

the companies operating in a service area, and to re-evaluate the claimed subsidies.1  

In order to use the efficiency estimates of individual companies in regulation, 

it is important to have precise measurement methods. In particular, because of 

                                                 
1 See Farsi and Filippini (2004) for a discussion on the use of cost prediction in the regulation of public 
utilities. 
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considerable cost differences across various networks, it is crucial to distinguish the 

cost difference due to unobserved heterogeneity in external factors from the excess 

costs due to the company’s inefficiency. Benchmarking can be conducted using 

econometric methods such as stochastic frontier models, which have been developed 

in a variety of forms during the past two decades.2 All these models in one way or 

another separate the heterogeneity from cost-inefficiency. Especially, with panel data 

at hand, the unobserved heterogeneity can be better identified because the time-

invariant elements of heterogeneity can be separately specified by firm-specific 

effects.  

The first application of panel data models in stochastic frontier analysis was 

introduced by Pitt and Lee (1981). These authors formulated the firm-specific error 

component as a half-normal distribution, which they interpreted as inefficiency. In the 

following years, several models have been developed to incorporate the observed 

firm-specific heterogeneity. For instance, Jha and Singh (2001), Piacenza (2002) and 

Dalen and Gomez-Lobo (2003) use single equation models3 proposed by Battese and 

Coelli (1995) to incorporate some exogenous variables to explain the determinants of 

the inefficiency component in the bus transportation industry. However, most of these 

models have a shortcoming in that they cannot disentangle firm’s inefficiency from 

cost differences due to unobserved characteristics of the service area. Especially, 

transport companies operate in networks with different shapes and structures, which 

result in different coordination problems and thus lead to different costs. These 

characteristics are usually given and cannot be controlled by the companies. Some of 

these exogenous factors are either unavailable or too complex to be measured by 

                                                 
2 Kumbhakar and Lovell (2000) provide an extensive survey of this literature.  
3 For the advantages of single stage models, see Wang and Schmidt (2002). 
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single indicators. Unfortunately, when unobserved heterogeneity is present the 

inefficiency estimates can be biased.  

Greene (2004, 2005) proposes alternative panel data models, which can better 

distinguish between unobserved firm-specific heterogeneity and inefficiency. These 

models extend the previous models by adding an additional stochastic error 

component for the heterogeneity.4 Such models are particularly useful in transport 

industries where the network and environmental characteristics are mostly unobserved 

or hard to measure, but play an important role on the operating costs.  

The purpose of this study is to analyze the performance of different panel data 

frontier models with regard to estimated coefficients, inefficiency scores and 

estimates of economies of scale and density. Especially, we focus on the ability of 

different models to distinguish unobserved heterogeneity from inefficiency. 

Alternative models are applied to a sample of 94 Swiss rural bus companies from 

1986 to 1997. It is concluded that in the studied sample, Greene’s “true” random 

effects model has a considerable advantage over other models in separating 

heterogeneity from inefficiency.  

The rest of the paper is organized as follows: Sections 2 and 3 present the 

model specification and the methodology respectively. The data are explained in 

section 4. Section 5 presents the estimation results and discusses their implications, 

and section 6 provides the conclusions.  

 

                                                 
4 A similar model but with a three-stage estimation procedure has been proposed by Kumbhakar (1991) 
and Heshmati and Kumbhakar (1994).  
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2. Model Specification 

 

A bus transit company can be considered as a production unit that operates in 

a given network and transforms labor and capital services and energy into units of 

transport services. Since in most cases not only the network but also the schedule of a 

bus operator is regulated and predetermined, it is common to estimate a cost rather 

than a production function.5 Different specifications have been used in the literature.6 

Often, output is measured in terms of either passenger- or seat-kilometers. To capture 

some of the heterogeneity of different service areas, most specifications include 

additional output characteristics such as the number of stops, network length or 

average commercial speed. Most of these studies also include a time trend to capture 

the potential changes in technology.  

The total cost frontier can therefore be written as the following function: 

 

 ( , , , , )L CTC f Y N P P t= , (1) 

 

where TC is the total annual cost and Y is the output represented by the total number 

of seat-kilometers. N represents the network length. PC and PL are respectively the 

capital and labor prices. We considered an alternative specification including energy 

prices. The estimated coefficients did not change significantly and the coefficient of 

the energy price was generally insignificant. Moreover, because of a number of 

missing values for energy costs a two-input model allows a larger sample. Therefore, 
                                                 
5 See Berechman (1993) for an overview of the application of cost functions in public transport. 
6 See among others Fazioli et al. (1993), Filippini and Prioni (1994, 2003), Matas and Raymond (1998), 
Fraquelli et al. (2001) and Fazioli et al. (2003).  
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we consider labor and capital as the main input factors. However, as we see later, the 

capital price is calculated from all non-labor expenses, thus includes the variations in 

energy prices. 

It is generally assumed that the cost function given in (1) is the result of cost 

minimization given input prices and output and should therefore satisfy certain 

properties namely, linear homogeneity and concavity in input prices and monotonicity 

in input prices and output.7 Input prices and output are assumed to be exogenous, thus 

beyond the firm’s control. In the case of Swiss bus transport companies, the 

municipalities and the cantons specify the output by regulating the frequency of the 

service. The input prices can also be regarded as given, because these companies have 

a relatively small share in the labor and capital markets, thus cannot influence the 

prices through monopsony.  

