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We introduce an iterative process for finding common fixed point of finite family of quasi-Bregman nonexpansive mappings which
is a unique solution of some equilibrium problem.

1. Introduction

Let 𝐸 be a real reflexive Banach space and 𝐶 a nonempty
subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a map, a point 𝑥 ∈ 𝐶 is
called a fixed point of 𝑇 if 𝑇𝑥 = 𝑥, and the set of all fixed
points of 𝑇 is denoted by 𝐹(𝑇). The mapping 𝑇 is called 𝐿-
Lipschitzian or simply Lipschitz if there exists 𝐿 > 0, such
that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶, and if 𝐿 = 1, then the
map 𝑇 is called nonexpansive.

Let 𝑔 : 𝐶 × 𝐶 → R be a bifunction. The equilibrium
problem with respect to 𝑔 is to find

𝑧 ∈ 𝐶 such that 𝑔 (𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of solutions of equilibrium problem is denoted by
EP(𝑔). Thus

EP (𝑔) fl {𝑧 ∈ 𝐶 : 𝑔 (𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶} . (2)

Numerous problems in physics, optimization, and economics
reduce to finding a solution of the equilibriumproblem. Some
methods have been proposed to solve equilibrium problem
in Hilbert spaces; see, for example, Blum and Oettli [1],
Combettes and Hirstoaga [2]. Recently, Tada and Takahashi
[3, 4] and S. Takahashi and W. Takahashi [5] obtain weak
and strong convergence theorems for finding a common
element of the set of solutions of an equilibrium problem

and set of fixed points of nonexpansive mapping in Hilbert
space. In particular, Takahashi and Zembayashi [4] establish
a strong convergence theorem for finding a common element
of the two sets by using the hybrid method introduced in
Nakajo and Takahashi [6]. They also proved such a strong
convergence theorem in a uniformly convex and uniformly
smooth Banach space.

In 1967, Bregman [7] discovered an elegant and effective
technique for using so-called Bregman distance function𝐷𝑓;
see (3) in the process of designing and analyzing feasibility
and optimization algorithms. This opened a growing area
of research in which Bregman’s technique has been applied
in various ways in order to design and analyze iterative
algorithms for solving feasibility and optimization problems.

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux differ-
entiable function. The function 𝐷𝑓 : dom𝑓 × int dom𝑓 →

[0, +∞) defined as

𝐷𝑓 (𝑦, 𝑥) fl 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥) , 𝑦 − 𝑥⟩ (3)

is called the Bregman distance with respect to 𝑓 (see [8]). It
is obvious from the definition of𝐷𝑓 that

𝐷𝑓 (𝑧, 𝑥) = 𝐷𝑓 (𝑧, 𝑦) + 𝐷𝑓 (𝑦, 𝑥)

+ ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥) , 𝑧 − 𝑦⟩ .

(4)
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We observed from (4) that, for any 𝑦1, 𝑦2, . . . , 𝑦𝑁 ∈ 𝐸, the
following holds:

𝐷𝑓 (𝑦1, 𝑦𝑁)

=

𝑁

∑

𝑘=2

𝐷𝑓 (𝑦𝑘−1, 𝑦𝑘)

+

𝑁

∑

𝑘=3

⟨∇𝑓 (𝑦𝑘−1) − ∇𝑓 (𝑦𝑘) , 𝑦𝑘−1 − 𝑦1⟩ .

(5)

Recall that the Bregman projection [7] of 𝑥 ∈ int dom𝑓

onto the nonempty closed and convex set 𝐶 ⊂ dom𝑓 is the
necessarily unique vector 𝑃𝑓𝐶 (𝑥) ∈ 𝐶 satisfying

𝐷𝑓 (𝑃
𝑓

𝐶 (𝑥) , 𝑥) = inf {𝐷𝑓 (𝑦, 𝑥) : 𝑦 ∈ 𝐶} . (6)

A mapping 𝑇 is said to be Bregman firmly nonexpansive [9],
if, for all 𝑥, 𝑦 ∈ 𝐶,

⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

≤ ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑇𝑥 − 𝑇𝑦⟩ ,

(7)

or, equivalently,

𝐷𝑓 (𝑇𝑥, 𝑇𝑦) + 𝐷𝑓 (𝑇𝑦, 𝑇𝑥) + 𝐷𝑓 (𝑇𝑥, 𝑥) + 𝐷𝑓 (𝑇𝑦, 𝑦)

≤ 𝐷𝑓 (𝑇𝑥, 𝑦) + 𝐷𝑓 (𝑇𝑦, 𝑥) .

(8)

A point 𝑝 ∈ 𝐶 is said to be asymptotic fixed point of a map
𝑇, if, for any sequence {𝑥𝑛} in 𝐶 which converges weakly to
𝑝, lim𝑛→∞‖𝑥𝑛 − 𝑇𝑥𝑛‖ = 0. We denote by �̂�(𝑇) the set of
asymptotic fixed points of 𝑇. Let 𝑓 : 𝐸 → R; a mapping
𝑇 : 𝐶 → 𝐶 is said to be Bregman relatively nonexpansive [10]
if 𝐹(𝑇) ̸= 0, �̂�(𝑇) = 𝐹(𝑇), and𝐷𝑓(𝑝, 𝑇(𝑥)) ≤ 𝐷𝑓(𝑝, 𝑥) for all
𝑥 ∈ 𝐶 and 𝑝 ∈ 𝐹(𝑇). 𝑇 is said to be quasi-Bregman relatively
nonexpansive if 𝐹(𝑇) ̸= 0, and𝐷𝑓(𝑝, 𝑇(𝑥)) ≤ 𝐷𝑓(𝑝, 𝑥) for all
𝑥 ∈ 𝐶 and 𝑝 ∈ 𝐹(𝑇).

Recently, by using the Bregman projection, in 2011 Reich
and Sabach [9] proposed algorithms for finding common
fixed points of finitely many Bregman firmly nonexpansive
operators in a reflexive Banach space:

𝑥0 ∈ 𝐸

𝑄
𝑖
0 = 𝐸, 𝑖 = 1, 2, . . . , 𝑁

𝑢𝑛 ∈ 𝐶 such that

𝑦
𝑖
𝑛 = 𝑇𝑖 (𝑥𝑛 + 𝑒

𝑖
𝑛) ,

𝑄
𝑖
𝑛+1

= {𝑧 ∈ 𝑄
𝑖
𝑛 : ⟨∇𝑓 (𝑥𝑛 + 𝑒

𝑖
𝑛) − ∇𝑓 (𝑦

𝑖
𝑛) , 𝑧 − 𝑦

𝑖
𝑛⟩ ≤ 0} ,

𝐶𝑛 =

𝑁

⋂

𝑖=1

𝐶
𝑖
𝑛,

𝑥𝑛+1 = 𝑃
𝑓

𝐶
𝑛+1

𝑥0, 𝑛 ≥ 0.

(9)

Under some suitable conditions, they proved that the
sequence generated by (9) converges strongly to ⋂

𝑁
𝑖=1 𝐹(𝑇𝑖)

and applied the result for the solution of convex feasibility and
equilibrium problems.

In 2011, Chen et al. [11] introduced the concept of weak
Bregman relatively nonexpansive mappings in a reflexive
Banach space and gave an example to illustrate the existence
of a weak Bregman relatively nonexpansive mapping and the
difference between a weak Bregman relatively nonexpansive
mapping and a Bregman relatively nonexpansive mapping.
They also proved strong convergence of the sequences gen-
erated by the constructed algorithms with errors for finding
a fixed point of weak Bregman relatively nonexpansive
mappings and Bregman relatively nonexpansive mappings
under some suitable conditions.

Recently in 2014, Alghamdi et al. [12] proved a strong con-
vergence theorem for the common fixed point of finite family
of quasi-Bregman nonexpansive mappings. Pang et al. [13]
proved weak convergence theorems for Bregman relatively
nonexpansivemappings, while Zegeye and Shahzad in [14, 15]
proved a strong convergence theorem for the common fixed
point of finite family of right Bregman strongly nonexpansive
mappings and Bregman weak relatively nonexpansive map-
pings in reflexive Banach space, respectively.

