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Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising
biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate
the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential
dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis
(TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical
assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens.
Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed
significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic
subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed
high diagnostic performance of miR-34a (AUC= 0.854), MET (AUC= 0.765), and E2F3 (AUC= 0.761). The advanced
pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These
findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression.

1. Introduction

Renal cell carcinoma (RCC) accounts for approximately 3%
of human malignancies, and its incidence appears to be
increasing globally [1]. RCC is not a single disease; although
it is derived from cells of the renal tubular epithelium, it has
several histological subtypes which differ in their clinical out-
come and biological features. It is classified into clear cell
RCC accounting for (75%) of cases, papillary RCC (10–
15%), chromophobe RCC (5%), collecting duct RCC (<1%),

and unclassified subtype [2]. For the refinement of RCC ther-
apeutic strategies, a better realization of the RCC-underlying
molecular mechanisms will be mandatory [3].

Over the past few years, emerging numerous bioinfor-
matic tools have been developed to identify candidate
disease-causing genes [4], including microRNA (miRNA)
genes. This class of noncoding RNAs is small, single
stranded, and 19–25 nucleotide long that act as negative
regulators involved in posttranscriptional silencing of the
gene expression [5]. An aberrant miRNA expression could
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contribute to cancer development and progression [6, 7] and
could affect their target genes that are involved in many bio-
logical processes, such as cell differentiation, proliferation,
apoptosis, metabolism, and development [8]. Recently, the
potential therapeutic use of miRNAs has been evaluated
due to their dynamic and reversible properties. This may
include oncomir (oncogenic miRNA) inhibition, or tumor
suppressor-miRNA replacement therapies [6, 9].

MicroRNA-34a gene (MIR-34A) that is located on chro-
mosome 1p36 belongs to one of evolutionary-conserved
miRNA families (MIR-34 family) that consists of three mem-
bers: MIR-34A, MIR-34B, and MIR-34C [10]. MIR-34A has
its own transcript and is expressed at higher levels than MIR-
34B/C in most tissues, and this expression could be dysregu-
lated in multiple diseases, especially in cancers [11]. It is
involved in p53 pathways and is implicated in cell death/sur-
vival signaling, the cell cycle, and differentiation, thereby
playing a regulatory role in carcinogenesis [12]. Previous
studies have reported that several key molecules were identi-
fied as targets of miR-34a, including Bcl-2 (B-cell lymphoma
2) [13], TGFB (transforming growth factor-beta) [14], the
transcription inducer of cell cycle progression E2F3a [15],
MET oncogene [16, 17], and vascular endothelial growth
factor (VEGF) [18]. In addition, our bioinformatic analysis
that has been discussed in details in Materials and Methods
section of the current work has revealed other miRNA-34a-
predicted target genes that could be involved in cancer-
related biology, including genes for apoptosis [TP53INP
(tumor protein p53 inducible nuclear protein), Tp53, and
DFFA (DNA fragmentation factor subunit alpha)], cell prolif-
eration (Ki67), and cell differentiation SOX2 (sex-determining
region Y-box 2). As miR-34a has many different targets in
regulating different kinds of human cancer, Yu et al. [18]
suggested the role of miR-34a is possibly tumor-specific and
highly dependent on its targets in different cancer cells.

Whether miR-34a or any one of its selected aforemen-
tioned 11 putative target genes or proteins could be related
to RCC pathogenesis and/or progression in our population
still lacks of solid evidence. Therefore, we aimed to investi-
gate the expression level of miR-34a and a panel of selected
putative targets in an attempt to better understand the
molecular mechanisms that underlie the tumorigenesis and
progression of RCC. This could represent potential future
therapeutic targets in renal cell carcinoma.

2. Materials and Methods

2.1. Study Population. Eighty-five archived formalin-fixed
paraffin-embedded (FFPE) renal samples that have been
taken from patients who underwent radical nephrectomy
for a primary RCC and dating back for 3 years were collected
from Pathology laboratory of Mansoura Oncology Center,
Mansoura and Pathology laboratory of the Suez Canal Uni-
versity Hospital, Ismailia, Egypt. None of the patients
received any neoadjuvant chemotherapy or radiotherapy.
Complete clinicopathological data, including (patients’ age,
sex, and tumor’s site and size), were obtained from patient
medical records. Sections of cancer-free tissues adjacent to
the tumor were cut, examined, and collected to serve as

controls during the genetic profiling. Samples that were not
homogeneous, histologically well-characterized primary
renal cancer, nor had cancer-free adjacent tissues determined
by an experienced pathologist have been excluded. The study
was conducted in accordance with the guidelines in the
Declaration of Helsinki and approved by the Medical
Research Ethics Committee of Faculty of Medicine, Suez
Canal University. Written informed consent was obtained
from all participants before providing the archived tissue
samples as part of their routine register in our University
Teaching Hospitals.

2.2. Bioinformatic Selection of miRNA-34a and the Study
Molecular Targets. Predicted and experimentally validated
miRNAs that significantly target renal cell carcinoma KEGG
pathway (hsa05211) were identified by DIANA-mirPath v3.0
web server via Reverse Search module and TarBase v7.0 pipe-
line [19]. The most top and highly significant miRNA
involved in this pathway was hsa-miR-34a-5p (p = 1 275767
e − 88) with 28 target genes, including MET oncogene and
three angiogenesis-related genes (VEGFA, TGFB1, TGFB3).
Assessment of miR-34a regulatory roles in cancer biology
was performed by DIANA-mirPath v3.0 online software
(Figure 1).