To estimate the cost function (1), a translog functional form is chosen. This 

flexible functional form is a local, second-order logarithmic approximation to any 

arbitrary twice-differentiable cost function. It places no a priori restrictions on the 

elasticity of substitution and allows the economies of scale to vary with the output 

level. The translog approximation to (1) is written as: 
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      with   i= 1, 2, ...., N   and    t = 1,2,…,T, 

                                                 
7 For more details on the properties of the cost function, see Chambers (1988), p. 52. 
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where subscripts i and t denote the company and year respectively. The technical 

change is specified as a linear trend and is assumed to be neutral with respect to cost 

minimizing input ratios.8 The translog form requires that the underlying cost function 

be approximated around a specific point like the sample mean or median. Here, the 

sample median is chosen because it is less affected by outliers and thus the 

approximation will have better precision. As can be seen in equation (2), linear 

homogeneity in input prices is imposed by dividing total costs and input prices by 

labor price. The other theoretical restrictions are verified after the estimation.  

Apart from estimating cost inefficiency, the estimation of a cost function 

enables us to derive important characteristics of bus supply technology such as 

economies of density and scale. The distinction between scale and density economies 

is particularly important in network industries. In such cases, a company’s size is 

related to both its output level and its network size, which do not necessarily vary 

with a simple one-to-one relationship. For this reason it is important to distinguish 

cost changes that occur uniquely because of output changes within a fixed network 

and cost changes resulting from a proportional change in both network and output. 

Economies of density are defined as the inverse of the elasticity of costs with 

respect to output that is, the relative increase in total cost resulting from an increase in 

output, holding all input prices and the network size fixed:9 
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8 In other words the technical change does not alter the optimal input bundles. 
9 See also Caves, Christensen and Tretheway (1984). 
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The existence of economies of density implies that the average costs of a bus 

operator decrease as physical output increases. Economies of density exist if the 

above expression (ED) has a value greater than one. For values of ED below one, we 

identify diseconomies of density. In the case of ED = 1, the company’s output 

minimizes its average costs given the network’s size.  

Slightly different is the definition of economies of scale (ES). Here, the 

increase in total costs is brought about by an increase in company’s scale that is in 

both output and the network size, holding the factor prices constant. However, since 

the changes in output and network size are inter-related, the definition of scale 

economies requires an assumption in this respect. The commonly used definition is 

the one proposed by Caves, Christensen and Tretheway (1984), which assumes that 

any increase in size raises the network size and the outputs with the same proportion. 

Based on this assumption, ES is defined as: 
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Similarly, economies of scale exist if ES is higher than 1.  

It should be noted that the above definitions of scale and density economies 

are in terms of cost elasticity and do not necessarily correspond to the definitions 

derived from the production function. In fact, only in homothetic production 

functions, where the optimal input bundles vary proportionately, the two definitions 
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are equivalent. Here, we do not impose such an assumption. However, as in this paper 

we are interested in the cost effects of output, we define the scale and density 

economies as the inverse of the corresponding cost elasticities.10 

 

3. Methodology 

 

The effects of unobserved heterogeneity on inefficiency estimates are studied 

by a comparative analysis of four econometric models. These models are a pooled 

cross section model in line with Aigner, Lovell and Schmidt (1977); a random effects 

model as in Pitt and Lee (1981); a fixed effects model as in Schmidt and Sickles 

(1984); and a random intercept frontier model (also known as “true” random effects 

model) proposed by Greene (2004, 2005). The deterministic part of all models is 

based on the specification given in equation (2). 

Model I (Aigner, Lovell and Schmidt, 1977) is a pooled frontier model, in 

which the error term is divided into two components: a normally distributed error vit, 

capturing general measurement errors and heterogeneity and a half-normal random 

term uit, representing the inefficiency as a one-sided non-negative disturbance This 

model can be written as: 

 0
2 2
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0α + itx' β  represents the deterministic part of the cost function as in equation (2), and 

2(0, )uN σ+  stands for the positive part of a normal distribution. Both error 

components are assumed to be uncorrelated with each other and the regressors. This 
                                                 
10 See Chambers (1988) for more details about this issue. To avoid confusion this author refers to the 
inverse of cost elasticity as the “economies of size” rather than economies of scale (see page 72).  
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model is estimated by Maximum Likelihood and the inefficiency component is 

estimated from the residuals it it itv uε = +  by the conditional expectation ˆ( )it itE u ε , 

proposed by Jondrow et al. (1982). In this model, the observations of a same company 

are considered as independent sample points. Therefore, the panel structure of the data 

is completely ignored. This issue can be addressed by considering a random effects 

model (model II) as in Pitt and Lee (1981). Similar to model I, a normal-half-normal 

composite error term is considered. The difference is that here, the observations for a 

specific company possess a common error component. This model can be formulated 

as: 

 0

2 2
it

ln ,

where v  (0, ) and  (0, ).
it it i

v i u

TC v u

iid N u iid N

α

σ σ+

= + + +itx' β

∼ ∼
 (6) 

The model is estimated by Maximum Likelihood method. The firm-specific 

inefficiency is estimated using the conditional mean of the inefficiency term (ui) 

proposed by Jondrow et al. (1982),11 that is: 1 2ˆ ˆ ˆE , ,.., Ei i i iT i iu uε ε ε ε   =    , where 

it i itu vε = +  and 
1

1 ˆ
iT

i it
i tT

ε ε
=

= ∑ . 