In 2015 Kumam et al. [16] introduced the following
algorithm:

𝑥1 = 𝑥 ∈ 𝐶

𝑧𝑛 = Res𝑓𝑔 (𝑥𝑛)

𝑦𝑛 = ∇𝑓
∗
(𝛽𝑛∇𝑓

∗
(𝑥𝑛) + (1 − 𝛽𝑛) ∇𝑓

∗
(𝑇𝑛 (𝑧𝑛)))

𝑥𝑛+1 = ∇𝑓
∗
(𝛼𝑛∇𝑓

∗
(𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑓

∗
(𝑇𝑛 (𝑦𝑛))) ,

(10)

where 𝑇𝑛, 𝑛 ∈ N, is a Bregman strongly nonexpansive
mapping. They proved that the sequence {𝑥𝑛} which is
generated by algorithm (10) converges strongly to the point
𝑃
𝑓

Ω𝑥, whereΩ fl 𝐹(𝑇) ∩ EP(𝑔).
Motivated and inspired by the above works, in this paper,

we prove a new strong convergence theorem for finite family
of quasi-Bregman nonexpansive mapping and system of
equilibrium problem in a real Banach space.

2. Preliminaries

Let 𝐸 be a real reflexive Banach space with the norm ‖ ⋅ ‖ and
𝐸
∗ the dual space of𝐸.Throughout this paper, we will assume

𝑓 : 𝐸 → (−∞, +∞] is a proper, lower semicontinuous, and
convex function. We denote by dom𝑓 fl {𝑥 ∈ 𝐸 : 𝑓(𝑥) <

+∞} the domain of 𝑓.
Let 𝑥 ∈ int dom𝑓; the subdifferential of 𝑓 at 𝑥 is the

convex set defined by

𝜕𝑓 (𝑥)

= {𝑥
∗
∈ 𝐸
∗
: 𝑓 (𝑥) + ⟨𝑥

∗
, 𝑦 − 𝑥⟩ ≤ 𝑓 (𝑦) , ∀𝑦 ∈ 𝐸} ,

(11)
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where the Fenchel conjugate of 𝑓 is the function 𝑓
∗
: 𝐸
∗
→

(−∞, +∞] defined by

𝑓
∗
(𝑥
∗
) = sup {⟨𝑥

∗
, 𝑥⟩ − 𝑓 (𝑥) : 𝑥 ∈ 𝐸} . (12)

We know that the Young-Fenchel inequality holds:

⟨𝑥
∗
, 𝑥⟩ ≤ 𝑓 (𝑥) + 𝑓

∗
(𝑥
∗
) , ∀𝑥 ∈ 𝐸, 𝑥

∗
∈ 𝐸
∗
. (13)

A function 𝑓 on 𝐸 is coercive [17] if the sublevel set of 𝑓 is
bounded; equivalently,

lim
‖𝑥‖→+∞

𝑓 (𝑥) = +∞. (14)

A function 𝑓 on 𝐸 is said be strongly coercive [18] if

lim
‖𝑥‖→+∞

𝑓 (𝑥)

‖𝑥‖
= +∞. (15)

For any 𝑥 ∈ int dom𝑓 and 𝑦 ∈ 𝐸, the right-hand derivative
of 𝑓 at 𝑥 in the direction 𝑦 is defined by

𝑓
∘
(𝑥, 𝑦) fl lim

𝑡→0+

𝑓 (𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

𝑡
. (16)

The function 𝑓 is said to be Gâteaux differentiable at 𝑥 if
lim𝑡→0+((𝑓(𝑥 + 𝑡𝑦) − 𝑓(𝑥))/𝑡) exists for any 𝑦. In this case,
𝑓
∘
(𝑥, 𝑦) coincides with ∇𝑓(𝑥), the value of the gradient ∇𝑓

of 𝑓 at 𝑥. The function 𝑓 is said to be Gâteaux differentiable
if it is Gâteaux differentiable for any 𝑥 ∈ int dom𝑓. The
function 𝑓 is said to be Fréchet differentiable at 𝑥 if this limit
is attained uniformly in ‖𝑦‖ = 1. Finally, 𝑓 is said to be
uniformly Fréchet differentiable on a subset𝐶 of𝐸 if the limit
is attained uniformly for 𝑥 ∈ 𝐶 and ‖𝑦‖ = 1. It is known that
if 𝑓 is Gâteaux differentiable (resp., Fréchet differentiable) on
int dom𝑓, then 𝑓 is continuous and its Gâteaux derivative
∇𝑓 is norm-to-weak∗ continuous (resp., continuous) on int
dom𝑓 (see also [19, 20]). We will need the following results.

Lemma 1 (see [21]). If 𝑓 : 𝐸 → R is uniformly Fréchet
differentiable and bounded on bounded subsets of 𝐸, then ∇𝑓 is
uniformly continuous on bounded subsets of 𝐸 from the strong
topology of 𝐸 to the strong topology of 𝐸∗.

Definition 2 (see [22]). The function 𝑓 is said to be

(i) essentially smooth, if 𝜕𝑓 is both locally bounded and
single-valued on its domain,

(ii) essentially strictly convex, if (𝜕𝑓)−1 is locally bounded
on its domain and𝑓 is strictly convex on every convex
subset of dom 𝜕𝑓,

(iii) Legendre, if it is both essentially smooth and essen-
tially strictly convex.

Remark 3. Let 𝐸 be a reflexive Banach space. Then we have
the following:

(i) 𝑓 is essentially smooth if and only if 𝑓∗ is essentially
strictly convex (see [22], Theorem 5.4).

(ii) (𝜕𝑓)−1 = 𝜕𝑓
∗ (see [20]).

(iii) 𝑓 is Legendre if and only if 𝑓∗ is Legendre (see [22],
Corollary 5.5).

(iv) If 𝑓 is Legendre, then ∇𝑓 is a bijection satisfying
∇𝑓 = (∇𝑓

∗
)
−1, ran∇𝑓 = dom∇𝑓

∗
= int dom𝑓

∗, and
ran∇𝑓

∗
= dom𝑓 = int dom𝑓 (see [22], Theorem

5.10).

The following result was proved in [23] (see also [24]).

Lemma 4. Let 𝐸 be a Banach space, let 𝑟 > 0 be a constant, let
𝜌𝑟 be the gauge of uniform convexity of 𝑔, and let 𝑔 : 𝐸 → R

be a convex function which is uniformly convex on bounded
subsets of 𝐸. Then,

(i) for any 𝑥, 𝑦 ∈ 𝐵𝑟 and 𝛼 ∈ (0, 1),

𝑔 (𝛼𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼𝑔 (𝑥) + (1 − 𝛼) 𝑔 (𝑦)

− 𝛼 (1 − 𝛼) 𝜌𝑟 (
𝑥 − 𝑦

) ,

(17)

(ii) for any 𝑥, 𝑦 ∈ 𝐵𝑟,

𝜌𝑟 (
𝑥 − 𝑦

) ≤ 𝐷𝑔 (𝑥, 𝑦) , (18)

(iii) if, in addition, 𝑔 is bounded on bounded subsets and
uniformly convex on bounded subsets of𝐸 then, for any
𝑥 ∈ 𝐸, 𝑦∗, 𝑧∗ ∈ 𝐵𝑟, and 𝛼 ∈ (0, 1),

𝑉𝑔 (𝑥, 𝛼𝑦
∗
+ (1 − 𝛼) 𝑧

∗
)

≤ 𝛼𝑉𝑔 (𝑥, 𝑦
∗
) + (1 − 𝛼)𝑉𝑔 (𝑥, 𝑧

∗
)

− 𝛼 (1 − 𝛼) 𝜌
∗
𝑟 (

𝑦
∗
− 𝑥
∗) .