The list of all experimentally validated target genes for
miR-34a-5p was retrieved from miRTarBase v20 (http://
mirtarbase.mbc.nctu.edu.tw/) [20] and DIANA-TarBase
v7.0 (http://diana.imis.athena-innovation.gr/) [21]. A panel
of other targets involved in cancer-related biology was cho-
sen. It included genes for apoptosis (Tp53, TP53INP2, and
DFFA), antiapoptosis (BCL2), cell proliferation (E2F3 and
Ki67), and cell differentiation (SOX2) (Figure 2). Structural
analysis of MIR-34A gene and transcripts were retrieved
from http://Ensembl.org. Gene expression of MIR-34A across
normal human tissues was obtained from http://BioGPS.org
and Expression Atlas. Complementary base pairing of
miR-34a-5p seed region with the selected mRNA targets
was confirmed by both http://microRNA.org resource [22]
and miRTarBase v20. Prior publications demonstrating
functional experimental validation of miRNA-target interac-
tions by different methods (as luciferase reporter assay, west-
ern blot, microarray, qRT-PCR, and immunocytochemistry)
are listed in Supplementary Table S1 available online at
https://doi.org/10.1155/2017/3269379. A functional interac-
tion network of selected target proteins was implemented
using STRING v10 program (http://string-db.org), inferring
protein-protein associations from coexpression data [23].

2.3. MicroRNA-34a and Gene Expression Analysis. Total
RNA, including the small RNAs, was isolated from FFPE tis-
sue sections (5 to 8μm thick) using miRNeasy FFPE Kit
(Qiagen, 217504) following the protocol supplied by the
manufacturer. Briefly, after the removal of paraffin by xylene
and washing the sample with ethanol several times, proteins
were degraded by incubation with proteinase K solution at
45°C for a few hours and later incubation with DNAses for
DNA digestion. Total RNA quantity and quality were mea-
sured by Nanodrop ND-1000 (NanoDrop Technologies,
Wilmington, DE). Samples with a 260/280 nm absorbance
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ratio less than 1.8 were discarded, and new sections of the
corresponding tissue block were cut and purified, if possible.
Subsequent reverse transcription (RT) and amplification of
cDNA by real-time PCR using StepOne™ Real-Time PCR
System (Applied Biosystems) were done as described in
details previously [8, 24]. As the quantitation cycle (Cq)
values of RNU6B small RNA and GAPDH were uniformly
and stably expressed with no significant difference between
cancer and noncancer tissues, they have been run for normal-
ization of miRNA-34a and target gene mRNA expression
analysis, respectively. All the PCR reactions were carried
out in accordance with the Minimum Information for Publi-
cation of Quantitative Real-Time PCR Experiments guide-
lines [25]. Ten percent randomly selected study samples
were reevaluated in separate runs for the study gene expres-
sions to test the reproducibility of the qPCR which showed
very close Cq value results and low standard deviations.

2.4. Histopathological Examination. Sections of 4μm thick-
ness have been cut from FFPE blocks of RCC tissues for

routine H&E examination, and other sections were prepared
on charged slides for immunohistochemistry. Examination
of three tumor slides from each specimen was done with an
Olympus CX31 light microscope. Photos were obtained by
a PC-driven digital camera (Olympus E-620). Cases were
reviewed to determine the histological type according to the
International Society of Urological Pathology (ISUP) Van-
couver Modification of WHO (2004) Histologic Classifica-
tion of Kidney Tumors [26]. Nuclear grade is assessed
according to Fuhrman et al. [27]. Tumors were staged
according to the International Union Against Cancer [28].

2.5. Immunohistochemistry Examination and Analysis.
Immunohistochemical analysis for p53 protein, Bcl2 protein,
Ki67, TGFb, and VEGF with a labelled streptavidin-biotin-
peroxidase complex technique was performed on tumor
sections. The primary antibodies were mouse monoclonal
antibodies against p53 (clone BP-53-12, monoclonal mouse
anti-human p53, c-Kit, Genemed, California, USA, diluted
1 : 50), Bcl2 (code 226M98, monoclonal mouse anti-human
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Figure 1: Predicted target genes of miRNA-34a in renal cell carcinoma pathway [KEGG hsa05211]. Disease pathways for each pathological
subtype are shown. Hsa-miR-34a-5p can target several genes in RCC pathway. They have complementary regions at their 3′UTR, 5′UTR, or
coding sequence (CDS): HIF-1, VEGF, and TGF-β signaling pathways in clear cell and papillary type II RCC (eosinophilic), as well as MAPK
signaling pathway in papillary RCC type I (basophilic). However, candidate genes and the role of miR-34a in oncocytoma and chromophobic
RCC pathways are still undetermined. Colored box: miRNA-34a target gene; green color: target on 3′UTR sequence; blue color: target on
5′UTR sequence; pink color: target on CDS; white box: not predicted target.
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Bcl2, cell marque, prediluted), Ki67 (code number 1633,
monoclonal mouse anti-human MIB1, DAKO corporation
Carpinteria CA, USA, prediluted), TFGFB (ab9248, mono-
clonal mouse anti-TFGFB, abcam, USA, diluted 1 : 50), and
VEGF (clone, GTX102643, monoclonal mouse anti-VEGFA,
GeneTex, USA, diluted 1 : 50). A high sensitive kit has been
used as a detection kit (DakoCytomation EnVision and dual
link system peroxidase code K4061) using DAB as a chromo-
gene. Antigen retrieval required pretreatment with 1mM
EDTA (at pH8.0) for 20 minutes (p53, Bcl2, and VEGF)
and 60 minutes (Ki67, and TGFb) in microwave oven. Proper
positive and negative controls were performed. As a positive
control, breast carcinoma has been run for p53, tonsils for
Ki67, lymph node for Bcl2, and cells of proximal and dis-
tal convoluted tubules of nearby tumor-free kidney for
TGFb. In addition, placental tissue was stained for VEGF
as a positive control for VEGF antibody. As a negative
control, sections were stained without the addition of a
primary antibody.

For the immunohistochemistry assessment, examination
of all prepared slides from each specimen was done with an
Olympus CX31 light microscope. Photos were obtained from
a PC-driven digital camera (Olympus E-620) and analyzed
by Olympus Soft Imaging. Slides were scanned by ×40 mag-
nification. Ten cellular areas were selected (i.e., the so-called
hot spots) and evaluated at ×400 magnification. Positive p53
protein staining was defined as nuclear staining, and cyto-
plasmic staining was considered nonspecific and ignored.
The percentage of tumor cell nuclei with positive staining
was evaluated in relation to the total number of neoplastic

nuclei in at least 10 fields observed at magnification ×400.
Scoring of immunostained was categorized as mentioned in
previous literature as follows: 3+=high level (91–100% of
positive cells), 2+=medium level (11–90% of positive cells),
1+= low level (up to 10% of positive cells), −=negative cells
(0% of positive cells) [29].