A limitation of this model is the assumption that the firm-specific stochastic 

term is assumed to be uncorrelated with the explanatory variables. In fact, most 

frontier models assume that inefficiency is uncorrelated with explanatory variables 

included in the cost function.12 However, the firm-specific term (ui in this model) may 

also contain other unobserved environmental factors, which may be correlated with 

explanatory variables and thus may bias the coefficients. For example, larger 

networks are likely to be more spread, thus incur higher coordination and 

                                                 
11 See also Greene (2002a). 

12 This assumption can be justified based on the fact that the apparent excess costs that are correlated 
with exogenous variables may be due to factors beyond the firm’s control. 
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maintenance costs. In this case as the overall spread of the network is not observed, its 

positive correlation with the network’s size may create an upward bias in the 

coefficient of the network’s size. . 

The fixed effects model (model III) can overcome this heterogeneity bias 

problem, by taking the firm-specific effects as constants. In this model the estimated 

coefficients are unbiased even in the presence of such correlations. The inefficiency 

estimates are obtained using the procedure proposed by Schmidt and Sickles (1984). 

This model is given by: 

 0ln ,it it iTC v uα= + + +itx' β  (7) 

where 2
itv  (0, )viid σ∼ , and 0i iu α α= − . Τhe firm-specific αi’s are the so-called fixed 

effects.13 The model can therefore be re-written as:  

 ln .it i itTC vα= + +itx' β  (8) 

This model is estimated by applying Ordinary Least Squares. The positive 

inefficiency scores are then calculated as ˆ ˆ ˆmin( )i i ii
u α α= − . From this expression, it 

can be seen that the company with the smallest firm-specific component is regarded 

as fully efficient and defines the common intercept: 0ˆ ˆmin( )ii
α α= . 

Finally, Greene’s true random effects model (model IV) is an extension of 

Aigner et al.’s frontier model that includes an additional time-invariant random term 

to capture the firm-specific heterogeneity effect on cost by a random intercept 

component. It can be written as: 
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13 See Hsiao (2003) for details.  
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As before, all distributions are assumed do be independent from each other and from 

the regressors. This model is estimated using Simulated Maximum Likelihood 

method.14 The inefficiency is estimated using the conditional mean of the inefficiency 

term (uit) given by ˆE it itu ω   , where it i itω α ε= + .15  

Aigner et al.’s model (model I) is formulated as a cross sectional model and 

thus, ignores the panel aspects of the data. This might lead to inaccurate results due to 

misspecification by ignoring firm-specific unobserved factors. In the true random 

effects model (model IV), this problem is addressed by including a separate stochastic 

term for firm-specific heterogeneity. Such heterogeneity is also accounted in the fixed 

and random effects models (models II and III). However, both these models impose 

additional restrictions that might affect the inefficiency estimates. In fact in both 

models, the firm-specific unobserved effects are interpreted as efficiency differences. 

Moreover, inefficiency is assumed to be constant over time. Both these assumptions 

might be quite restrictive. Given that in network industries, a considerable part of the 

unobserved factors are related to the network complexity and are beyond the firm’s 

control, thus cannot be considered as firm’s inefficiency. As the time-invariant part of 

unobserved heterogeneity is primarily captured by the firm-specific effects, the 

inefficiency estimates are likely to be biased in these models. As for the second 

assumption, both economic theory and empirical evidence suggest that cost-

inefficiency varies with time. New technology shocks and learning are among the 

reasons why inefficiency varies over time and across individuals. Using a translog 

production function, Alvarez, Arias and Greene (2003) have shown that even in cases 

                                                 
14 See Greene (2001, 2005) for a discussion of the estimation method. For the simulation, 100 Halton 
draws were used. Our estimations with higher numbers of draws showed that the results are not 
sensitive to the number of draws.   
15 See Greene (2002a) for more details. 
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when the management’s efficiency is constant, the technical efficiency could vary 

with time.16 Moreover, the assumption of time-invariant inefficiencies is not realistic 

in a relatively long panel such as our sample.   

The true random effects model does not require any of these assumptions. 

However, if the firm-specific heterogeneity is correlated with the explanatory 

variables, the estimated parameters of the cost function might be biased. In another 

paper (Farsi, Filippini and Kuenzle, 2003), we proposed an adjustment based on 

Mundlak (1978)’s formulation to reduce the possible biases in this model.17 However, 

in the present study, our analysis (not reported here) indicates that the estimation 

results are fairly close with or without this adjustment. Thus, we decided to focus on 

the model without adjustment. With two heterogeneity terms, this model is expected 

to provide a better distinction between inefficiency and other unexplained variations. 

This advantage is especially important in network industries, in which a significant 

part of unobserved differences is due to time-invariant factors.  

In our comparative analysis we consider two aspects of the models’ 

performance. The first dimension is the estimation of the cost function’s coefficients. 

In cases such as bus companies (or in general network industries), explanatory 

variables and costs can be influenced by a number of unobserved network 

characteristics. For instance, increasing density of stops will increase the costs due to 

higher infrastructure expenditures, or a ramified network will lead to a higher labor 

and capital demand than a single-line network. But longer networks might be 

relatively more complex, in which case complexity is an unobserved factor that is 

correlated with the network length. A Hausman test is used to confirm that the firm-

                                                 
16 In translog form this time variation is due to interaction of time-invariant inefficiency with 
explanatory variables. 
17 See also Farsi, Filippini and Greene (2004) for an application of this method in railway companies.  
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specific effects are correlated with the explanatory variables.18 In this case a fixed 

effects estimator would be unbiased and could thus be used as a benchmark. 

