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We study the following Kirchhoff-type equations −(𝑎+𝑏 ∫
Ω
|∇𝑢|

2
𝑑𝑥)Δ𝑢+𝑉(𝑥)𝑢 = 𝑓(𝑥, 𝑢), inΩ, 𝑢 = 0, in 𝜕Ω, whereΩ is a bounded

smooth domain of R𝑁
(𝑁 = 1, 2, 3), 𝑎 > 0, 𝑏 ≥ 0, 𝑓 ∈ 𝐶(Ω × R,R), and 𝑉 ∈ 𝐶(Ω,R). Under some suitable conditions, we prove

that the equation has three solutions of mountain pass type: one positive, one negative, and sign-changing. Furthermore, if𝑓 is odd
with respect to its second variable, this problem has infinitely many sign-changing solutions.

1. Introduction and Preliminaries

In this paper, we study the following Kirchhoff-type equa-
tions:

−(𝑎 + 𝑏∫

Ω

|∇𝑢|

2
𝑑𝑥)Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = 0, on 𝜕Ω,
(1)

where Ω is a bounded smooth domain of R𝑁
(𝑁 = 1, 2, 3),

𝑎 > 0, 𝑏 ≥ 0, and 𝑓 ∈ 𝐶(Ω×R,R)with 𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝑠)𝑑𝑠,

𝑥 ∈ Ω, and 𝑉 ∈ 𝐶(Ω,R).
When 𝑉(𝑥) = 0, problem (1) is related to the stationary

analogue of the Kirchhoff equation

𝑢

𝑡𝑡
− (𝑎 + 𝑏∫

Ω

|∇𝑢|

2
𝑑𝑥)Δ𝑢 = 𝑓 (𝑥, 𝑢) , (2)

proposed by Kirchhoff in [1] as an existence of the classical
D’Alembert’s wave equation for free vibrations of elastic
strings. Kirchhoff ’s model takes into account the changes in
length of the string produced by transverse vibrations. Some
interesting studies by variationalmethods can be found in [2–
11]. In these papers, many achievements had been obtained
on the existence of ground states, infinitely many radial
solutions, soliton solutions, and high energy solution for (1)
by using the FountainTheorem, the mountain pass theorem,

using the variational methods and the local minimummeth-
ods, and the invariant sets of descent flow. Particularly, in [12],
the authors consider the following problem:

−(𝑎 + 𝑏∫

Ω

|∇𝑢|

2
𝑑𝑥)Δ𝑢 + 𝜙𝑢 = 𝑓 (𝑥, 𝑢) , in Ω

−Δ𝜙 = 𝑢

2
, in Ω

𝑢 = 0 on 𝜕Ω,

(3)

whereΩ is a bounded smooth domain ofR𝑁 (𝑁 = 1, 2 or 3),
𝑎 > 0, 𝑏 ≥ 0, and 𝑓 : Ω × R → R is a continuous function
which is 3-superlinear. The unbounded sequence of sign-
changing solutions of (3) is obtained by using some variants
of themountain pass theorem. In [13], authors considered the
following 𝑝-Laplacian equation coupled with the Dirichlet
boundary condition:

−Δ

𝑝
𝑢 = 𝜆𝛼 (𝑥) 𝑓 (𝑢) in Ω,

𝑢 = 0 on 𝜕Ω,
(4)

where 𝑝 > 𝑁, the parameter 𝜆 > 0, 𝛼 ∈ 𝐿1(Ω) is a nonzero
potential, and 𝑓 ∈ 𝐶([0, +∞),R) with 𝑓(0) = 0. By using
variational method, they proved that for every 𝜆 > 1 problem
(4) has at least two nonzero, nonnegative weak solutions,
while there exists ̂𝜆 > 1 such that problem (4) has at least
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three nonzero, nonnegative weak solutions. In [14], Ricceri
proved that there were at least three distinct weak solutions
in𝐻1

0
(Ω) for the following equation:

−Δ𝑢 = 𝜆 (𝑓 (𝑢) + 𝜇𝑔 (𝑢)) in Ω

𝑢 = 0 on 𝜕Ω
(5)

by using and improving the three critical points’ theorem,
where 𝑓, 𝑔 ∈ 𝐶(R,R); let 𝐽

𝜇
be an open interval with 𝐽

𝜇
⊂

[0, +∞), 𝜆 ∈ 𝐽
𝜇
.