Ki-67 antigen labeling was localized to the nucleus with a
fine, strong, and homogenous brown granularity. Staining
was considered positive if any nuclear staining was seen.
Ki67 labeling index was done by calculating the ratio of pos-
itive nuclei in relation to the total number of neoplastic
nuclei in 10 HPFs. Ki67 was considered to be abnormal when
>10% tissue positivity was observed. The labeling index
(number of positive tumor cells/total number of tumor cells
expressed as a percentage) was calculated in every specimen.
The Ki67 proliferation index was considered low if 0–30% of
tumor cells was positive, moderate PI if 31–69% was positive,
and high if ≥70% was positive. Unequivocal nuclear reactiv-
ity was considered positive [30, 31].

The BCL2 positivity was determined by cytoplasmic
staining (brown) of neoplastic cells which are deep colored.
The percentage of positive cells at the whole section after
exclusion of the areas of reactive T cells was determined. It
was scored negative if 5% or less of neoplastic cells was
stained. The value of BCL2 was considered weak positive if
6% to less than 50% was brown stained, and strong positive
if ≥50% of tumor cells was brown stained [32].

TGFB immunohistochemistry specimens were classified
based on the intensity of staining as follows: weak or absent
staining (< 10% of cells), intermediate (10–25%), focally
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Figure 2: miR-34a target genes regulating the hallmarks of cancer. Eleven targets were investigated in the study. (a) List of targets analyzed by
either immunohistochemistry (blue box) or quantitative real-time PCR (yellow box). (b) Classification of the miR-34a target genes and proteins
according to their major role in cancer-related biology. They are enrolled in cellular differentiation, proliferation, apoptosis, and angiogenesis.
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strong (25–50%), and strong (> 50% of cells) [33]. VEGF sec-
tions were considered positive for VEGF if the membranes or
cytoplasm of more than 10% of tumor cells was stained [34].

2.6. Statistical Analysis. Data were managed using the R
package (version 3.3.2). Categorical variables were compared
using the chi-square (χ2) or Fisher’s exact tests where appro-
priate, while Mann–Whitney U (MW) and Kruskal-Wallis
(KW) tests were used to compare continuous variables. The
correlation between miR-34a level and mRNAs and protein
expression was calculated by Spearman’s rank correlation
analysis. A two-tailed p value of< 0.05 was considered statis-
tically significant. The receiver operating characteristic
(ROC) curves were performed to get the best cutoff values
of either miR-34a or mRNAs for discriminating RCC from
noncancer tissues. The fold change of miRNA and mRNA
expressions in each patient cancer tissue relative to the
corresponding cancer-free tissue was calculated via Livak
method based on the quantitative cycle (Cq) values
with the following equation: relative quantity = 2−ΔΔCq,
where ΔΔCq= (Cq miRNA–Cq NBU6)RCC− (Cq miRNA–Cq
NBU6)NAT in case of miR-34a analysis and where ΔΔCq=
(Cq mRNA–Cq GAPDH)RCC− (Cq mRNA–Cq GAPDH)NAT
in case of study gene target analysis [35].

3. Results

3.1. Baseline Characteristics of the Study Population. In the
current study, 85 patients (32 females and 53 males) were
enrolled in the study. Their age ranged from 20 to 79 years
old with mean± SD of 52.23± 11.12. Renal cancer samples
were compared to normal tissues. There was no significant
difference in age and gender between FFPE tumor samples
and normal renal tissues (p = 0 087 and p = 0 214, resp.).
The clinicopathological characteristics of renal cell carci-
noma patients are demonstrated in Table 1. According to
the 2004 WHO classification, several histological RCC
subtypes were recognized in the study population. The
most frequent histological subtypes included clear cell
renal cell carcinomas (ccRCC), papillary renal cell carcino-
mas (pRCC), and chromophobe renal cell carcinomas
(crRCC). Most cancer specimens were moderately or poorly
differentiated; nevertheless, low proportions of tumors had
high tumor size (T3), positive lymph node involvement,
capsular and pelvic infiltration, and vascular invasion.

3.2. Gene and Protein Expression Analysis. Using qRT-PCR
technology and immunohistochemistry, gene and protein
expression analyses were used to identify differential molecu-
lar changes between tumor and normal renal tissues. Gene
expression profiling revealed a significant overexpression of
miR-34a in almost all RCC patients (91.7%) with an overall
median and quartile values of 7.97 (2.37–29.54). In addition,
among the 6 genes that have been predicted to be targeted by
miR-34a via the in silico computational tools, two genes were
significantly upregulated (MET and E2F3) in 87.1% of FFPE
samples, while two others were downregulated (TP53INP2
and SOX2) in almost all RCC patients compared to noncan-
cer tissues (Figure 3). However, correlation analysis revealed

no significant relationship of miR-34a with the tested target
genes (Supplementary Table S2 and Figure S1).

Immunohistochemistry of renal tissue samples demon-
strated variable staining patterns (Figure 4). Ki-67 expres-
sion, a cell proliferation marker, was detected in all cases of
RCC but with variable level of expression. Low level of
expression (<10%) was detected in 28 cases (70%), while high
expression (≥10%) was noted in 12 cases (30%). Similarly, the
angiogenesis-mediated protein (VEGFA) and the antiapop-
totic marker (Bcl2) were expressed in all cancer tissues.
Eighty percent of patients had high expression of VEGFA,
while only 20% demonstrated weak staining. Antihuman

Table 1: Clinicopathological characteristics of renal cell carcinoma
patients (n = 85).