Therefore, the extent of heterogeneity bias across different models can be compared 

according to the overall distance of their parameter estimates with respect to those of 

the fixed effects model.   

One can argue that models with more general error structures, such as model 

IV, have lower biases because the residuals can capture a larger part of the 

correlations between unobserved heterogeneity and explanatory variables, thus 

leaving the coefficients less affected. However, the residuals are by definition 

uncorrelated with explanatory variables and the extent to which they may confound 

such correlations with errors may significantly vary from one sample to another. 

Especially, since the frontier estimators are non-linear, the prediction of the biases is 

not straightforward. This theoretical discussion is beyond the scope of this paper. 

Here we rather focus on the evaluation of the models with respect to our sample.  

The second aspect of the models’ performance concerns the estimation of 

inefficiency scores. The specification of inefficiency in each model relies on certain 

assumptions on its error components, which do not violate the consistency of 

estimated parameters. Therefore, an unbiased estimation of the cost function is not a 

sufficient condition for a reliable estimation of inefficiency.19 Given that the “real” 

inefficiency scores are not known, a high correlation between the inefficiency 

estimates from different models is usually considered as an indication of the validity 

of individual approaches. However, as we will see, our results show a rather weak 

                                                 
18 This test  performed on a GLS random effects model (not reported here), rejects the hypothesis of 
nocorrelation between regressors and firm effects.  
19 See Farsi and Filippini (2004) for an example of overestimation of inefficiency in the fixed-effects 
model, which in principle gives unbiased estimates of cost function’s coefficients. 
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correlation. Therefore, our assessment of various models relies on plausibility 

arguments.  

In particular, the purpose of this paper is to study whether the true random 

effect model can help solve some of the mentioned problems. It should be noted that 

the validity of the results depends on the study sample and may vary from one case to 

another. Therefore, our purpose is not to identify a unique all-purpose model. Rather, 

our comparative analysis highlights in each one of the models, the effect of 

unobserved heterogeneity on inefficiency estimates.  

 

4. Data 

 

The data used in this paper are extracted from the annual reports of the Swiss 

Federal Office of Statistics on public transport companies. The companies operating 

in main urban centers are excluded from the sample. Most of these companies operate 

both inner-city tramways and buses, whose functioning is quite different from rural 

bus transport. Our data set includes information on all the 170 rural companies 

operating in Switzerland during the study period. However, the data is not available 

for all years. In several cases lack of information is due to closure or merging with 

other companies. We decided to exclude the companies that have fewer than four 

observations.20 That is, all the companies in the final sample have at least four years 

of non-missing data. Therefore companies that were closed or taken over by other 

companies after a short period of operation are excluded. Obviously, such companies 

are not comparable with other companies because their closure may have been related 
                                                 
20 We also dropped one observation that we suspected as erroneous because of extremely low reported 
total costs compared to the same company’s total costs reported in other years.  
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to their excessive costs or other peculiar reasons. Moreover, since the panel models 

used in this study require in one way or another the estimation of firm-specific effects, 

four observations per firm appears to be a reasonable minimum. We also excluded 

Swiss Post21 and all its sub-contractors from the sample, because a considerable part 

of these companies’ revenues is related to package transport and other postal services. 

Therefore, all the companies included in the sample are mainly involved in passenger 

transport.  

The final data set is an unbalanced panel with 985 observations including 94 

operators over a 12-year period from 1986 to 1997. The number of periods per firm 

varies from 4 to 12 with an average of 10.5 years. The available information includes 

total costs, total number of employees, network length, total numbers of bus-

kilometers and passenger-kilometers as well as those of buses and seats. Table 1 

provides a descriptive summary of the main variables used in the analysis. 

The variables for the cost function specification were calculated as follows. 

Total costs TC are calculated as the total expenditures of the bus companies in a given 

year. The output Y is measured by the number of seat-kilometers, which is calculated 

by multiplying the total number of bus-kilometers in any given year by the average 

number of seats per bus in that year. It should be pointed out that this calculation is 

based on the assumption that the number of seats in a bus does not vary considerably 

in a given company’s fleet in a given year. This is a reasonable assumption because a 

typical bus company in Switzerland possesses a uniform fleet. Generally, in order to 

reduce their maintenance costs, companies purchase their vehicles in large quantities 

from the same supplier and the same model. The number of seats includes both sitting 

and standing places. In other studies such as Windle (1988), Bhattacharyya et al. 
                                                 
21 Swiss Post, a public company funded by the federal government, mainly in charge of mail delivery 
and financial services, operates public transport in about 60% of Switzerland’s rural bus network. 
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(1995) and Jha and Singh (2001), the number of passenger-kilometers is used as 

output. However, since in Switzerland the rural buses are rarely running at full 

capacity and they have to run according to the frequency set by the regulators, a 

considerable number of seats are likely to be empty in a typical bus travel during an 

off-season period. Therefore, the number of passenger-kilometers is not a 

representative measure of output. Alternatively, several authors like Berechman 

(1987), Matas and Raymond (1998) and Fazioli et al. (2003), use bus-kilometers as 

the output measure. Given that the average vehicle size is likely to vary across 

different bus companies in our sample, this measure can distort the output in favor of 

companies with smaller thus less costly buses. The number of seat-kilometers 

measures the kilometers traveled by the fleet capacity, which is not sensitive to 

occupancy rate and at the same time account for the variation of vehicle size across 

companies. In Switzerland the minimum required frequency of bus services (set by 

the communities) does not considerably change with the actual occupancy rates. 