In this paper, we study the sign-changing solutions of
problem (1). We need the following assumptions:

(𝑉) 𝑉 ∈ 𝐶(Ω,R), 𝑉
0
fl inf

𝑥∈Ω
𝑉(𝑥) > 0.

(𝑓

1
) 𝑓 ∈ 𝐶(Ω × R,R), and |𝑓(𝑥, 𝑡)| ≤ 𝐶(1 + |𝑡|𝑝−1)

for some 4 < 𝑝 < 2∗, where 𝐶 is a positive constant,
2

∗
= +∞ for𝑁 = 1, 2, and 2∗ = 6 for𝑁 = 3.

(𝑓

2
) 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|) uniformly in 𝑥 ∈ Ω, as |𝑡| → 0.

(𝑓

3
)There exist 𝜇 > 4 and𝑀 > 0 such that

0 < 𝜇𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡, ∀ (𝑥, 𝑡) ∈ Ω ×R, |𝑡| ≥ 𝑀. (6)

(𝑓

4
) 𝑓(𝑥, −𝑡) = −𝑓(𝑥, 𝑡), for all 𝑥 ∈ Ω and 𝑡 ∈ R.

We need the following several notations. Let𝑋 fl 𝐻1

0
(Ω)

with the inner produce and norm

⟨𝑢, V⟩ = ∫
Ω

∇𝑢 ⋅ ∇V𝑑𝑥,

‖𝑢‖ = ⟨𝑢, 𝑢⟩

1/2
,

𝑢, V ∈ 𝑋.

(7)

Recall that a function 𝑢 ∈ 𝑋 is called a weak solution of
problem (1) if

(𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇𝑢∇𝜑𝑑𝑥 + ∫

Ω

𝑉 (𝑥) 𝑢𝜑𝑑𝑥

= ∫

Ω

𝑓 (𝑥, 𝑢) 𝜑𝑑𝑥, ∀𝜑 ∈ 𝑋.

(8)

Seeking aweak solution of problem (1) is equivalent to finding
a critical point of the 𝐶1-functional

𝐽 (𝑢) =

𝑎

2

∫

Ω

|∇𝑢|

2
𝑑𝑥 +

𝑏

4

(∫

Ω

|∇𝑢|

2
𝑑𝑥)

2

+

1

2

∫

Ω

𝑉 (𝑥) 𝑢

2
𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, 𝑢 ∈ 𝑋.

(9)

Since Ω is a bounded domain, it is well known that the
embedding 𝑋 → 𝐿

𝑠
(Ω) is continuous for all 𝑠 ∈ [1, 2∗] and

the embedding 𝑋 → 𝐿

𝑠
(Ω) is compact for all 𝑠 ∈ [1, 2∗).

Furthermore, there is another norm

‖𝑢‖0
= (∫

Ω

(|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
) 𝑑𝑥)

1/2

,

(10)

and we know that ‖ ⋅ ‖ and ‖ ⋅ ‖
0
are equivalent on 𝑋; that is,

there exist constants 𝐶 > 0, 𝐶 > 0 such that

𝐶 ‖𝑢‖ ≤ ‖𝑢‖0
≤ 𝐶 ‖𝑢‖ , ∀𝑢 ∈ 𝑋.

(11)

By Lemma 1 in [9], we know that, under the conditions (𝑉),
(𝑓

1
), and (𝑓

2
), 𝐽 ∈ 𝐶1

(𝑋,R) and for each 𝑢 ∈ 𝑋,

⟨𝐽


(𝑢) , 𝜑⟩ = (𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇𝑢∇𝜑𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) 𝑢𝜑𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢) 𝜑𝑑𝑥,

(12)

for all 𝜑 ∈ 𝑋.
Our main result of this paper is the following.

Theorem 1. Suppose that (𝑉) and (𝑓
1
)–(𝑓

3
) are satisfied.Then

(1) has three solutions of mountain pass type: one positive, one
negative, and one sign-changing. If moreover 𝑓 is odd with
respect to its second variable (i.e., (𝑓

4
) holds), then problem (1)

has infinitely many sign-changing solutions.

Throughout the paper, → and⇀ denote the strong and
weak convergence, respectively. 𝐶, 𝑐, 𝐶

𝑖
, and 𝑐

𝑖
express dis-

tinct constants. For 1 ≤ 𝑠 < ∞, the usual Lebesgue space is
endowed with the norm

‖𝑢‖𝑠
fl (∫

Ω

|𝑢|

𝑠
𝑑𝑥)

1/𝑠

.