Variables N %

Age

20 y 5 5.9

40 y 47 55.3

60 y 33 38.8

Gender

Females 34 40.0

Males 51 60.0

Affected side

Right 47 44.7

Left 38 55.3

Histological type

Clear cell RCC 47 55.3

Papillary RCC 15 17.6

Chromophobic RCC 13 15.3

Unclassified 10 11.8

Pathological grade

Grade 1 11 12.9

Grade 2 51 60.0

Grade 3 23 27.1

Tumor size

T1 25 29.4

T2 42 49.4

T3 18 21.2

LN involvement

Negative 77 90.6

Positive 8 9.4

Capsular infiltration

Negative 60 70.6

Positive 25 29.4

Vascular infiltration

Negative 71 83.5

Positive 14 16.5

Renal pelvis infiltration

Negative 79 92.9

Positive 6 7.1

Data are presented as N (number) and % (percentage); RCC: renal cell
carcinoma; T: tumor size; LN: lymph node.
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Bcl2 antibody was widely distributed all over the renal cancer
tissues. Strong expression was noted in 75% of samples. For
TGFB1 protein, most of cancer tissue attained moderate to
strong expression in the cytoplasm, but the protein was less
intense in approximately one-fifth of patients and absent
in three samples only. In contrast, expression of the tumor
suppressor protein (Tp53) was not detected by immuno-
histochemistry in less than half of tumor specimens.
Unlike tumor cells, which had nuclear staining, lining cells
of the proximal tubules stained the cytoplasm only.

ROC curve analysis of all genes and proteins showed
significant high diagnostic performance of miR-34a
(AUC=0.854), MET (AUC=0.765), and E2F3 (AUC=
0.761) in differentiating between cancer specimens and
noncancer tissues (Table 2).

3.3. Association of Gene and Protein Signature with
Clinicopathological Features. The expression of miR-34a
was markedly higher in RCC samples with chromophobic
renal cell carcinoma and lower in clear cell type (p = 0 039)

(Figure 5(a)). In addition, its level was inversely correlated
with the tumor pathological grade (r = −0 301, p = 0 037).
Among the target genes, lower levels of three genes E2F3,
SOX2, and DFFA were significantly associated with capsular,
pelvic, and vascular invasion, respectively (Figures 5(b), 5(c),
and 5(d)). These findings were consistent with Spearman’s
correlation analysis (Supplementary Table S3).

Immunohistochemistry photos of the target proteins in
renal tissues in relation with pathological parameters are
illustrated in Figure 6. The advanced pathological grade
was significantly associated with strong expression of Ki67
(p = 0 001), TGFB1 (p = 0 034), VEGFA proteins (p = 0 001),
and absent Tp53 staining (p = 0 029) (Figures 7(a), 7(b), 7(c),
and 7(d)). Larger tumor size and capsular infiltration also
showed higher Ki67 expression (p = 0 027 and p = 0 014,
resp.) (Figures 7(e) and 7(f)). Additionally, there was dif-
ferential expression of TGFB1 and Tp53 proteins according
to the specimen histopathological diagnosis, with stron-
ger staining in chromophobic renal cell carcinoma type
(Figures 7(g) and 7(h)). Similarly, correlation analysis
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Figure 3: Gene expression profiling in cancer and normal renal tissues. Data are represented as medians. The box defines upper and lower
quartiles (25% and 75%, resp.), and the error bars indicate upper and lower adjacent limits. Expression levels of miR-34a and targets in cancer
and normal tissues were normalized to RNU6B and GAPDH, respectively. Fold change was calculated using the delta-delta CT method
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1.0). p values< 0.05 were considered statistical significant. Mann–Whitney U test was used for comparison. Median and quartile values of
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between proteins and clinicopathological characteristics
demonstrated moderate correlation of Ki67 with histopatho-
logical diagnosis (r = −0 419, p = 0 007), grade (r = 0 690,
p < 0 001), tumor size (r = 0 389, p ≤ 0 001), LN invasion
(r = 0 351, p = 0 026), and capsular infiltration (r = 0 431,
p = 0 006). TGFB1 protein showed moderate correlation
with histopathological diagnosis (r = 0 427, p = 0 006) and
tumor grade (r = 0 441, p = 0 004). VEGFA protein also
showed a significant positive correlation with pathological
grade (r = 0 563, p < 0 001). In contrast, there was a negative

correlation between Tp53 and grade (r = −0 403, p = 0 010)
(Supplementary Table S3).

3.4. In Silico Data Analysis. Hsa-miR-34a is encoded by
MIR-34A gene (ENSG00000284357), mapped at 1p36.22.
The gene has a single exon which contains a p53-binding site
within a CpG island about 30 kb upstream of the mature
MIR-34A sequence and encodes for a transcript of 110 bp
in length. The precursor miRNA stem-loop is processed in
the cytoplasm of the cell, with the predominant miR-34a
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Figure 4: Frequency of Immunohistochemistry markers of miR-34a putative target proteins in RCC specimens. Five protein markers were
examined, Bcl2, Tp53, TGFB1, VEGFA, and Ki67.

Table 2: ROC curve of miRNA-34a and target genes in renal cancer and normal tissues.

Variable(s) Area Standard error p value
95% confidence interval

Lower bound Upper bound

miR-34a 0.854 0.051 <0.001 0.754 0.954

MET 0.765 0.059 0.005 0.648 0.881

E2F3 0.761 0.063 0.006 0.638 0.884

SOX2 0.571 0.094 0.479 0.388 0.755

TGFB3 0.553 0.081 0.586 0.395 0.711

DFFA 0.118 0.053 0.068 0.014 0.222

TP53INP2 0.587 0.062 0.173 0.466 0.709

Combined first three markers 0.793 0.034 <0.001 0.727 0.859

All combined markers 0.589 0.030 0.014 0.530 0.648

Bold values are statistically significant at p < 0 05.
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mature sequence excised from the 5′ arm of the hairpin. Sec-
ondary structure of hsa-miR-34a stem-loop predicted by
computational programs is illustrated in Figure 8(a). Func-
tional characterization of miR-34a based on differential
expression experiments revealed its control on numerous
cancer-related molecular pathways and cellular processes. It
can control up to 115 genes involved in pathways in cancer
(hsa05200), in addition to dozens of genes in particular
tumor types (Figure 8(b)). As shown in the heat map, the
most top five significant pathways targeted by miR-34a were
microRNAs in cancer, fatty acid biosynthesis, proteoglycans
in cancer, adherence junction, and cell cycle (Figure 8(b)
and Supplementary Table S4).

Interaction of mature miR-34a-5p with complementary
sites of selected experimentally validated targets is shown
in Supplementary Figure S2. Protein-protein interaction
between the targets is shown in Supplementary Figure S3.
Enrichment analysis of the target panel elucidated their func-
tional impact on numerous biological processes and cancer
KEGG pathways (Supplementary Table S5 and S6).