(19)

Lemma 5 (see [25]). Let 𝐸 be a Banach space, let 𝑟 > 0 be
a constant, and let 𝑓 : 𝐸 → R be a continuous and convex
function which is uniformly convex on bounded subsets of 𝐸.
Then

𝑓(

∞

∑

𝑘=0

𝛼𝑘𝑥𝑘) ≤

∞

∑

𝑘=0

𝛼𝑘𝑓 (𝑥𝑘) − 𝛼𝑖𝛼𝑗𝜌𝑟 (

𝑥𝑖 − 𝑥𝑗


) , (20)

for all 𝑖, 𝑗 ∈ N ∪ {0}, 𝑥𝑘 ∈ 𝐵𝑟, 𝛼𝑘 ∈ (0, 1), and 𝑘 ∈ N ∪ {0}

with ∑
∞
𝑘=0 𝛼𝑘 = 1, where 𝜌𝑟 is the gauge of uniform convexity

of 𝑓.

We know the following two results; see [18].

Theorem 6. Let 𝐸 be a reflexive Banach space and let 𝑓 : 𝐸 →

R be a convex function which is bounded on bounded subsets
of 𝐸. Then the following assertions are equivalent:

(1) 𝑓 is strongly coercive and uniformly convex on bounded
subsets of 𝐸.

(2) dom𝑓
∗
= 𝐸
∗, 𝑓∗ is bounded on bounded subsets and

uniformly smooth on bounded subsets of 𝐸∗.
(3) dom𝑓

∗
= 𝐸
∗, 𝑓∗ is Fréchet differentiable and ∇𝑓

is uniformly norm-to-norm continuous on bounded
subsets of 𝐸∗.
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Theorem 7. Let 𝐸 be a reflexive Banach space and let 𝑓 : 𝐸 →

R be a continuous convex function which is strongly coercive.
Then the following assertions are equivalent:

(1) 𝑓 is bounded on bounded subsets and uniformly
smooth on bounded subsets of 𝐸.

(2) 𝑓∗ is Fréchet differentiable and 𝑓
∗ is uniformly norm-

to-norm continuous on bounded subsets of 𝐸∗.
(3) dom𝑓

∗
= 𝐸
∗, 𝑓∗ is strongly coercive and uniformly

convex on bounded subsets of 𝐸∗.

The following result was first proved in [26] (see also
[27]).

Lemma 8. Let 𝐸 be a reflexive Banach space, let 𝑓 : 𝐸 → R be
a strongly coercive Bregman function, and let𝑉 be the function
defined by

𝑉 (𝑥, 𝑥
∗
) = 𝑓 (𝑥) − ⟨𝑥, 𝑥

∗
⟩ + 𝑓
∗
(𝑥
∗
) ,

𝑥 ∈ 𝐸, 𝑥
∗
∈ 𝐸
∗
.

(21)

Then the following assertions hold:

(1) 𝐷𝑓(𝑥, ∇𝑓(𝑥
∗
)) = 𝑉(𝑥, 𝑥

∗
) for all 𝑥 ∈ 𝐸 and 𝑥

∗
∈ 𝐸
∗.

(2) 𝑉(𝑥, 𝑥
∗
) + ⟨∇𝑓

∗
(𝑥
∗
) − 𝑥, 𝑦

∗
⟩ ≤ 𝑉(𝑥, 𝑥

∗
+ 𝑦
∗
) for all

𝑥 ∈ 𝐸 and 𝑥
∗
, 𝑦
∗
∈ 𝐸
∗.

Examples of Legendre functions were given in [22, 28].
One important and interesting Legendre function is (1/𝑝)‖ ⋅
‖
𝑝
(1 < 𝑝 < ∞) when 𝐸 is a smooth and strictly convex

Banach space. In this case the gradient ∇𝑓 of 𝑓 is coincident
with the generalized duality mapping of 𝐸; that is, ∇𝑓 =

𝐽𝑝 (1 < 𝑝 < ∞). In particular, ∇𝑓 = 𝐼, the identity mapping
in Hilbert spaces. In the rest of this paper, we always assume
that 𝑓 : 𝐸 → (−∞, +∞] is Legendre.

Concerning the Bregman projection, the following are
well known.

Lemma 9 (see [26]). Let 𝐶 be a nonempty, closed, and convex
subset of a reflexive Banach space 𝐸. Let 𝑓 : 𝐸 → R be
a Gâteaux differentiable and totally convex function and let
𝑥 ∈ 𝐸.Then

(a) 𝑧 = 𝑃
𝑓

𝐶 (𝑥) if and only if ⟨∇𝑓(𝑥) − ∇𝑓(𝑧), 𝑦 − 𝑧⟩ ≤

0, ∀𝑦 ∈ 𝐶.

(b) 𝐷𝑓(𝑦, 𝑃
𝑓

𝐶 (𝑥)) + 𝐷𝑓(𝑃
𝑓

𝐶 (𝑥), 𝑥) ≤ 𝐷𝑓(𝑦, 𝑥), ∀𝑥 ∈

𝐸, 𝑦 ∈ 𝐶.

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux
differentiable function. The modulus of total convexity of 𝑓
at 𝑥 ∈ int dom𝑓 is the function V𝑓(𝑥, ⋅) : [0, +∞) → [0, +∞]

defined by

V𝑓 (𝑥, 𝑡)

fl inf {𝐷𝑓 (𝑦, 𝑥) : 𝑦 ∈ dom𝑓,
𝑦 − 𝑥

 = 𝑡} ,

(22)

The function 𝑓 is called totally convex at 𝑥 if V𝑓(𝑥, 𝑡) > 0

whenever 𝑡 > 0. The function 𝑓 is called totally convex if

it is totally convex at any point 𝑥 ∈ int dom𝑓 and is said
to be totally convex on bounded sets if V𝑓(𝐵, 𝑡) > 0 for any
nonempty bounded subset 𝐵 of 𝐸 and 𝑡 > 0, where the
modulus of total convexity of the function 𝑓 on the set 𝐵 is
the function V𝑓 : int dom𝑓 × [0, +∞) → [0, +∞] defined by

V𝑓 (𝐵, 𝑡) fl inf {V𝑓 (𝑥, 𝑡) : 𝑥 ∈ 𝐵 ∩ dom𝑓} . (23)

Lemma 10 (see [29]). If 𝑥 ∈ dom𝑓, then the following
statements are equivalent:

(i) The function 𝑓 is totally convex at 𝑥.
(ii) For any sequence {𝑦𝑛} ⊂ dom𝑓,

lim
𝑛→+∞

𝐷𝑓 (𝑦𝑛, 𝑥) = 0 ⇒ lim
𝑛→+∞

𝑦𝑛 − 𝑥
 = 0. (24)

Recall that the function𝑓 is called sequentially consistent
[26] if for any two sequences {𝑥𝑛} and {𝑦𝑛} in 𝐸 such that the
first one is bounded

lim
𝑛→+∞

𝐷𝑓 (𝑦𝑛, 𝑥𝑛) = 0 ⇒ lim
𝑛→+∞

𝑦𝑛 − 𝑥𝑛
 = 0. (25)

Lemma 11 (see [30]). The function 𝑓 is totally convex on
bounded sets if and only if the function 𝑓 is sequentially
consistent.

Lemma 12 (see [31]). Let 𝑓 : 𝐸 → R be a Gâteaux
differentiable and totally convex function. If 𝑥0 ∈ 𝐸 and the
sequence {𝐷𝑓(𝑥𝑛, 𝑥0)} is bounded, then the sequence {𝑥𝑛} is
bounded too.

Lemma 13 (see [31]). Let 𝑓 : 𝐸 → R be a Gâteaux
differentiable and totally convex function, 𝑥0 ∈ 𝐸, and let 𝐶
be a nonempty, closed, and convex subset of 𝐸. Suppose that
the sequence {𝑥𝑛} is bounded and any weak subsequential limit
of {𝑥𝑛} belongs to 𝐶. If 𝐷𝑓(𝑥𝑛, 𝑥0) ≤ 𝐷𝑓(𝑃

𝑓

𝐶 (𝑥0), 𝑥0) for any
𝑛 ∈ R, then {𝑥𝑛} converges strongly to 𝑃

𝑓

𝐶 (𝑥0).