(13)

The paper is organized as follows. In Section 2, we intro-
duce some notions and results of some critical theorem. In
Section 3, we complete the proof of Theorem 1.

2. Some Critical Point Theorems

Let us begin by recalling some notions and results of some
critical point theorems (see [15]).

In the following, 𝑋 will denote a Hilbert space endowed
with the norm ‖ ⋅ ‖

𝑋
, 𝑃 ⊂ 𝑋, which is a closed convex cone.

For 𝜀 > 0, we denote by 𝑉
𝜀
(𝑆) the 𝜀-neighborhood of 𝑆 ⊂

𝑋; that is,

𝑉

𝜀 (
𝑆) fl {𝑢 ∈ 𝑋 : dist (𝑢, 𝑆) fl inf

V∈𝑆
‖𝑢 − V‖𝑋 < 𝜀} . (14)

Define

+𝑃 fl {𝑢 ∈ 𝑋 : 𝑢 ≥ 0} ,

−𝑃 fl {𝑢 ∈ 𝑋 : 𝑢 ≤ 0} ,

𝑃

±

𝜀
fl 𝑉

𝜀 (
±𝑃) = {𝑢 ∈ 𝑋 : dist (𝑢, ±𝑃) < 𝜀} .

(15)

Let 𝐽 ∈ 𝐶1
(𝑋,R).We denote by𝐾 the set of critical points

of 𝐽 and 𝐸 = 𝑋 \ 𝐾.
For 𝜀

0
> 0, we consider the following situation.

(𝐴

𝜀0
): there exists a locally Lipschitz continuous vector

field 𝐵 : 𝐸 → 𝑋 (𝐵 odd if 𝐽 is even) such that

(i) 𝐵(𝑃±
𝜀
∩ 𝐸) ⊂ 𝑃

±

𝜀
, ∀𝜀 ∈ (0, 𝜀

0
);
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(ii) there exists a constant 𝛼
1
> 0 such that

⟨𝐽


(𝑢) , 𝑢 − 𝐵 (𝑢)⟩ ≥ 𝛼1 ‖

𝑢 − 𝐵 (𝑢)‖

2

𝑋
, ∀𝑢 ∈ 𝐸; (16)

(iii) for 𝜌
1
< 𝜌

2
and 𝛼 < 0, there exists 𝛽 > 0 such that

‖𝑢 − 𝐵(𝑢)‖

𝑋
≥ 𝛽 if 𝑢 ∈ 𝑋 is such that 𝐽(𝑢) ∈ [𝜌

1
, 𝜌

2
]

and ‖𝐽(𝑢)‖
𝑋
∗ ≥ 𝛼.

Definition 2. Let 𝐽 ∈ 𝐶1
(𝑋,R), 𝑐 ∈ R. One says that 𝐽 satisfies

the (𝑃𝑆)
𝑐
condition if each sequence {𝑢

𝑛
} ⊂ 𝑋 with 𝐽(𝑢

𝑛
) →

𝑐 and 𝐽(𝑢
𝑛
) → 0 in𝑋∗ has a convergent subsequence.

Theorem3 (see [15]). Let 𝐽 ∈ 𝐶1
(𝑋,R)with 𝐽(0) = 0. Assume

there exists 𝜀
0
> 0 such that (𝐴

𝜀0
) is satisfied. Assume also that

there exist 𝑒
±
∈ ±𝑃 and 𝑟 > 0 such that

(𝐴

1
)









𝑒

±







𝑋
> 𝑟,

𝜌 fl inf
𝑢∈𝑋

‖𝑢‖𝑋=𝑟

𝐽 (𝑢) > 𝛿 fl max {𝐽 (0) , 𝐽 (𝑒±)} .
(17)

Then there exist sequences {𝑢𝑛
±
} ⊂ 𝑃

±

𝜀
such that

𝐽


(𝑢

𝑛

±
) → 0 𝑖𝑛 𝑋

∗
,

𝐽 (𝑢

𝑛

±
) → 𝑐

±
fl inf

𝛾∈Γ±

sup
𝑢∈𝛾([0,1])

𝐽 (𝑢) ≥ 𝜌,

∀𝜀 ∈ (0, 𝜀

0
) ,

(18)

where

Γ

±
fl {𝛾 ∈ 𝐶 ([0, 1] , 𝑃±

𝜀
) : 𝛾 (0) = 0, 𝛾 (1) = 𝑒±

} . (19)

If in addition 𝐽 satisfies the (𝑃𝑆)
𝑐
condition for any 𝑐 > 0, then

𝐽 has critical point 𝑢
±
∈ ±𝑃 \ {0}.