4. Discussion

A key goal in clinical oncology is the development of thera-
peutic strategies that impede specific deregulated biological

pathways in cancer. Understanding these pathways which
involve candidate disease-causing genes will provide new
therapeutic modalities for renal cancer.

In the current study, upregulation of miR-34a was
observed in more than 90% of RCC patients, with median
fold change of 7.97 in RCC FFPE tissues compared to non-
cancer tissues. ROC analysis revealed a high diagnostic per-
formance of miR-34a in discriminating between cancer and
noncancer tissues. However, higher levels showed a better
prognosis (i.e., it was moderately correlated with well differ-
entiated tumors). In addition, expression profiles in chromo-
phobic RCC samples were markedly greater than that of clear
cell and papillary subtypes.

According to a survey across diverse normal human tis-
sues, miR-34a was downregulated in most human normal tis-
sues, including renal cortex and medulla (data source:
U133plus2 Affymetrix microarray from http://BioGPS.org).
Consistent with our findings in renal cancer tissues,
miRNA-34a has been reported to support cell proliferation
in oxidative stress-induced renal carcinogenesis rat model
[36] and it has been found to be overexpressed in various
types of human cancer [37–40]. As one of the upregulated
miRNAs in RCC, it has been speculated to function by down-
regulating tumor suppressor genes including secreted
frizzled-related protein 1 (SFRP1) [41]. In addition, miR-
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Figure 5: Association of miR-34a and target genes with the clinicopathological features in RCC patients. (a) Higher expression of miR-34a
was significantly associated with chromophobic RCC subtype. (b) Lower levels of E2F3 were associated with capsular infiltration. (c)
Lower levels of SOX2 had higher frequency of pelvic infiltration in RCC tumor tissues. (d) DFFA downregulation was associated with
vascular infiltration.
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34a was identified to be a direct target of the tumor suppres-
sor Tp53 protein in human and mouse cells and mediates
some of its proapoptotic biological functions [42, 43]. Simi-
larly, He et al. found that deregulation of miR-34a on
response to DNA damage and oncogenic stress depends on
p53 in vitro and in vivo [13].

In vitro, miR-34a was coexpressed with Tp53 at high
levels in colorectal cancer cell lines and in irradiated mice
but was not expressed in Tp53-knockout mice [44]. These
findings could explain the good prognosis that is implied by
higher levels of miR-34a in the current samples with low

pathological grade and in chromophobic RCC subtype. It
has been found that miR-34a expression could suppress
the cell proliferation [38, 44], promote apoptosis through
the induction of caspase-dependent apoptotic pathways
[42, 45] in several cancer cell lines [46–48], and cause dra-
matic reprogramming of gene targets that regulate apoptosis,
DNA repair, cell cycle progression, epithelial-mesenchymal
transition, and angiogenesis [42, 49]. In addition, miR-34a
restoration in cancer cells was shown to induce cell cycle
arrest at G1 and G2/M phases and sensitized the cells to
chemo- and radiotherapy [16, 50]. However, low expression
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Figure 6: Immunohistochemistry images according to type and grade of RCC. Clear cell RCC (Ng1) weakly expresses bcl2 (x100), (photo 1),
clear cell RCC (Ng2) with focal strong cytoplasmic bcl2 (x100) (photo 2), chromophobe RCC (Ng2) with diffuse moderate expression of bcl2
(x400) (photo 3), and papillary RCC (Ng2) with diffuse strong expression of bcl2 (x200) (photo 4). Clear cell RCC (Ng1/2) with diffuse strong
nuclear expression of P53 (x100) (photo 5), clear cell RCC clear cell RCC (Ng3) showed scarce cell nuclei express P53 (X200) (photo 6),
chromophobe RCC (Ng2) diffusely and strongly express P53 (X100) (photo 7), and papillary RCC do not express p53 (x100) (photo 8).
Clear cell RCC (Ng2) with weak expression of TGFB1 (x100) (photo 9), RCC (Ng3) with strong expression of TGFB1 (x200) (photo 10),
chromophobe RCC with focal strong expression of TGFB1 (X200) (photo 11), and papillary with focal strong expression of TGFB1
(X200) (photo 12). Clear cell RCC (Ng1) with diffuse weak expression of VEGFR (X100) (photo 13), clear RCC (Ng3) with diffuse
moderate expression of VEGFR (X200) (photo 14), chromophobe RCC with weak expression of VEGF (X100) (photo 15), papillary RCC
with intermediate expression of VEGFR (X200) (photo 16). RCC (Ng2) with low expression of Ki67 (X100) (photo 17), RCC (Ng3) with
high expression of Ki67 (X200) (photo 18), and papillary RCC does not express Ki 67 (x100) (photo 19), and chromophobe RCC do not
express Ki67 (x200) (photo 20).
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of miR-34a was noted in other types of cancer [46, 51–54], in
glioblastoma and glioma with mutant Tp53 [55], in chronic
lymphocytic lymphoma with Tp53 deletion [56], and in met-
astatic hepatocellular carcinoma [57], reflecting that miRNA-
34a can work in a cell type-specific manner with a differential
p53 pathway inactivation [36].

Taken our results with the findings of prior studies, we
could support the hypothesis that miR-34a overexpression
in the current study is a secondary consequence in cancer
cells elucidated to compete the DNA damage and uncon-
trolled growth proliferation. Accumulation of further muta-
tions in higher pathological grade tumors, especially those

related to Tp53 gene activity or 1p36 locus itself, could
account for the fall of miR-34a expression profile in those
patients. Further functional studies are recommended to
unravel the molecular mechanisms underlying the chromo-
phobic RCC which has the best prognosis among all other
subtypes in our cases [58–60].

