A NOTE ON RIESZ ELEMENTS IN C*-ALGEBRAS

DAVID LEGG
Department of Mathematics
Indiana University-Purdue University
Fort Wayne, Indiana

(Received December 5, 1977)

ABSTRACT. It is known that every Riesz operator R on a Hilbert space can be written $R=Q+C$, where C is compact and both Q and $C Q$ - $Q C$ are quasinilpotent. This result is extended to a general C^{*}-algebra setting.

1. INTRODUCTION.

In [3], Smyth develops a Riesz theory for elements in a Banach algebra with respect to an ideal of algebraic elements. In [1], Chui, Smith and Ward show that every Riesz operator on a Hilbert space is decomposible into $R=Q+C$, where C is compact and both Q and $C Q$ - $Q C$ are quasinilpotent. In this paper we use Smyth's work to show that the analogous result holds in an arbitrary C^{*}-algebra.
2. DEFINITIONS AND NOTATION.

Let A be a C^{*}-algebra, and let F be a two-sided ideal of algebralc elements
of A. An element $T \varepsilon A$ is a Riesz element if its coset $T+\bar{F}$ in A / \bar{F} has spectral radius 0 . A point $\lambda \varepsilon \sigma(T)$ is a finite pole of T if it is isolated in $\sigma(T)$ and the corresponding spectral projection lies in F. Let $E \sigma(T)=\{\lambda \varepsilon \sigma(T): \lambda$ is not a finite pole of T\}. Smyth has shown that T is a Riesz element if and only if $E \sigma(T) \subseteq\{0\},[3$, Thm. 5.3]. Smyth also showed that if T is a Riesz element, then $T=Q+U$, where Q is quasinilpotent and $U \varepsilon \bar{F}$. [3, Thm. 6.9]. This is a generalization of West's result [4, Thm. 7.5]. We now extend the result of Chui, Smith and Ward [1, Thm. 1] by showing that UQ - QU is quasinilpotent, where $T=Q+U$ is the Smyth decomposition.

3. OUTLINE OF SMYTH'S CONSTRUCTION.

Let T be a Riesz element, and label the elements of $\sigma(T) \backslash E \sigma(T)$ by $\lambda_{n}, n=1,2, \ldots$, in such a way that $\left|\lambda_{n}\right| \geq\left|\lambda_{n+1}\right|, \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Each λ_{n} is a finite pole, so each spectral projection P_{n} is in F. Let $S_{n}=P_{1}+\ldots+P_{n}$, then find a self-adjoint projection Q_{n} satisfying $S_{n} Q_{n}=Q_{n}$ and $Q_{n} S_{n}=S_{n}$. Let $V_{n}=Q_{n}-Q_{n-1}$, and define $U=\sum \lambda_{k} V_{k} . U$ is clearly in \bar{F} and $Q=T-U$ is shown to be quasinilpotent.
4. THEOREM 1 UQ - QU is quasinilpotent.

PROOF. For any $S \in A$, let \widetilde{S} denote the left regular representation of S. Then by Lemma 6.6 in Smyth [3], we have that $Q_{n} A$ is an invariant subspace of \tilde{Q}. Since $Q_{n}=Q_{n} Q_{n}$, we have $Q_{n} \varepsilon Q_{n} A$. Hence $\tilde{Q}\left(Q_{n}\right) \varepsilon Q_{n} A$, say $\tilde{Q}\left(Q_{n}\right)=Q_{n} S$ for some $S \in A$. That is, $Q Q_{n}=Q_{n} S$. Now let $v \varepsilon$ range Q_{n}, say $v=Q_{n} \times$. Then $Q v=Q Q_{n} x=Q_{n} S x$ belongs to range Q_{n}. Hence we see that range Q_{n} is an invariant subspace of Q. It follows that Q has an operator matrix representation of the form

$Q=$| A_{11} | A_{12} | A_{13} | \cdots | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | A_{22} | A_{23} | \cdots | |
| 0 | 0 | A_{33} | \cdots | $*$ |
| \vdots | \vdots | \vdots | \cdots | |
| \vdots | \cdot | \cdot | \cdot | |
| | 0 | | $*$ | |

where $A_{i j}=V_{i} Q V_{j}$. With respect to this blocking, we have

$O\left(\lambda_{1}-\lambda_{2}\right) A_{12}$	\cdots	$\cdots\left(\lambda_{1}-\lambda_{n}\right) A_{1 n}$	\cdots		
0	0				
	\cdot	\cdot	\cdots	$\left(\lambda_{n-1}-\lambda_{n}\right) A_{n-1, n} \cdots$	
	\cdot	\cdot	\cdots	0	$*$
	\cdot	\cdot		0	

Now let P be the orthogonal projection onto \bigcup_{n} range Q_{n}, and let $A_{n}=\left(P-Q_{n}\right)(U Q-Q U)\left(P-Q_{n}\right)$. It is easy to see that $\left|\left|A_{n}\right|\right| \leq\left|\lambda_{n}\right| \mid Q-$ diag. $Q|\mid \rightarrow 0$ as $n \rightarrow \infty$. Hence $U Q-Q U-A_{n}$ converges in the uniform norm to $U Q$ - $Q U$ as $n \rightarrow \infty$. But UQ - QU - A_{n} has the form

where N is nilpotent. It follows that $U Q-Q U-A_{n}$ has no non-zero eigenvalues. Thm. 3.1, p. 14 of [2] can now be easily modified to show that $U Q-Q U$ has no non-zero eigenvalues. Since $U Q-Q U$ belongs to \bar{F}, this means $\sigma(U Q-Q U) \subseteq\{0\}$, i.e., UQ - QU is quasinilpotent.

REFERENCES

1. Chui, C. K., Smith, P. W., and Ward, J. D., A note on Riesz operators, Proc. Amer. Math. Soc., 60, (1976), 92-94.
2. Gohberg, 1. C., and Krein, M. G., Introduction to the theory of linear nonselfadjoint operators, "Nauka," Moscow, 1965; English transl., Transl. Math Monographs, vol. 18, Amer. Math. Soc., Providence, R. I. 1969.
3. Smyth, M. R. F., Riesz theory in Banach algebras, Math Z., 145, (1975), 145-155.
4. West, T. T., The decomposition of Riesz operators, Proc. London Math. Soc., III, Ser. 16, (1966), 737-752.

AMS (MOS) Subject Classification numbers $47 \mathrm{~B} 05,47 \mathrm{C} 10$
KEY WORDS AND PHRASES. C^{*} algebra, quasinilpotent operators, Riesz elements.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