Lemma 14 (see [32]). Let 𝐸 be a real reflexive Banach space,
let 𝑓 : 𝐸 → (−∞, +∞] be a proper lower semicontinuous
function, and then 𝑓

∗
: 𝐸
∗
→ (−∞, +∞] is a proper 𝑤𝑒𝑎𝑘

∗

lower semicontinuous and convex function.Thus, for all 𝑧 ∈ 𝐸,
one has

𝐷𝑓(𝑧, ∇𝑓
∗
(

𝑁

∑

𝑖=1

𝑡𝑖∇𝑓 (𝑥𝑖))) ≤

𝑁

∑

𝑖=1

𝑡𝑖𝐷𝑓 (𝑧, 𝑥𝑖) . (26)

In order to solve the equilibrium problem, let us assume
that a bifunction 𝑔 : 𝐶 × 𝐶 → R satisfies the following
conditions [1]:

(A1) 𝑔(𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐶.

(A2) 𝑔 is monotone; that is, 𝑔(𝑥, 𝑦) + 𝑔(𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈

𝐶.

(A3) lim sup𝑡↓0 𝑔(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ 𝑔(𝑥, 𝑦) ∀𝑥, 𝑧, 𝑦 ∈ 𝐶.

(A4) The function 𝑦 → 𝑔(𝑥, 𝑦) is convex and lower
semicontinuous.
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The resolvent of a bifunction 𝑔 [2] is the operator Res𝑓𝑔 : 𝐸 →

2
𝐶 defined by

Res𝑓𝑔 (𝑥) = {𝑧 ∈ 𝐶 : 𝑔 (𝑧, 𝑦)

+ ⟨∇𝑓 (𝑧) − ∇𝑓 (𝑥) , 𝑦 − 𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(27)

FromLemma 1, in [33], if𝑓 : (−∞, +∞] is a strongly coercive
andGâteaux differentiable function and 𝑔 satisfies conditions
(A1)–(A4), then dom (Res𝑓𝑔) = 𝐸. The following lemma gives
some characterization of the resolvent Res𝑓𝑔 .

Lemma 15 (see [33]). Let 𝐸 be a real reflexive Banach space
and let𝐶 be a nonempty closed convex subset of 𝐸. Let 𝑓 : 𝐸 →

(−∞, +∞] be a Legendre function. If the bifunction 𝑔 : 𝐶 ×

𝐶 → R satisfies the conditions (A1)–(A4), then, the following
hold:

(i) 𝑅𝑒𝑠𝑓𝑔 is single-valued.

(ii) 𝑅𝑒𝑠𝑓𝑔 is a Bregman firmly nonexpansive operator.

(iii) 𝐹(𝑅𝑒𝑠𝑓𝑔) = EP(𝑔).

(iv) EP(𝑔) is closed and convex subset of 𝐶.

(v) For all 𝑥 ∈ 𝐸 and for all 𝑞 ∈ 𝐹(𝑅𝑒𝑠
𝑓
𝑔), one has

𝐷𝑓 (𝑞, 𝑅𝑒𝑠
𝑓
𝑔 (𝑥)) + 𝐷𝑓 (𝑅𝑒𝑠

𝑓
𝑔 (𝑥) , 𝑥) ≤ 𝐷𝑓 (𝑞, 𝑥) . (28)

Lemma 16 (see [34]). Let {𝑎𝑛} be a sequence of nonnegative
real numbers satisfying the following relation:

𝑎𝑛+1 ≤ (1 − 𝛼𝑛) 𝑎𝑛 + 𝛼𝑛𝛿𝑛, 𝑛 ≥ 𝑛0, (29)

where {𝛼𝑛} ⊂ (0, 1) and {𝛿𝑛} is a real sequence satisfying the
following conditions:

lim
𝑛→∞

𝛼𝑛 = 0,

∞

∑

𝑛=1

= ∞,

𝑎𝑠 lim sup
𝑛→∞

𝛿𝑛 ≤ 0.

(30)

Then, lim𝑛→∞𝑎𝑛 = 0.

Lemma 17 (see [35]). Let {𝑎𝑛} be a sequence of real numbers
such that there exists a subsequence {𝑛𝑖} of {𝑛} such that 𝑎𝑛

𝑖

<

𝑎𝑛
𝑖
+1 for all 𝑖 ∈ N. Then there exists a nondecreasing sequence

{𝑚𝑘} ⊂ N such that 𝑚𝑘 → ∞ and the following properties are
satisfied by all (sufficiently large) numbers 𝑘 ∈ N:

𝑎𝑚
𝑘

≤ 𝑎𝑚
𝑘
+1,

𝑎𝑘 ≤ 𝑎𝑚
𝑘
+1.

(31)

In fact,𝑚𝑘 = max {𝑗 ≤ 𝑘 : 𝑎𝑗 < 𝑎𝑗+1}.

3. Main Results

We now prove the following theorem.

Theorem18. Let𝐶 be a nonempty, closed, and convex subset of
a real reflexive Banach space 𝐸 and 𝑓 : 𝐸 → R a strongly coer-
cive Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subset of 𝐸. For
each 𝑗 = 1, 2, . . . , 𝑚, let 𝑔𝑗 be a bifunction from 𝐶 × 𝐶

to R satisfying (A1)–(A4) and let {𝑇
𝑁
𝑖=1} be a finite family

of quasi-Bregman nonexpansive self-mapping of 𝐶 such that
𝐹 fl ⋂

𝑁
𝑖=1 𝐹(𝑇𝑖) ̸= 0, where 𝐹 = 𝐹(𝑇𝑁𝑇𝑁−1𝑇𝑁−2 ⋅ ⋅ ⋅ 𝑇2𝑇1) =

𝐹(𝑇1𝑇𝑁𝑇𝑁−1𝑇𝑁−2 ⋅ ⋅ ⋅ 𝑇2) = ⋅ ⋅ ⋅ = 𝐹(𝑇𝑁−1𝑇𝑁−2 ⋅ ⋅ ⋅ 𝑇2𝑇1𝑇𝑁) ̸=

0 and Ω fl (⋂
𝑚
𝑗=1 EP(𝑔𝑗)) ∩ 𝐹 ̸= 0. Let {𝑥𝑛}

∞
𝑛=1 be a sequence

generated by 𝑥1 = 𝑥 ∈ 𝐶, 𝐶1 = 𝐶, and

𝑥1 ∈ 𝐶

𝑢𝑗,𝑛 = 𝑅𝑒𝑠
𝑓
𝑔
𝑗

𝑥𝑛, 𝑗 = 1, 2, 3, . . . , 𝑚

𝑦𝑛 = 𝑃𝐶 (∇𝑓
∗
((1 − 𝛼𝑛) ∇𝑓 (𝑢𝑗,𝑛)))

𝑥𝑛+1 = 𝑃𝐶 (∇𝑓
∗
(𝛽𝑛∇𝑓 (𝑦𝑛) + (1 − 𝛽𝑛) ∇𝑓 (𝑇[𝑛]𝑦𝑛))) ,

(32)

where 𝑇[𝑛] = 𝑇𝑛(mod𝑁) and {𝛼𝑛}
∞
𝑛=1 ⊂ (0, 1) and {𝛽𝑛}

∞
𝑛=1 ⊂

[𝑐, 𝑑] ⊂ (0, 1) satisfying lim𝑛→∞𝛼𝑛 = 0 and ∑
∞
𝑛=1 𝛼𝑛 = ∞.

Then {𝑥𝑛}
∞
𝑛=1 converges strongly to 𝑃

𝑓

Ω(𝑥), where 𝑃
𝑓

Ω is the
Bregman projection of 𝐶 onto Ω.