Especially in remote areas, it is not unusual that buses occasionally run with few 

passengers. Therefore, we contend that in the context of Switzerland’s rural bus 

systems, this measure is more relevant for cost estimations.22  

 

 

                                                 
22 In any case, the three mentioned output measures are highly correlated in our data and our 
preliminary estimations suggest that the results are similar regardless of the adopted measure. 
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Table 1: Descriptive statistics based on 985 observations 

Variables Mean Standard 
Deviation 1. Quartile Median 3. Quartile 

Total annual costs (TC) 
Thousand CHF 3106 4802 425 1270 3410 

Output (Y) 
Thousand seat-kilometers 47986 85556 5715 16403 53127 

Network length (N) km 43 70 13 26 55 

Capital price (PC) CHF/Seat 1343 606 927 1225 1612 

Labor price (PL)  
CHF per employee per year 80749 27133 66417 80872 91586 

Number of seats 1067 1721 184 439 1215 

Number of employees 22 35 3 9 23 

- All monetary values are in 1997 Swiss Francs (CHF), adjusted for inflation using Switzerland’s 

consumer price index. 

 

Input prices are defined as factor expenditures per factor unit. Labor price (PL) 

is defined as the ratio of annual labor costs to the total number of employees.23 

Following Friedlaender and Chang (1983), the capital price (PC) is calculated as 

residual cost divided by the total number of seats (both standing and sitting), where 

residual cost is total cost minus labor cost.24 Unfortunately, we do not have the 

required data to calculate the capital stock using the capital inventory method. The use 

of a simple indicator is justified by the fact that the bus companies do not possess a 

significant stock of capital apart from the rolling stock, which could be considered as 

a relatively uniform stock. All the costs and prices are adjusted for inflation using the 

Switzerland’s consumer price index and are measured in 1997 Swiss Francs. The 

network length is also included in the explanatory variables as an output 

characteristic. It is expected that due to organization and coordination problems, all 

                                                 
23 Given the range of variation of salaries in the data we can safely assume that a large majority of the 
employees in our sample are full-time.  
24 See also Filippini and Prioni (2003) for a similar approach. 
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other factors being constant, longer networks are expected to be more costly. Other 

output characteristics such as the number of stops per kilometer of network were 

initially considered. However, given that these variables and some of their 

interactions proved to be highly correlated with other explanatory variables, we 

decided to exclude them from the equation to avoid the possibility of multi-

collinearity.25  

 

5. Estimation Results 

 

The estimation results for the four models are given in table 2. These results 

show that the output and input price coefficients are positive and highly significant 

across all models. The estimated coefficient of output from the pooled model (I) is 

particularly different from those of other models. Noting that model I completely 

ignores the panel structure of the data, its estimates are likely to be biased through 

omitted firm-specific factors.  

Since total costs and all the continuous explanatory variables are in logarithms 

and normalized by their medians, the estimated first order coefficients can be 

interpreted as cost elasticities evaluated at the sample median. For instance, the output 

coefficients suggest that on average a one percent increase in seat-kilometers will 

increase the costs by about 0.25 to 0.73 percent depending on the adopted 

specification. The cost elasticity of the network length is as expected positive (αN) 

and significant. This implies that the increase in network length will increase total 

                                                 
25 We only dropped the variables that had extremely high correlation with other variables (the 
correlation coefficient of about 0.99). The omission of these variables would not significantly bias the 
results, because their effects are captured by other variables. However, including such variables creates 
a near-singularity problem, which might cause high estimation errors.  
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costs. This result is consistent with previous empirical studies such as Filippini and 

Prioni (1994, 2003) and Windle (1988).26  

The median cost elasticity with respect to the factor price is positive and of 

similar magnitude in all models. The estimated coefficient for capital price (αPC) 

represents the share of costs attributed to capital at the median production unit, which 

varies from 51 to 54 percent depending on the model. This result is more or less 

consistent with the actual data that show a capital share of about half for the sample 

median. Additionally, the estimated cost function is concave27 in input prices 

suggesting that the companies have a cost-minimizing behavior in response to 

changes in prices.  

The coefficient of the linear time trend is significant and positive in all models 

except in model I, which shows an insignificant effect. These results suggest an 

annual increase of about 1% in total costs. This result can be explained by the fact that 

the production technology has not much changed in bus transport. The increase in 

costs may be related to higher quality of service and increased security requirements.  