In silico analysis of miR-34a targets in databases
revealed numerous candidate gene targets. Functional
annotation and enrichment analysis showed high linkage
of miR-34a with cancer-related pathways. It can influence
several pathways involved in all cancer hallmarks acquired
during the multistep development of human tumors, by
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Figure 7: Association of immunohistochemistry markers with the clinicopathological features in RCC patients. The figures illustrated higher
intensity of Ki67, TGFB1, VEGFA, and Tp53 in RCC tumors with advanced pathological grade (a–d), extensive staining of Ki67 antibodies in
T3 samples and capsular infiltration (e-f), and differential expression of Tp53 and TGFB1 in various histopathological subtypes (g-h).
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sustaining proliferative cell signaling, evading growth sup-
pressors, resisting apoptosis, inducing angiogenesis, and acti-
vating invasion and metastasis. In the current study, we
identified predicted putative miR-34a binding sites within
the 3′ UTR, 5′UTR, or coding regions of eleven mRNAs.
These selected genes were functionally validated in prior
experiments listed in Supplementary Table S1. Nevertheless,
our data did not reveal inverse correlations of these targets
with miR-34a. This could be explained by the fact that their
gene expressions result from several integrated cell responses
and cross talk between signaling pathways. Additionally,
according to miRNA databases, there are multiple-to-
multiple relationships between microRNAs and target genes;
one miRNA may regulate transcription of many genes,
and a single gene could be targeted by multiple miRNAs

simultaneously, thus forming complex genetic circuits in
human cancer [61, 62]. Liu et al., in addition, speculated
the identified putative targets of miRNA could be regulated
by translation inhibition rather than degradation. Subse-
quently, this would leave mRNA levels unaffected but reduce
the protein levels. This speculation warrants the need of pro-
tein level measurement in tumor/normal samples along with
the miRNA and mRNA levels for the same gene to identify
such type of regulation [41].

Of the deregulated target genes expressed significantly
in the current renal cancer specimens, MET and E2F3
were significantly upregulated in RCC compared to non-
cancer tissues with high diagnostic performance. The Met
protooncogene, mapped at 7q31.2, has two alternative
spliced isoforms (http://genecards.org). We identified two
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Figure 8: Structural analysis of MIR-34A gene locus and transcripts. (a) Homo sapiens hairpin secondary structure of pre-miR-34a stem-
loop. Mature miR-34a-5p highlighted in red [data source: miRTarBase v20]. (b) Enrichment pathway analysis for miR-34a. Heat map
showing targeted pathways, diseases, and cancers for both hsa-miR-34a-5p and hsa-miR-34a-3p with p values< 0.05 and microT-CDS
threshold 0.4. A total of 33 pathways have target genes (in CDS or 3′ UTR regions) for miR-34a. The enrichment results of validated
target genes showed that most pathways were related to cancer and cancer-related pathways. KEGG pathway annotations related
specifically to current RCC work had been labeled (red). Degree of color is based on the significant p values of the predicted algorithm by
DIANA tools; the red has the top significance estimated by false discovery rate (data source: DIANA-miRPath v2.0 web server).
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putative miR-34a binding sites within the 3′ UTR and 5′
UTR of the human c-Met mRNA. Similarly, Li et al.
[16] and Hu et al. [17] reported that c-Met is directly
targeted by miR-34a. The MET gene encodes a receptor
tyrosine kinase that is activated by hepatocyte growth fac-
tor (HGF) [16]. Ligand binding at the cell surface induces
autophosphorylation of carboxyl terminus of MET on its
intracellular domain that generates docking sites for second
messengers, which activate several signaling pathways
involving RAS-ERK, mitogen-activated protein kinase
(MAPK), phosphatidylinositol 3-kinase- (PI3K-) AKT, sig-
nal transducer and activator of transcription (STAT), and
phospholipase C [63]. Such downstream signaling pathways
evoke a variety of pleiotropic physiological processes, includ-
ing survival, morphogenesis, differentiation, epithelial-
mesenchymal transition, and regulation of cell migration
[64]. However, improper activation of c-MET may confer
proliferative and invasive/metastatic abilities of cancer cells
[65]. Similar to our findings in RCC patients, MET over-
expression was associated with multiple human cancers
[63, 66–71]. Its aberrant expression by different mecha-
nisms, including point mutations [72], gene amplification
[73], and oncogenic deletion [74, 75, 76], may lead to a
more aggressive cancer phenotype and may be a prognos-
tic indicator of poor overall survival and resistance to
therapy [74–76].

The second upregulated gene in most of the current RCC
samples was the transcription factor E2F3. ROC analysis
showed its high discrimination accuracy in RCC diagnosis.
In addition, its expression profile was associated with capsu-
lar infiltration. E2F3 gene lies on chromosome 6p22.3 and
has 3 transcript variants encoding 3 proteins of 465, 334,
and 128 amino acids long. In contrast to full-length E2F3
protein, which is expressed only at the G1/S boundary,
truncated isoforms are expressed throughout the cell cycle
[77, 78]. E2F3 recognizes a specific sequence motif in DNA
and interacts directly with the tumor suppressor retinoblas-
toma protein (pRB) to regulate the expression of genes
involved in the G1/S boundary of the cell cycle and DNA rep-
lication; hence, E2F3 has a critical role in the control of cellu-
lar proliferation [79]. Acute loss of E2F3 activity affected the
expression of genes encoding DNA replication and mitotic
activities [80]. In vitro and in vivo studies showed a failure
of division and proliferation in E2F3-null retinal progenitor
cells [81] and early embryonic death in E2F3-null mice
[82, 83]. Dysregulation of E2F3 and altered copy number
and activity of this gene have been observed in a number
of malignant tumors [84–92] and correlated with several
pathological features of cancer like the pathological grade
and tumor cell proliferation rate [91], as well as tumor
aggressiveness and poor overall survival [91, 92]. However,
transgenic mice expressing inducible E2F3 resulted in
hyperplasia, but not tumor development [93], supporting
its role in tumor progression rather than initiation.