Proof. Let 𝑝 = 𝑃
𝑓

Ω ∈ Ω from Lemma 15; we obtain

𝐷𝑓 (𝑝, 𝑢𝑗,𝑛) = 𝐷𝑓 (𝑝,Res
𝑓
𝑔
𝑗

𝑥𝑛) ≤ 𝐷𝑓 (𝑝, 𝑥𝑛) . (33)

Now from (32), we obtain

𝐷𝑓 (𝑝, 𝑦𝑛) ≤ 𝐷𝑓 (𝑝, ∇𝑓
∗
((1 − 𝛼𝑛) ∇𝑓 (𝑢𝑗,𝑛)))

= 𝐷𝑓 (𝑝, ∇𝑓
∗
(𝛼𝑛∇𝑓 (0) + (1 − 𝛼𝑛) ∇𝑓 (𝑢𝑗,𝑛)))

≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑢𝑗,𝑛)

≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛) .

(34)

Also from (32), (26), and (34), we have

𝐷𝑓 (𝑝, 𝑥𝑛+1)

≤ 𝐷𝑓 (𝑝, ∇𝑓
∗
((1 − 𝛽𝑛) ∇𝑓 (𝑦𝑛) + 𝛽𝑛∇𝑓 (𝑇[𝑛]𝑦𝑛)))

≤ (1 − 𝛽𝑛)𝐷𝑓 (𝑝, 𝑦𝑛) + 𝛽𝑛𝐷𝑓 (𝑝, 𝑇[𝑛]𝑦𝑛)

≤ (1 − 𝛽𝑛)𝐷𝑓 (𝑝, 𝑦𝑛) + 𝛽𝑛𝐷𝑓 (𝑝, 𝑦𝑛)

= 𝐷𝑓 (𝑝, 𝑦𝑛) ≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛)

≤ max {𝐷𝑓 (𝑝, 0) , 𝐷𝑓 (𝑝, 𝑥𝑛)} .

(35)

Thus, by induction we obtain

𝐷𝑓 (𝑝, 𝑥𝑛+1) ≤ max {𝐷𝑓 (𝑝, 0) , 𝐷𝑓 (𝑝, 𝑥𝑛)} ,

∀𝑛 ≥ 0,

(36)
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which implies that {𝑥𝑛} is bounded and hence {𝑦𝑛}, {𝑇[𝑛]𝑦𝑛},
{𝑇[𝑛]𝑥𝑛}, and {𝑢𝑗,𝑛} are all bounded for each 𝑗 = 1, 2, . . . , 𝑚.
Now from (32) let 𝑧𝑛 fl ∇𝑓

∗
((1 − 𝛼𝑛)∇𝑓(𝑢𝑗,𝑛)). Furthermore

since 𝛼𝑛 → 0 as 𝑛 → ∞, we obtain


∇𝑓 (𝑧𝑛) − ∇𝑓 (𝑢𝑗,𝑛)


= 𝛼𝑛


(−∇𝑓 (𝑢𝑗,𝑛))


→ 0

as 𝑛 → ∞.

(37)

Since 𝑓 is strongly coercive and uniformly convex on
bounded subsets of 𝐸, 𝑓∗ is uniformly Fréchet differentiable
on bounded sets. Moreover, 𝑓∗ is bounded on bounded sets;
from (37), we obtain

lim
𝑛→∞


𝑧𝑛 − 𝑢𝑗,𝑛


= 0. (38)

On the other hand, in view of (3) inTheorem 6, we know that
dom𝑓

∗
= 𝐸
∗ and 𝑓

∗ is strongly coercive and uniformly con-
vex on bounded subsets. Let 𝑠 = sup {‖∇𝑓(𝑦𝑛)‖, ‖∇𝑓(𝑇[𝑛]𝑦𝑛)‖}

and 𝜌
∗
𝑠 : 𝐸
∗
→ R be the gauge of uniform convexity of the

conjugate function 𝑓
∗. Now from (32) and Lemmas 4 and 8,

we obtain

𝐷𝑓 (𝑝, 𝑦𝑛) ≤ 𝐷𝑓 (𝑝, 𝑧𝑛) = 𝑉 (𝑝, ∇𝑓 (𝑧𝑛))

≤ 𝑉 (𝑝, ∇𝑓 (𝑧𝑛) + 𝛼𝑛∇𝑓 (𝑝))

+ 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩

= 𝐷𝑓 (𝑝, ∇𝑓
∗
((1 − 𝛼𝑛) ∇𝑓 (𝑢𝑗,𝑛) + 𝛼𝑛∇𝑓 (𝑝)))

+ 𝛼𝑛∇𝑓 (𝑝) + 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩

≤ 𝛼𝑛𝐷𝑓 (𝑝, 𝑝) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑢𝑗,𝑛)

+ 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩

≤ (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛) + 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩ ,

(39)

𝐷𝑓 (𝑝, 𝑥𝑛+1)

≤ 𝐷𝑓 (𝑝, ∇𝑓
∗
((1 − 𝛽𝑛) ∇𝑓 (𝑦𝑛) + 𝛽𝑛∇𝑓 (𝑇[𝑛]𝑦𝑛)))

= 𝑉 (𝑝, (1 − 𝛽𝑛) ∇𝑓 (𝑦𝑛) + 𝛽𝑛∇𝑓 (𝑇[𝑛]𝑦𝑛))

= 𝑓 (𝑝) − ⟨𝑝, (1 − 𝛽𝑛) ∇𝑓 (𝑦𝑛) + 𝛽𝑛∇𝑓 (𝑇[𝑛]𝑦𝑛)⟩

+ 𝑓
∗
((1 − 𝛽𝑛) ∇𝑓 (𝑦𝑛) + 𝛽𝑛∇𝑓 (𝑇[𝑛]𝑦𝑛))

≤ (1 − 𝛽𝑛) 𝑓 (𝑝) + 𝛽𝑛𝑓 (𝑝)

− (1 − 𝛽𝑛) ⟨𝑝, ∇𝑓 (𝑦𝑛)⟩ − 𝛽𝑛 ⟨𝑝, ∇𝑓 (𝑇[𝑛]𝑦𝑛)⟩

+ (1 − 𝛽𝑛) 𝑓
∗
(∇𝑓 (𝑇[𝑛]𝑦𝑛))

+ 𝛽𝑛𝑓
∗
(∇𝑓 (𝑇[𝑛]𝑦𝑛))

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

= (1 − 𝛽𝑛) 𝑉 (𝑝, ∇𝑓 (𝑦𝑛)) + 𝛽𝑛𝑉 (𝑝, ∇𝑓 (𝑇[𝑛]𝑦𝑛))

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

= (1 − 𝛽𝑛)𝐷𝑓 (𝑝, 𝑦𝑛) + 𝛽𝑛𝐷𝑓 (𝑝, 𝑇[𝑛]𝑦𝑛)

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

≤ (1 − 𝛽𝑛)𝐷𝑓 (𝑝, 𝑦𝑛) + 𝛽𝑛𝐷𝑓 (𝑝, 𝑦𝑛)

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

= 𝐷𝑓 (𝑝, 𝑦𝑛)

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

≤ (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛) + 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩

− 𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
)

(40)

≤ (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛) + 𝛼𝑛 ⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩ . (41)

Now, we consider two cases.