Although the Hausman specification test’s results suggest that the firm 

specific effects in a GLS model are correlated with the regressors, the results in table 

2 indicate that most of the coefficients do not vary considerably across models II, III 

and IV. In particular the estimated coefficients of model IV are within a reasonable 

range of the unbiased estimates of the fixed effects model. Several likelihood ratio 

tests28 were performed to test whether the cost function coefficients are similar across 

models. As expected model I, that ignores the panel structure of the data, is 

                                                 
26 It should be noted that Filippini and Prioni (2003) studied the Swiss bus systems though using a 
different sample in a shorter time period and without cost frontier models.  
27 In this context the concavity condition reduces to αPCPC≤0. 
28 In the case of true random effects model, as the likelihood function is simulated, a Wald test was 
used instead. Note that the two tests are asymptotically equivalent.  
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significantly different from all other models. These tests also suggest statistically 

significant differences across the other three models. However, these differences are 

mainly limited to the output coefficient (αY). In fact, a test on the similarity of all 

other coefficients was not rejected at p=.05, suggesting that apart from the output 

coefficient the estimated cost function is similar across these three models.  

 
Table 2: Regression results 

Coefficient Model I 
Pooled 

Model II 
RE (ML) 

Model III 
FE 

Model IV 
True RE 

αY 0.734* 
(0.013) 

0.326* 
(0.040) 

0.247* 
(0.024) 

0.351* 
(0.009) 

αN 0.122* 
(0.019) 

0.244* 
(0.023) 

0.240* 
(0.033) 

0.264* 
(0.018) 

αPC 0.512* 
(0.025) 

0.535* 
(0.008) 

0.540* 
(0.015) 

0.525* 
(0.006) 

αYY 0.079* 
(0.018) 

-0.027* 
(0.009) 

-0.010 
(0.018) 

0.014* 
(0.004) 

αNN 0.083* 
(0.042) 

0.063 
(0.054) 

0.027 
(0.064) 

0.119* 
(0.016) 

αPCPC -0.162* 
(0.041) 

-0.262* 
(0.015) 

-0.264* 
(0.025) 

-0.278* 
(0.013) 

αYN 0.003 
(0.026) 

-0.026 
(0.023) 

-0.026 
(0.032) 

-0.094* 
(0.010) 

αYPC -0.067* 
(0.029) 

-0.095* 
(0.009) 

-0.098* 
(0.016) 

-0.115* 
(0.006) 

αNPC 0.129* 
(0.042) 

0.093* 
(0.011) 

0.102* 
(0.024) 

0.116* 
(0.008) 

αT -0.005 
(0.003) 

0.011* 
(0.001) 

0.015* 
(0.002) 

0.010* 
(0.001) 

α0 -0.275* 
(0.030) 

-1.085* 
(0.040) 

-1.458*  
(0.108) 

0.054* 
(0.011) 

σα - - - 0.526* 
(0.011) 

2 2
u vσ σ σ= +  0.433* 

(0.0004) 
1.306* 
(0.387) - 0.163* 

(0.002) 

u vλ σ σ=  1.038* 
(0.090) 

9.738* 
(3.464) - 0.980* 

(0.034) 

- Standard errors are given in brackets. * means significantly different from zero at least at 5%. 
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Table 3 provides a descriptive summary of the inefficiency estimates from 

different models. These estimates represent the relative excess cost of a given firm 

compared to a minimum level that would have been achieved if the firm had operated 

as efficiently as the ‘best practice’ observed in the sample, since ln ln itit itu TC TC= − , 

were itTC  are the predicted costs of the regression model, including the random error 

term vit.29 In comparing different models it should again be stressed that models II and 

III assume constant inefficiency over time. Moreover, in these models all the 

unobserved firm-specific differences are interpreted as inefficiency. As expected, 

model II and III predict rather implausible inefficiency scores averaging about 1.15 

and 1.46. At their face values these numbers suggest an excess cost of more than 100 

percent for a typical company. These high values indicate that the heterogeneity 

across companies is an important driver of cost differences and that neglecting it may 

create a substantial upward bias in inefficiency scores.  

In model I the inefficiency estimates are in a more realistic range, with an 

average of 0.25 and a maximum value of 0.73. These values, though still arguably 

quite high, are substantially lower than those predicted by models II and III. However, 

the inefficiency scores obtained from model I are likely to be overestimated, because 

in fact they might capture some of the network-specific unobserved heterogeneity, 

which is not accounted for separately. Model IV, which has two separate stochastic 

terms for inefficiency and firm-specific heterogeneity, has inefficiency estimates of 

about 0.09 on average, which stands for a cost saving potential of about 9 percent.30 

Although the maximum value of 0.47 appears as excessive, this model’s results 

                                                 
29 Note that cost efficiency can be alternatively defined as the optimal costs divided by actual costs that 
is, CE = exp(-u), where u is the relative excess cost given in table 3. 
30 This result is consistent with the average inefficiency levels reported in Dalen and Gomez-Lobo 
(2003) for the Norwegian bus industry. 



 22

suggest that in 95 percent of the cases the relative excessive cost is below 15 percent. 

The high value of estimated inefficiency in the remaining 5 percent can be explained 

by statistical errors. Therefore, compared to the other models the inefficiency 

estimates from model IV are plausible and remain within a reasonable range of 

variation. 