As an excellent marker to determine the growth fraction
of a given cell population, the expression of proliferation-
related Ki67 antigen was investigated in the current study.
The fraction of Ki67 positive cells is often correlated with
the clinical course of the tumors. Currently, this marker of

proliferation was detected in all cases of RCC, but with vari-
able levels of expression. High expression of Ki67 was associ-
ated with advanced pathological grade, large tumor size,
lymphatic invasion, and capsular infiltration. In addition,
strong staining was correlated with chromophobic RCC sub-
type. Antigen Ki67 is a nuclear protein, encoded by MKI67
gene that is mapped at 10q26.2. It has five splice variants;
only two of them are translated to synthesize a long form
(3256 aa/ 395 kDa) and a short form (2896 aa/345 kDa) pro-
teins that differ only by the presence or absence of exon 7
[94]. Antigen Ki67 is associated with cellular proliferation
[95]. During interphase, the Ki67 protein can be exclusively
detected within the cell nucleus, whereas in mitosis, most of
the protein is relocated to the surface of the chromosomes
[96]. Ki67 protein is present during all active phases of the
cell cycle (G1, S, G2, and mitosis) but is absent from resting
cells (G0) [95, 97]. GO annotation identified the gene to
play vital roles in chromosomal segregation regulation
and organization, nuclear division, cell cycle, organ regen-
eration, and stress response (http://genecards.org). It is
also associated with ribosomal RNA transcription and syn-
thesis [98, 99]. Several lines of evidence have implicated the
importance of Ki67 index in multiple cancers [100–106]
and reported its prognostic value for survival and tumor
recurrence [107–114].

Regarding the TGFB superfamily proteins, they were
known to be implicated in cell growth and differentiation.
These growth factors bind various TGF-beta receptors, lead-
ing to recruitment and activation of SMAD family transcrip-
tion factors which regulate the expression of the downstream
genes, including interferon gamma and tumor necrosis factor
alpha [115]. We examined the expression profile of TGFB1
protein and TGFB3 gene. In RCC samples, TGFB3 mRNA
did not show differential expression compared to noncancer
tissues. However, TGFB1 protein showed moderate to strong
cytoplasmic staining in most samples. Higher protein level
expression was associated with poor tumor differentiation
and chromophobic subtype. This protein is involved in
embryogenesis and cell differentiation and may play an
important role in apoptosis, immune defense, inflammation,
and tissue repair [115, 116]. Overexpression or alterations of
its active protein induced by gene somatic mutations were
frequently observed in several tumor cells [117–121] and
were correlated with tumor aggressiveness, invasion, angio-
genesis, metastasis, immune surveillance inhibition [122],
and epithelial-mesenchymal transformation [117].

SOX2 is a critical transcription factor for self-renewal and
maintenance of undifferentiated embryonic stem cells [123].
SOX2 gene is mapped at 3q26.33, consisting of a single
exon that encodes a protein of 318 amino acid residues
(http://genecards.org). It was reported to be involved in
embryonic development regulation and in the cell fate deter-
mination, and its over expression can induce reprogramming
of somatic cells to acquire pluripotency characteristics
[124, 125]. SOX2 was identified as an oncogenic factor and
was reported to be overexpressed in certain types of cancer
[123, 126–129]. Knockdown of SOX2 could inhibit cell via-
bility and tumorigenesis in vitro and in vivo [123, 126] by
potentiating cell cycle arrest associated with decreased levels
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of CCND1 and phosphorylated Rb and/or by upregulating of
p27Kip1 level [130]. In our samples, no differential expres-
sion was observed between cancer and noncancer tissues;
nevertheless, lower expression of SOX2 mRNA was corre-
lated with cancer infiltration of renal pelvic tissues.

In the current study, one antiapoptotic and three proa-
poptotic miR-34a targets regulating essential cancer-related
pathways were examined. The apoptotic regulator BCL2
gene, mapped at 18q21.33, has 2 alternative transcripts and
encodes an integral outer mitochondrial membrane protein
[131]. It has two protein isoforms, Bcl2a (5.5-Kb mRNA/
239 aa) and Bcl2b (3.5-Kb/205 aa), which are identical except
for the C-terminal portion. The former contains a hydropho-
bic tail for membrane anchorage which seems to be necessary
for antiapoptotic ability [132]. Bcl2 is found on the outer
membrane of mitochondria. It functions as an apoptosis
inhibitor by forming complexes with caspase-9 and APAF1,
thus prevent them to initiate the protease cascade and apo-
ptosis through caspase-3 cytochrome C-dependent activa-
tion [133]. In 2002, Marsden et al. [134] discovered that
Bcl2 can also function independently via other pathways.
Bcl2 constitutively blocks p53-induced apoptosis and enables
the survival of colorectal cancer cells [135]. Overexpression
of Bcl2 blocks TNF-related apoptosis-inducing ligand-
(TRAIL-) induced apoptosis in human lung cancer cells
[136]. In addition to the antiapoptotic function, Bcl2 is
known to regulate mitochondrial fusion and fission dynam-
ics [137]. Bcl2 acts as a potent regulator of cell survival in
neurons both during development and throughout adult life
[138]. In cancer, overexpression of the antiapoptotic Bcl2
can result in a distinct cellular growth advantage due to lack
of cell death, a hallmark of cancer. In the present study, Bcl2
protein was expressed in all cancer tissues. Similarly, in pre-
vious studies, Bcl2 upregulation has been reported in many
types of cancer [139–142]. Moreover, it has also been associ-
ated with poor clinical outcome and shorter overall survival
in cancer patients [143]. It can confer resistance to chemo-
therapy and radiotherapy in some types of cancer [144,
145]. In addition, targeting Bcl2 by miR-125a, miR-206,
and miR-34a was reported to inhibit the cell proliferation
and induce apoptosis in multiple cancer cells [146–148].

The tumor suppressor protein Tp53, the guardian of the
genome, is essential for the carcinogenesis prevention. In
the current study, it was not detected by immunohistochem-
istry in less than one half of the specimens. Absent staining of
Tp53 protein in tumor cell nuclei was significantly associated
with advanced pathological grade, while positive staining was
observed in the chromophobic RCC, known to have the best
prognosis. The transcription factor Tp53 is encoded by TP53
gene mapped at 17p13.1. This gene has a complex transcrip-
tional expression pattern encoding 28 different mRNA vari-
ants through the use of an internal promoter in intron 4
and alternative splicing machinery. All variants could be
detected in all tissues, and only 5 is exclusively transcribed
in tissue-specific manner [149]; each isoform has distinct
biological activity and subcellular localizations [150]. Nor-
mally, Tp53 is expressed at low levels and kept inactive
through the action of MDM2 (mouse double minute 2
homolog) which promotes its degradation [150]. However,

during cellular stresses or DNA damage, activated Tp53
induces cell cycle arrest for DNA repair or force apoptosis.
It binds to DNA and regulates transcription of target genes
that induce cell cycle arrest, apoptosis, and DNA repair
[150–152]. It can trigger cell death independently of its tran-
scriptional activity through subcellular translocation and
activation of proapoptotic Bcl-2 family members [153].
Attenuation of Tp53 activity would render the cells more sus-
ceptible to further genetic damage and therefore to neoplastic
transformation and tumor progression.