Case 1. Suppose that there exists 𝑛0 ∈ N such that {𝐷𝑓(𝑝, 𝑥𝑛)}
is nonincreasing. In this situation {𝐷𝑓(𝑝, 𝑥𝑛)} is convergent.
Then from (40) we obtain

𝛽𝑛 (1 − 𝛽𝑛) 𝜌
∗
𝑠 (

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
) → 0

as 𝑛 → ∞,

(42)

which implies, by the property of 𝜌𝑠 and since 𝛽𝑛 ∈ [𝑐, 𝑑] ⊂

(0, 1),

lim
𝑛→∞

∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)
 = 0. (43)

Since 𝑓 is strongly coercive and uniformly convex on
bounded subsets of 𝐸, 𝑓∗ is uniformly Fréchet differentiable
on bounded sets. Moreover, 𝑓∗ is bounded on bounded sets;
from (43), we obtain

lim
𝑛→∞

𝑦𝑛 − 𝑇[𝑛]𝑦𝑛
 = 0. (44)

Now from (4), we obtain

𝐷𝑓 (𝑦𝑛, 𝑇[𝑛]𝑦𝑛)

= 𝐷𝑓 (𝑝, 𝑇[𝑛]𝑦𝑛) − 𝐷𝑓 (𝑝, 𝑦𝑛)

+ ⟨∇𝑓 (𝑇[𝑛]𝑦𝑛) − ∇𝑓 (𝑦𝑛) , 𝑝 − 𝑦𝑛⟩

≤ 𝐷𝑓 (𝑝, 𝑦𝑛) − 𝐷𝑓 (𝑝, 𝑦𝑛)

+ ⟨∇𝑓 (𝑇[𝑛]𝑦𝑛) − ∇𝑓 (𝑦𝑛) , 𝑝 − 𝑦𝑛⟩ ,

(45)

and therefore

𝐷𝑓 (𝑦𝑛, 𝑇[𝑛]𝑦𝑛)

≤
∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛)



𝑝 − 𝑦𝑛
 → 0

as 𝑛 → ∞.

(46)
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Also, from (28) in Lemma 15, we have

𝐷𝑓 (𝑥𝑛, 𝑢𝑗,𝑛) = 𝐷𝑓 (𝑥𝑛,Res
𝑓
𝑔
𝑗

𝑥𝑛)

≤ 𝐷𝑓 (𝑝,Res
𝑓
𝑔
𝑗

𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

≤ 𝐷𝑓 (𝑝, 𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛) → 0

as 𝑛 → ∞.

(47)

Then, we have from Lemma 10 that

lim
𝑛→∞


𝑥𝑛 − 𝑢𝑗,𝑛


= 0. (48)

Also, from (b) of Lemma 9, we have

𝐷𝑓 (𝑦𝑛, 𝑃𝐶𝑧𝑛) = 𝐷𝑓 (𝑦𝑛, 𝑧𝑛)

= 𝐷𝑓 (𝑦𝑛, ∇𝑓
∗
(∇𝑓 (0) + (1 − 𝛼𝑛) ∇𝑓 (𝑢𝑗,𝑛)))

≤ 𝛼𝑛𝐷𝑓 (𝑦𝑛, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑦𝑛, 𝑢𝑗,𝑛)

≤ 𝛼𝑛𝐷𝑓 (𝑦𝑛, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑢𝑗,𝑛, 𝑢𝑗,𝑛) → 0

as 𝑛 → ∞.

(49)

Then, we have from Lemma 10 that

lim
𝑛→∞

𝑦𝑛 − 𝑧𝑛
 = 0. (50)

From (38) and (48), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑧𝑛
 = 0. (51)

From (50) and (51), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑦𝑛
 = 0. (52)

Since 𝑓 is strongly coercive and uniformly convex on
bounded subsets of 𝐸, 𝑓∗ is uniformly Fréchet differentiable
on bounded sets. Moreover, 𝑓∗ is bounded on bounded sets;
from (52), we obtain

lim
𝑛→∞

∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑧𝑛)
 = 0. (53)

Also from (44) and (52)

lim
𝑛→∞

𝑥𝑛 − 𝑇[𝑛]𝑦𝑛
 = 0. (54)

Now from (4) and (34), we obtain

𝐷𝑓 (𝑥𝑛, 𝑦𝑛) = 𝐷𝑓 (𝑝, 𝑦𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑦𝑛) , 𝑝 − 𝑥𝑛⟩

≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛)

− 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑦𝑛) , 𝑝 − 𝑥𝑛⟩

= 𝛼𝑛 (𝐷𝑓 (𝑝, 0) − 𝐷𝑓 (𝑝, 𝑥𝑛))

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑦𝑛) , 𝑝 − 𝑥𝑛⟩ ;

(55)

therefore, from (53), we obtain

𝐷𝑓 (𝑥𝑛, 𝑦𝑛) ≤ 𝛼𝑛 (𝐷𝑓 (𝑝, 0) − 𝐷𝑓 (𝑝, 𝑥𝑛))

+
∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑦𝑛)



𝑝 − 𝑥𝑛
 → 0

as 𝑛 → ∞.

(56)

Also

𝐷𝑓 (𝑥𝑛, 𝑇[𝑛]𝑦𝑛)

= 𝐷𝑓 (𝑝, 𝑇[𝑛]𝑦𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛) , 𝑝 − 𝑥𝑛⟩

≤ 𝐷𝑓 (𝑝, 𝑦𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛) , 𝑝 − 𝑥𝑛⟩

≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛) , 𝑝 − 𝑥𝑛⟩

= 𝛼𝑛 (𝐷𝑓 (𝑝, 0) − 𝐷𝑓 (𝑝, 𝑥𝑛))

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑦𝑛) , 𝑝 − 𝑥𝑛⟩ ;

(57)

thus

𝐷𝑓 (𝑥𝑛, 𝑇[𝑛]𝑦𝑛)

≤ 𝛼𝑛


𝐷𝑓 (𝑝, 0) − 𝐷𝑓 (𝑝, 𝑥𝑛)



+
∇𝑓 (𝑇[𝑛]𝑦𝑛) − ∇𝑓 (𝑥𝑛)



𝑝 − 𝑥𝑛
 → 0

as 𝑛 → ∞.

(58)

Also, from (56)

𝐷𝑓 (𝑇[𝑛]𝑥𝑛, 𝑇[𝑛]𝑦𝑛) ≤ 𝐷𝑓 (𝑥𝑛, 𝑦𝑛) → 0

as 𝑛 → ∞.

(59)

Then, we have from Lemma 10 that

lim
𝑛→∞

𝑇[𝑛]𝑥𝑛 − 𝑇[𝑛]𝑦𝑛
 = 0. (60)

Then from (32) and (44), we have
∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑦𝑛)



= 𝛽𝑛
∇𝑓 (𝑇[𝑛]𝑦𝑛) − ∇𝑓 (𝑦𝑛)

 → 0 as 𝑛 → ∞.

(61)

This implies
𝑥𝑛+1 − 𝑦𝑛

 → 0 as 𝑛 → ∞, (62)
𝑥𝑛 − 𝑇[𝑛]𝑥𝑛

 ≤
𝑥𝑛 − 𝑦𝑛

 +
𝑦𝑛 − 𝑇[𝑛]𝑦𝑛



+
𝑇[𝑛]𝑦𝑛 − 𝑇[𝑛]𝑥𝑛

 ;

(63)

from (44), (52), and (60), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑇[𝑛]𝑥𝑛
 = 0. (64)
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This implies that

lim
𝑛→∞

∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑥𝑛)
 = 0. (65)

Also from (52) and (62), we obtain

𝑥𝑛+1 − 𝑥𝑛
 ≤

𝑥𝑛+1 − 𝑦𝑛
 +

𝑦𝑛 − 𝑥𝑛
 → 0

as 𝑛 → ∞.