 

Table 3: Inefficiency measures 

 
Model I 
Pooled 

Model II 
RE (ML) 

Model III 
FE 

Model IV 
True RE 

Mean 0.249 1.147 1.457 0.090 

Median 0.228 1.070 1.408 0.082 

Maximum 0.732 2.825 3.383 0.473 

95th Percentile 0.472 2.316 2.854 0.153 

Minimum 0.042 0.031 0 0.019 

 

 

The pair-wise correlation coefficients between the inefficiency estimates from 

different models are listed in table 4. In order for the correlation coefficients to be 

comparable, they are calculated at the firm level using 94 observations (one 

observation for each firm). Namely, in models with time-variant efficiency, the 

inefficiency score is calculated as the firm’s average inefficiency score over the 

sample period. For models with time-variant inefficiency the correlation coefficients 

are also given over the total of 985 observations. As expected, in most cases the 

correlation coefficients are rather low, suggesting substantial differences across 

models. Some of these differences can be explained by large sampling errors incurred 

for the estimation of inefficiency for individual companies, especially in cases where 

the inefficiency can vary with time. This problem for cross-sectional data and short 

panels is documented by Horrace and Schmidt (1996), Street (2003) and Jensen 
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(2000). Obviously, to the extent that inefficiencies remain constant over time, a longer 

panel can help. Nevertheless, the assumption of constant inefficiency can be 

unrealistic in long panels. 

However, the weak correlation between efficiency estimates across different 

models suggests that these models differ not only with respect to individual 

companies’ inefficiency scores but also give significantly different efficiency 

rankings.31 In particular, model IV shows a negative correlation with models II and III 

and a weak positive correlation with model I.32  Such weak correlation implies that the 

individual companies might get completely different evaluations depending on the 

adopted model. To the extent that model IV is a legitimate model that separates 

unobserved heterogeneity from inefficiency, these results suggest that other models 

might give a misleading assessment of individual companies. For instance, our 

estimations show that the company regarded as fully efficient in the fixed effects 

model (model III), is a company that operates in a relatively short network with a 

single line. However, this company’s relatively low costs might be related to its 

simple network, rather than high efficiency. This explanation is consistent with the 

results of the true random effects model (model IV) that ranks the same company as 

highly inefficient.33  

As table 4 shows, the high correlation between inefficiency estimates from 

models II and III (coefficient of .987) is a striking exception to the rule. This result 

can be explained by the fact that the inefficiency estimates in both models mainly 

represent the network-specific heterogeneity. Therefore, the high correlation between 

                                                 
31 The rank correlations show a pattern similar to table 4. These results are omitted to avoid repetition. 
32 All three coefficients are significantly different from zero at 5% significance level. 
33 Model IV suggests that with an inefficiency score of about 10%, this company is less efficient than 
the average company in the sample. 
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these two models can only suggest that the estimation of unobserved network effects 

is not much sensitive to whether fixed or random effects specification is used.  

 

Table 4. Pair-wise Pearson correlation between inefficiency estimates 

 
Model I 
Pooled 

Model II 
RE (ML) 

Model III 
FE 

Model IV 
True RE 

Model l 1    

Model II 0.496 1   

Model III 0.426 0.987 1  

Model IV 0.083 
(0.371) -0.082 -0.098 1 

 

- The correlation coefficients have been estimated over the firms (94 observations). 

- Correlation coefficient based on 985 observations is given in brackets. 

 

To further test whether the inefficiency estimates differ across various models 

a series of t-tests have been performed. The results unequivocally reject the 

hypothesis that the inefficiency estimates across any pair of models are on average 

identical. Table 5 shows the estimates of scale and density economies as given in 

equations (3) and (4), obtained from different models. The results are listed for three 

representative companies at the first quartile, median and the third quartile outputs. 

We identified the median (1st/3rd quartile) company as the company that produces the 

sample median (1st/3rd quartile) of the number of seat-kilometers and considered that 

company’s corresponding network length in the estimation of density and scale 

economies.34 Since the factor prices are assumed to be exogenous, they are held 

constant at their median values for all three cases.  

                                                 
34 We considered alternative definitions for representative companies, e.g. median of both output and 
network. However, the results are mainly the same insofar as the following discussion is concerned.   
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Table 5. Economies of scale and density estimates  

 
Model I 
Pooled 

Model II 
RE 

Model III 
FE 

Model IV 
True RE 

ED at 1st Quartile  1.545 2.592 3.468 2.224 

ED at Median 1.370 2.780 3.571 2.115 

ED at 3rd Quartile 1.208 3.544 4.485 3.086 

ES at 1st Quartile 1.500 1.719 1.910 1.490 

ES at Median 1.343 1.915 2.059 1.713 

ES at 3rd Quartile 1.008 1.907 2.248 1.879 

 

The results listed in table 5 show a considerable amount of variation between 

different models. As can be seen in this table, both economies of density and scale are 

greater than one in all three representative cases, suggesting the presence of 

unexploited economies in most companies in the sample.35 In particular, the relatively 

high values of density economies indicate that a more intensive use of a given 

network would considerably lower the average cost per seat-kilometer. However, it 

should be noted that the intensity of demand in a given network is beyond the 

company’s control. An increase in output usually requires some extension in the 

network, which can be represented by scale economies.  

The estimated scale economies from all models also suggest the existence of 

considerable potential for cost saving through extending the networks. As expected, 

the economies obtained from an increase in output density in a given network (density 

economies) are relatively higher than those gained by extending a company’s network 

(scale economies). The presence of unexploited scale economies in all three 

                                                 
35 Only the estimated value of economies of scale for the third quartile for the pooled model is not 
significantly different from one. 
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representative cases suggests that most companies are smaller than the cost-

minimizing size at which such economies are fully utilized. The small size of rural 

bus companies in Switzerland is related to the development of this industry that has 

been historically associated with the growth of small and fragmented user 

communities.  