Theorem 4 (see [15]). Let 𝐽 ∈ 𝐶1
(𝑋,R). Assume there exists

𝜀

0
> 0 such that (𝐴

𝜀0
) is satisfied. Assume also that there exists

a continuous map 𝜑
0
: Δ → 𝑋 such that, for any 𝜀 ∈ (0, 𝜀

0
),

the following conditions are satisfied:
(1) 𝜑

0
(𝜕

1
Δ) ⊂ 𝑃

+

𝜀
and 𝜑

0
(𝜕

2
Δ) ⊂ 𝑃

−

𝜀
.

(2) 𝜑
0
(𝜕

0
Δ)⋂𝑃

+

𝜀
⋂𝑃

−

𝜀
= Ø.

(3) 𝑐
0
fl sup

𝑢∈𝜑0(𝜕0Δ)
𝐽(𝑢) < 𝑐

∗ fl inf
𝑢∈𝜕𝑃
+

𝜀
⋂𝜕𝑃
−

𝜀

𝐽(𝑢),

where

Δ = {(𝑠, 𝑡) ∈ R
2
: 𝑠, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 1} ,

𝜕

1
Δ = {0} × [0, 1] ,

𝜕

2
Δ = [0, 1] × {0} ,

𝜕

0
Δ = {(𝑠, 𝑡) ∈ Δ : 𝑠 + 𝑡 = 1} .

(20)

Then there exists a sequence {𝑢
𝑛
} ⊂ 𝑉

𝜀/2
(𝑋 \ (𝑃

+

𝜀
∪ 𝑃

−

𝜀
)) such

that

𝐽


(𝑢

𝑛
) → 0 𝑖𝑛 𝑋

∗
,

𝐽 (𝑢

𝑛
) → 𝑐 fl inf

𝜑∈Γ

sup
𝑢∈𝜑(Δ)∩(𝑋\(𝑃

+

𝜀
∪𝑃
−

𝜀
))

𝐽 (𝑢) ≥ 𝑐0
,

∀𝜀 ∈ (0, 𝜀

0
) ,

(21)

where

Γ fl {𝜑 ∈ 𝐶 (Δ,𝑋) : 𝜑 (𝜕1Δ) ⊂ 𝑃
+

𝜀
, 𝜑 (𝜕

2
Δ)

⊂ 𝑃

−

𝜀
, 𝜑







𝜕0Δ
= 𝜑

0
} .

(22)

If in addition 𝐽 satisfies the (𝑃𝑆)
𝑐
condition for any 𝑐 > 0, then

𝐽 has a sign-changing critical point.

In the following, we assume that𝑋 is of the form

𝑋 fl
∞

⨁

𝑗=1

𝑋

𝑗
, with dim𝑋

𝑗
< ∞, (23)

and that there is another norm ‖ ⋅ ‖
∗
on𝑋 such that (𝑋, ‖ ⋅ ‖

𝑋
)

embeds continuously into (𝑋, ‖ ⋅ ‖
∗
).

We introduce the following notations:

𝑌

𝑘
fl

𝑘

⨁

𝑗=1

𝑋

𝑗
,

𝑍

𝑘
fl

∞

⨁

𝑗=𝑘

𝑋

𝑗
,

for 𝑘 ≥ 2,

𝐽

𝛼 fl {𝑢 ∈ 𝑋 : 𝐽 (𝑢) ≤ 𝛼} , for 𝛼 ∈ R.

(24)

Notice that

(𝑋, ‖⋅‖𝑋
) → (𝑋, ‖⋅‖∗

) ⇒ ∃𝐶

∗
> 0,

s.t. ‖𝑢‖∗ ≤ 𝐶∗ ‖
𝑢‖𝑋

, ∀𝑢 ∈ 𝑋,

dim𝑌
𝑘
< ∞ ⇒ ∃𝜃

𝑘
> 0,

s.t. ‖𝑢‖𝑋 ≤ 𝜃𝑘 ‖𝑢‖∗ , ∀𝑢 ∈ 𝑌𝑘.