(66)

But

𝑥𝑛+𝑁 − 𝑥𝑛
 ≤

𝑥𝑛+𝑁 − 𝑥𝑛+𝑁−1
 +

𝑥𝑛+𝑁−1 − 𝑥𝑛+𝑁−2


+ ⋅ ⋅ ⋅ +
𝑥𝑛+1 − 𝑥𝑛

 → 0,

(67)

as 𝑛 → ∞.Hence

lim
𝑛→∞

𝑥𝑛+𝑁 − 𝑥𝑛
 = 0. (68)

From the uniformly continuous ∇𝑓, we have from (66)
that

lim
𝑛→∞

∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)
 = 0. (69)

From (4), (35), and (69), we obtain

𝐷𝑓 (𝑥𝑛, 𝑥𝑛+1) = 𝐷𝑓 (𝑝, 𝑥𝑛+1) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑥𝑛+) , 𝑝 − 𝑥𝑛⟩

≤ 𝛼𝑛𝐷𝑓 (𝑝, 0) + (1 − 𝛼𝑛)𝐷𝑓 (𝑝, 𝑥𝑛)

− 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑥𝑛+1) , 𝑝 − 𝑥𝑛⟩ ,

(70)

which implies

𝐷𝑓 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝛼𝑛


𝐷𝑓 (𝑝, 0) − 𝐷𝑓 (𝑝, 𝑥𝑛)


+
∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)



𝑝 − 𝑥𝑛
 → 0 as 𝑛 → ∞. (71)

Also from quasi-Bregman nonexpansivity of 𝑇[𝑛], we have

𝐷𝑓 (𝑇[𝑛]𝑥𝑛, 𝑇[𝑛]𝑥𝑛+1) ≤ 𝐷𝑓 (𝑥𝑛, 𝑥𝑛+1) → 0

as 𝑛 → ∞,

(72)

which implies

lim
𝑛→∞

𝑇[𝑛]𝑥𝑛 − 𝑇[𝑛]𝑥𝑛+1
 = 0, (73)

and from the uniform continuous ∇𝑓, we obtain

lim
𝑛→∞

∇𝑓 (𝑇[𝑛]𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑥𝑛+1)
 = 0. (74)

Also from (4) and (64), we obtain
𝐷𝑓 (𝑥𝑛, 𝑇[𝑛]𝑥𝑛)

= 𝐷𝑓 (𝑝, 𝑇[𝑛]𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑥𝑛) , 𝑝 − 𝑥𝑛⟩

≤ 𝐷𝑓 (𝑝, 𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛]𝑥𝑛) , 𝑝 − 𝑥𝑛⟩

≤
∇𝑓 (𝑇[𝑛]𝑥𝑛) − ∇𝑓 (𝑥𝑛)



𝑝 − 𝑥𝑛
 → 0

as 𝑛 → ∞.

(75)

From (64), (66), and (73), we obtain
𝑥𝑛 − 𝑇[𝑛+1]𝑥𝑛

 ≤
𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑇[𝑛+1]𝑥𝑛+1



+
𝑇[𝑛+1]𝑥𝑛+1 − 𝑇[𝑛+1]𝑥𝑛

 → 0

as 𝑛 → ∞,

(76)

which from uniform continuous ∇𝑓 implies

lim
𝑛→∞

∇𝑓 (𝑇[𝑛]𝑥𝑛) − ∇𝑓 (𝑇[𝑛+1]𝑥𝑛)
 = 0, (77)

and from (4) and (77), we obtain

𝐷𝑓 (𝑥𝑛, 𝑇[𝑛+1]𝑥𝑛)

≤ 𝐷𝑓 (𝑝, 𝑇[𝑛+1]𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+ ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑇[𝑛+1]𝑥𝑛) , 𝑝 − 𝑥𝑛⟩

≤ 𝐷𝑓 (𝑝, 𝑥𝑛) − 𝐷𝑓 (𝑝, 𝑥𝑛)

+
∇𝑓 (𝑇[𝑛+1]𝑥𝑛) − ∇𝑓 (𝑥𝑛)



𝑝 − 𝑥𝑛
 → 0

as 𝑛 → ∞.

(78)

From (4), (71), (77), and (78)

𝐷𝑓 (𝑥𝑛+1, 𝑇[𝑛+1]𝑥𝑛)

= 𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) + 𝐷𝑓 (𝑥𝑛, 𝑇[𝑛+1]𝑥𝑛)

+ ⟨∇𝑓 (𝑇[𝑛+1]𝑥𝑛) − ∇𝑓 (𝑥𝑛) , 𝑥𝑛 − 𝑥𝑛+1⟩

≤ 𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) + 𝐷𝑓 (𝑥𝑛, 𝑇[𝑛+1]𝑥𝑛)

+
∇𝑓 (𝑇[𝑛+1]𝑥𝑛) − ∇𝑓 (𝑥𝑛)



𝑥𝑛 − 𝑥𝑛+1
 → 0

as 𝑛 → ∞.

(79)



Journal of Operators 9

Also from (4), (71), and (79)

𝐷𝑓 (𝑥𝑛, 𝑇[𝑛+1]𝑥𝑛) = 𝐷𝑓 (𝑥𝑛, 𝑥𝑛+1) + 𝐷𝑓 (𝑥𝑛+1, 𝑇[𝑛+1]𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑇[𝑛+1]𝑥𝑛+1) , 𝑥𝑛+1 − 𝑥𝑛⟩

= 𝐷𝑓 (𝑥𝑛, 𝑥𝑛+1) + 𝐷𝑓 (𝑥𝑛+1, 𝑇[𝑛+1]𝑥𝑛) +
∇𝑓 (𝑇[𝑛+1]𝑥𝑛) − ∇𝑓 (𝑥𝑛+1)



𝑥𝑛+1 − 𝑥𝑛
 → 0 as 𝑛 → ∞.

(80)

Using the quasi-Bregman nonexpansivity of 𝑇(𝑖) for each
𝑖, we obtain the following finite table:

𝐷𝑓 (𝑥𝑛+𝑁, 𝑇(𝑛+𝑁)𝑥𝑛+𝑁−1) → 0 as 𝑛 → ∞

𝐷𝑓 (𝑇(𝑛+𝑁)𝑥𝑛+𝑁−1, 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1)𝑥𝑛+𝑁−2) → 0

as 𝑛 → ∞

.

.

.

𝐷𝑓 (𝑇(𝑛+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑛+2)𝑥𝑛+1, 𝑇(𝑛+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛) → 0

as 𝑛 → ∞.

(81)

Then, applying Lemma 10 on each line above, we obtain

𝑥𝑛+𝑁 − 𝑇(𝑛+𝑁)𝑥𝑛+𝑁−1 → 0 as 𝑛 → ∞

𝑇(𝑛+𝑁)𝑥𝑛+𝑁−1 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1)𝑥𝑛+𝑁−2 → 0

as 𝑛 → ∞

.

.

.

𝑇(𝑛+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑛+2)𝑥𝑛+1 − 𝑇(𝑛+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛 → 0

as 𝑛 → ∞,

(82)

and adding up this table, we obtain

𝑥𝑛+𝑁 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛 → 0

as 𝑛 → ∞.

(83)

Using this and (68), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛
 = 0. (84)

Also from quasi-Bregman nonexpansivity of 𝑇(𝑖), for each 𝑖,
we have

𝐷𝑓 (𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛, 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1)

⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑦𝑛) ≤ 𝐷𝑓 (𝑥𝑛, 𝑦𝑛) → 0,

(85)

as 𝑛 → ∞.Then, we have from Lemma 10 that

𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛

− 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑦𝑛 → 0

as 𝑛 → ∞.

(86)

Since
𝑦𝑛 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑦𝑛

 ≤
𝑦𝑛 − 𝑥𝑛

 +
𝑥𝑛

− 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ + 𝑇(𝑛+1)𝑥𝑛


+
𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑥𝑛

− 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑦𝑛
 ,

(87)

then, from (52), (84), and (86), we obtain

lim
𝑛→∞

𝑦𝑛 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑦𝑛
 = 0. (88)

Following the argument from (85), (86), and (88) by replacing
𝑦𝑛 with 𝑧𝑛 and using (51), we obtain

lim
𝑛→∞

𝑧𝑛 − 𝑇(𝑛+𝑁)𝑇(𝑛+𝑁−1) ⋅ ⋅ ⋅ 𝑇(𝑛+1)𝑧𝑛
 = 0. (89)

Let {𝑥𝑛
𝑖

} be a subsequence of {𝑥𝑛}. Since {𝑥𝑛} is bounded
and 𝐸 is reflexive, without loss of generality, we may assume
that 𝑥𝑛

𝑖

⇀ 𝑞 for some 𝑞 ∈ 𝐹 and since 𝑥𝑛−𝑧𝑛 → 0 as 𝑛 → ∞,
then 𝑧𝑛

𝑖

⇀ 𝑞. Since the pool of mappings of 𝑇[𝑛] is finite,
passing to a further subsequence if necessary, we may further
assume that, for some 𝑖 ∈ {1, 2, . . . , 𝑁}, from (89), we get

𝑧𝑛
𝑖

− 𝑇(𝑖+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑖+1)𝑧𝑛
𝑖

→ 0 as 𝑖 → ∞, (90)

and also
lim sup
𝑛→∞

⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩

= lim
𝑖→∞

⟨−∇𝑓 (𝑝) , 𝑧𝑛
𝑖

− 𝑝⟩ .