The high variation of scale and density economies across various models (see 

table 5) can be partially explained by the models’ differences with respect to the 

unobserved network effects. If these effects are correlated with explanatory variables 

(such as output and network length) the values obtained from the fixed effect model 

(model III) are unbiased and those of the other three models are biased. Particularly, 

the values estimated by the pooled model (model I) are likely to be biased downward. 

This model’s estimates are comparable to those reported by Filippini and Prioni 

(2003), who applied a cross-sectional cost-frontier model to a panel data of 34 bus 

companies in Switzerland. In one of their specifications, the median company’s size 

(about twice as our sample median) has been found to be very close to the cost-

minimizing size. These results suggest that ignoring the unobserved firm-specific 

effects can bias the estimated coefficients. In fact such biases are driven by possible 

correlation of unobserved effects with output and network length. For instance it is 

plausible that larger networks are more complex in terms of unobserved factors, thus 

more costly. Such correlations are likely to be positive, thus lead to an 

underestimation of scale economies.  

Theoretically, an unbiased estimation of scale and density economies can be 

obtained from the fixed effect model (III), because it allows with the regressors 

correlated firm specific effects. If such correlation is present and positive, then the 

coefficients of model II and IV are biased upwards. However, because of the large 
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number of parameters in this model (at least as many as the companies in the sample), 

the precision of the results depends on the number of periods in the sample and the 

companies’ output variation over the sample period. As indicated in table 2, the 

coefficients of most of the second order terms are statistically insignificant in this 

model. This can be explained by the relatively high standard errors in the fixed effects 

model. Therefore, estimated economies of scale and density for the fixed effects 

model might be imprecise. 

Interestingly, model I predicts a decreasing scale and density economies with 

output, which appears to be consistent with the common perception that sources of 

scale economies are exhaustible. However, models II to IV suggest that if the 

unobserved heterogeneity is taken into account, this result may be reversed. As table 5 

shows, according to these models, the unexploited scale and density economies are 

greater in relatively large companies in the sample. This result can be explained by 

some of the special features in relatively small network industries: Noting that the 

smallest companies in our sample are bus companies with a single line and a few 

employees, the potential gains of increasing the size are limited to savings in 

distributing the same fixed costs over a higher output. On the other hand, large 

companies have complex multiple-line networks. By increasing their size, such 

companies can benefit not only from savings in the fixed costs but also from a better 

possibility of reallocation of input factors over the network, thus reducing their 

variable costs.  
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6. Conclusions 

 

The application of alternative cost frontier models to a panel of rural bus 

companies in Switzerland indicates that the inefficiency estimates are sensitive to the 

adopted model. From a methodological point of view, the results largely depend upon 

how the unobserved firm-specific heterogeneity among firms is modeled. Our 

comparative analysis suggests that models that do not distinguish between unobserved 

network effects and inefficiency can overestimate the inefficiency scores. In 

particular, if the inefficiency estimates are derived from the firm-specific effects (cf. 

Schmidt and Sickles, 1984 and Pitt and Lee, 1981), they include an important part of 

the unobserved exogenous factors related to the network. Our sample shows that such 

factors can account for a considerable part of cost differences, thus bias the 

inefficiency estimates to implausibly high values.  

This paper also highlights possible differences in cost function coefficients 

across models. A (pooled) cross-sectional model does not account for network 

heterogeneity. Since such heterogeneity is likely to be correlated with some of the 

explanatory variable, this model can give biased coefficients. A fixed effect model 

can solve the heterogeneity bias in the coefficients. However, because of the large 

number of parameters (incidental parameters problem), this model might lead to 

relatively large estimation errors especially for the second-order terms of the cost 

function. These latter coefficients might be important for the estimation of scale and 

density economies.  

This study suggests that an econometric specification that includes separate 

stochastic terms for firm-specific effects and inefficiency can improve the estimations 
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regarding both inefficiencies and slopes. We considered a random-constant cost 

frontier model (“true” random effects model) proposed by Greene (2004, 2005). The 

results indicate that the main coefficients of the cost function are fairly close to the 

unbiased estimators obtained from the fixed effects model. Given that we do not have 

the true values of efficiency, we cannot conclude the validity of any model regarding 

inefficiency estimates. However, our analysis suggests that while conventional 

models could give implausible estimates, the true random effects model’s estimates 

are within a reasonable range. These results underscore the importance of modeling 

unobserved firm-specific heterogeneity in efficiency measurement of network 

industries. 

The results also indicate that the unexploited scale economies might be greater 

for relatively large companies, which can benefit from better possibilities of 

reallocation over larger networks. Such effects could be masked by unobserved 

network factors, which if neglected could lead to inaccurate results. It should be 

pointed out that the results of this paper are valid for the specific sample used here 

and cannot be directly extended to other cases.  

From a policy point of view, this study suggests that the “true” random effects 

model could be a valuable alternative for setting a benchmark in regulating network 

industries. However, it has to be emphasized that a mechanical use of any of these 

models in regulation could be misleading. Since each industry has its specific cost 

characteristics that are not equally well reproduced by these models, establishing a 

reliable benchmark requires a careful analysis of the cost structure of the industry 

under consideration. Consequently, these models should be used as one among 

different instruments in the assessment of subsidy requests.  
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