Another apoptotic gene, Tp53INP2, is located at
20q11.22 with 4 transcripts and encodes for 3 putative pro-
tein variants of 220, 88, and 77 amino acid long. It is thought
to be a scaffold protein that is normally expressed upon
induction by the Tp53 protein [154]. The protein encoded
by this gene has two distinct functions depending on its cel-
lular localization [155]. It is essential for proper autophagy,
a self-degradative process that occurs at critical times in
development to recycle unnecessary intracellular compo-
nents and damaged organelles [156]. Tp53INP2 protein
shuttles between the nucleus and the cytoplasm, depending
on cellular stress conditions, and relocates in the autophago-
somes during autophagy activation. It recruits Atg8-like pro-
teins to the autophagosome membrane by interacting with
the transmembrane protein VMP1 (vacuole membrane pro-
tein 1) [154]. Failure of autophagy is thought to be one of the
main reasons for the accumulation of cell damage and aging
[157]. In addition to its role in autophagy, it serves as a
transcriptional coactivator for several nuclear receptors,
such as the glucocorticoid receptor, vitamin D receptor
(VDR), and peroxisome proliferator-activated receptor
gamma [155], thus possess a tumor suppressor-like function-
ality similar to Tp53 [158, 159]. Dysregulation of Tp53INP2
expression was found differently in several types of cancer
tissues [160–164]. Therefore, our results along with previous
data highlight its putative role in cancer development
and progression.

Low levels of the apoptotic gene, DFFA, were observed in
almost all RCC samples. Lower expression was associated
with vascular infiltration. DFFA gene is located in the same
region of miR-34a at 1p36.22 which is commonly deleted in
human tumors. DFFA plays an essential role in apoptosis.
When cleaved by caspase-3, it induces the release of its part-
ner DFFB, which in turn triggers DNA fragmentation by its
nuclease activity [165]. Hence, absence of this protein could
result in aberrant apoptosis, invasive growth, and metastasis
[166]. Similar to our findings, downregulated DFFA expres-
sion was observed during the exponential phase of growth
in several human colonic cancer cell lines [167]. DFFA
(−/−) mice exerted severe genomic instability and tumor pro-
gression in colon epithelial cells [168]. Moreover, low DFFA
expression was associated with poor prognosis in esophageal
cancer [169] and neuroblastoma tumors [170].

As angiogenesis is of central importance in the growth
and metastasis of tumors [171], we investigated the
expression of the angiogenesis-mediated protein, VEGFA
in RCC compared to noncancer tissues. VEGFA protein
expression was detected in all RCC tissues, with 80% of
samples showing strong staining. Elevated levels were
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associated with advanced tumor grade. VEGFA protein is
encoded by the VEGFA gene, mapped at 6p21.1, a highly
polymorphic region that showed association with cancer
susceptibility, aggressiveness, and therapeutic response in
various tumor types [172, 173]. Alternative exon splicing
can generate up to 29 transcript variants with different iso-
forms (http://Ensembl.org). There was also evidence for
alternative translation initiation codons resulting in addi-
tional isoforms. VEGFA promotes proliferation and migra-
tion of vascular endothelial cells both in vitro and in vivo
and is essential for both physiological and pathological
angiogenesis [172]. This prosurvival effect is mediated via
PI3-kinase/Akt signal transduction pathway [174]. In addi-
tion, it induces permeabilization of blood vessels, thus known
as a vascular permeability factor [175]. It induces endothelial
fenestration in vascular beds [176] and enhances vasodilata-
tion in vitro in a dose-dependent manner [177]. In addition,
VEGFA promotes apoptosis and induces expression of the
antiapoptotic protein Bcl-2 [178]. In vivo, VEGFA inhibition
results in abnormal embryonic blood vessel formation and
extensive apoptotic changes in the vasculature of neonatal
mice [179, 180]. Within tumors, cancer cells and cancer-
associated stroma are the major source of VEGFA [173]. It
influences the newly formed blood vessels, but not the estab-
lished ones. In agreement with our findings, VEGFA was
reported to be overexpressed in several different tumor types
[171, 181–183]. Anti-VEGF antibodies were implicated as
potent inhibitory effectors [184, 185]. Furthermore, VEGFA
expression is correlated with tumor stage and progression.
It was found to be associated with high pathological grade,
tumor size, lymph node metastasis, poor prognosis, resis-
tance to chemotherapy, and poor overall survival and out-
comes in several types of cancer [171, 172, 186–189].

5. Conclusions

The current study does confirm the association of miR-34a
overexpression with RCC in our population, suggesting its
potential role in pathogenesis and progression of this type
of cancer. Furthermore, chromophobic RCC subtype has
been postulated to attain different transcriptomics and prote-
omics characteristics compared to other subtypes. It has been
found to have higher MIR-34A, Tp53, Ki67, and TGFB
expressions. Hence, the molecular mechanism and genes
involved in this particular type need to be validated in large
scale multicenter study for better disease outcome and
response to treatment predictions. In addition, the exact
molecular interplay between the potential miR-34a target
genes is still unclear and will warrant further detailed studies.
One of the limitations that need to be considered is that the
protein levels of the selected target genes in tumor/normal
samples were not measured along with the mRNA levels.
Hence, we could not suggest if the selected potential targets
could be affected by translation inhibition rather than degra-
dation in light of absence of miRNA34a-selected targets
anticorrelation. Another limitation is the lack of the func-
tional analysis either on tumor cell lines or on RCC rat
models to validate the current findings and explore the
detailed biological mechanisms and the potential therapeutic

roles of miR-34a in RCC. This will be considered the logic
next step in our ongoing research.
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