(91)

Noticing that 𝑢𝑗,𝑛 = Res𝑓𝑔
𝑗

(𝑥𝑛) for each 𝑗 = 1, 2, . . . , 𝑚, we
obtain

𝑔𝑗 (𝑢𝑗,𝑛, 𝑦) + ⟨𝑦 − 𝑢𝑗,𝑛, ∇𝑓 (𝑢𝑗,𝑛) − ∇𝑓 (𝑥𝑛)⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(92)

Hence

𝑔𝑗 (𝑢𝑗,𝑛
𝑖

, 𝑦) + ⟨𝑦 − 𝑢𝑗,𝑛
𝑖

, ∇𝑓 (𝑢𝑗,𝑛
𝑖

) − ∇𝑓 (𝑥𝑛
𝑖

)⟩ ≥ 0,

∀𝑦 ∈ 𝐶.

(93)

From (A2), we note that, for each 𝑗 = 1, 2, . . . , 𝑚,


𝑦 − 𝑢𝑗,𝑛




∇𝑓 (𝑢𝑗,𝑛

𝑖

) − ∇𝑓 (𝑥𝑛
𝑖

)


𝑟𝑛
𝑖

≥ ⟨𝑦 − 𝑢𝑗,𝑛, ∇𝑓 (𝑢𝑗,𝑛) − ∇𝑓 (𝑥𝑛)⟩ ≥ −𝑔𝑗 (𝑢𝑗,𝑛
𝑖

)

≥ 𝑔𝑗 (𝑦, 𝑢𝑗,𝑛
𝑖

) , ∀𝑦 ∈ 𝐶.

(94)
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Taking the limit as 𝑖 → ∞ in above inequality and from (A4)
and 𝑢𝑗,𝑛

𝑖

⇀ 𝑞, we have 𝑔𝑗(𝑦, 𝑞) ≤ 0 for each 𝑗 = 1, 2, . . . , 𝑚.
For 0 < 𝑡 < 1 and 𝑦 ∈ 𝐶, define 𝑦𝑡 = 𝑡𝑦 + (1 − 𝑡)𝑞. Noticing
that 𝑦, 𝑞 ∈ 𝐶, we obtain 𝑦𝑡 ∈ 𝐶, which yield that 𝑔𝑗(𝑦𝑡, 𝑞) ≤ 0.
It follows from (A1) that

0 = 𝑔𝑗 (𝑦𝑡, 𝑦𝑡) ≤ 𝑡𝑔𝑗 (𝑦𝑡, 𝑦) + (1 − 𝑡) 𝑔𝑗 (𝑦𝑡, 𝑞)

≤ 𝑡𝑔𝑗 (𝑦𝑡, 𝑦) .

(95)

That is, for each 𝑗 = 1, 2, . . . , 𝑚, we have 𝑔𝑗(𝑦𝑡, 𝑦) ≥ 0.

Let 𝑡 ↓ 0; from (A3), we obtain 𝑔𝑗(𝑞, 𝑦) ≥ 0 for any 𝑦 ∈ 𝐶,
for each 𝑗 = 1, 2, . . . , 𝑚. This implies that 𝑞 ∈ ⋂

𝑚
𝑗=1 EP(𝑔𝑗).

Hence 𝑞 ∈ Ω. It follows from the definition of the Bregman
projection that

lim sup
𝑛→∞

⟨−∇𝑓 (𝑝) , 𝑧𝑛 − 𝑝⟩ = lim
𝑖→∞

⟨−∇𝑓 (𝑝) , 𝑧𝑛
𝑖

− 𝑝⟩

≤ ⟨−∇𝑓 (𝑝) , 𝑞 − 𝑝⟩ ≤ 0.

(96)

It follows from Lemma 16 and (41) that 𝐷𝑓(𝑝, 𝑥𝑛) → 0 as
𝑛 → ∞. Consequently, from Lemma 10, we obtain 𝑥𝑛 → 𝑝

as 𝑛 → ∞.

Case 2. Suppose 𝐷𝑓(𝑝, 𝑥𝑛) is not monotone decreasing
sequences; then set Φ𝑛 fl 𝐷𝑓(𝑝, 𝑥𝑛) and let 𝜏 : N → N be
a mapping defined for all 𝑛 ≥ 𝑁0 for some sufficiently large
𝑁0 by

𝜏 (𝑛) fl max {𝑘 ∈ N : 𝑘 ≤ 𝑛,Φ𝑘 ≤ Φ𝑘+1} . (97)

Then by Lemma 17 𝜏(𝑛) is a nondecreasing sequence such
that 𝜏(𝑛) → ∞ as 𝑛 → ∞ and Φ𝜏(𝑛) ≤ Φ𝜏(𝑛)+1, for 𝑛 ≥ 𝑁0.
Then from (40) and the fact that 𝛼𝜏(𝑛) → 0, we obtain that

𝜌
∗
𝑠 (

∇𝑓 (𝑦𝜏(𝑛)) − ∇𝑓 (𝑇[𝜏(𝑛)]) 𝑦𝜏(𝑛)
) → 0

as 𝜏 (𝑛) → ∞.

(98)

Following the same argument as in Case 1, we obtain

𝑦𝜏(𝑛) − 𝑇(𝑖+𝑁) ⋅ ⋅ ⋅ 𝑇(𝑖+1)𝑦𝜏(𝑛) → 0 as 𝜏 (𝑛) → ∞, (99)

and also we obtain

lim sup
𝜏(𝑛)→∞

⟨−∇𝑓 (𝑝) , 𝑦𝜏(𝑛) − 𝑝⟩ ≤ 0. (100)

Then from (41), we obtain that

0 ≤ 𝐷𝑓 (𝑝, 𝑥𝜏(𝑛)+1) − 𝐷𝑓 (𝑝, 𝑥𝜏(𝑛))

≤ 𝛼𝜏(𝑛) (⟨−∇𝑓 (𝑝) , 𝑦𝜏(𝑛) − 𝑝⟩ − 𝐷𝑓 (𝑝, 𝑥𝜏(𝑛))) .

(101)

It follows from (101) and Φ𝑛 ≤ Φ𝜏(𝑛)+1, 𝛼𝜏(𝑛) > 0 that

𝐷𝑓 (𝑝, 𝑥𝜏(𝑛)) ≤ ⟨−∇𝑓 (𝑝) , 𝑦𝜏(𝑛) − 𝑝⟩ → 0, (102)

as 𝜏(𝑛) → ∞. Thus

lim
𝜏(𝑛)→∞

Φ𝜏(𝑛) = lim
𝜏(𝑛)→∞

Φ𝜏(𝑛)+1 = 0. (103)

Furthermore, for 𝑛 ≥ 𝑁0, if 𝑛 ̸= 𝜏(𝑛) (i.e., 𝜏(𝑛) < 𝑛), because
Φ𝑗 > Φ𝑗+1 for 𝜏(𝑛) + 1 ≤ 𝑗 ≤ 𝑛. it then follows that for all
𝑛 ≥ 𝑁0 we have

0 ≤ Φ𝑛 ≤ max {Φ𝜏(𝑛), Φ𝜏(𝑛)+1} = Φ𝜏(𝑛)+1. (104)

This implies that lim𝑛→∞Φ𝑛 = 0, and hence 𝐷𝑓(𝑝, 𝑥𝑛) → 0

as 𝑛 → ∞. Consequently, from Lemma 10, we obtain 𝑥𝑛 → 𝑝

as 𝑛 → ∞. Therefore from the above two cases, we conclude
that {𝑥𝑛} converges strongly to 𝑝 ∈ Ω and this completes the
proof.
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