(25)

Assume there exist constants 𝜌 > 0 and 𝑞 > 2 and numbers
𝜌

𝑘
, 𝑑

𝑘
> 0 such that

(𝜌

𝑘
/𝜃

𝑘
)

𝑞

𝜌

2

𝑘

+

𝜌

𝑘
(𝜌

𝑘
/𝜃

𝑘
)

𝜌

𝑘
+ 𝐶

∗
𝑑

𝑘
𝜌

𝑘

> 𝜌, (26)

and define

𝐵

𝑘
fl {𝑢 ∈ 𝑌

𝑘
: ‖𝑢‖ ≤ 𝜌𝑘

} ,

𝑁

𝑘
fl {𝑢 ∈ 𝑍

𝑘
:

‖𝑢‖

𝑞

∗

‖𝑢‖

2

𝑋

+

‖𝑢‖𝑋
⋅ ‖𝑢‖∗

‖𝑢‖𝑋
+ 𝑑

𝑘
⋅ ‖𝑢‖∗

= 𝜌} .

(27)

In the following, we introduce a sign-changing critical
points theorem.

Theorem 5 (see [15]). Let 𝐽 ∈ 𝐶1
(𝑋,R) be an even functional.

Assume that there exist 𝜌, 𝜌
𝑘
, 𝑑

𝑘
> 0 and 𝑞 > 2 such that (26)

holds. Assume also that there exists 𝜀
0
> 0 such that (𝐴

𝜀0
) and

the following conditions are satisfied:

(𝐵

1
) 𝑎

𝑘
fl sup

𝑢∈𝜕𝐵𝑘
𝐽(𝑢) ≤ 0 and 𝑏

𝑘
fl

inf
𝑢∈𝑁𝑘∩𝐽

𝑎0 𝐽(𝑢) → +∞, as 𝑘 → ∞.
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(𝐵

2
) 𝑁

𝑘
∩ 𝐽

𝑎0
⊂ 𝑋 \ (𝑃

+

𝜀
∪ 𝑃

−

𝜀
), ∀𝜀 ∈ (0, 𝜀

0
), where

𝑎

0
fl max

𝑢∈𝐵𝑘
𝐽(𝑢).

Then, for 𝑘 large enough there exists a sequence {𝑢𝑛
𝑘
}

𝑛
⊂

𝑉

𝜀/2
(𝑋 \ (𝑃

+

𝜀
∪ 𝑃

−

𝜀
)) such that

𝐽


(𝑢

𝑛

𝑘
) → 0 𝑖𝑛 𝑋

∗ as 𝑛 → ∞,

𝐽 (𝑢

𝑛

𝑘
) → 𝑐

𝑘
fl inf

𝛾∈Γ𝑘

max
𝑢∈𝛾(𝐵𝑘)∩(𝑋\(𝑃

+

𝜀
∪𝑃
−

𝜀
))

𝐽 (𝑢) ≥ 𝑏𝑘
, ∀𝜀 ∈ (0, 𝜀

0
) ,

(28)

where

Γ

𝑘
fl {𝛾 ∈ 𝐶 (𝐵

𝑘
, 𝑋) : 𝛾 𝑖𝑠 𝑜𝑑𝑑, 𝛾







𝜕𝐵𝑘

= 𝑖𝑑, sup
𝑢∈𝐵𝑘

𝐽 (𝛾 (𝑢)) ≤ 𝑎0
, 𝛾 (𝑃

+

𝜀
∪ 𝑃

−

𝜀
) ⊂ (𝑃

+

𝜀
∪ 𝑃

−

𝜀
)} .

(29)

If in addition 𝐽 satisfies the (𝑃𝑆)
𝑐
condition for any 𝑐 > 0, then

it possesses a sequence {𝑢
𝑘
} of sign-changing critical points such

that 𝐽(𝑢
𝑘
) → ∞, as 𝑘 → ∞.

3. Proof of Theorem 1

We divide the proof ofTheorem 1 into the following lemmas.
For 𝑢 ∈ 𝑋 fixed, we consider the functional

̃

𝐼

𝑢 (
V) =

1

2

(𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

|∇V|2 𝑑𝑥

+

1

2

∫

Ω

𝑉 (𝑥) V2𝑑𝑥 − ∫
Ω

𝑓 (𝑥, 𝑢) V𝑑𝑥,

V ∈ 𝑋.

(30)

It is easy to prove that ̃𝐼
𝑢
is of class 𝐶1, coercive, bounded

below, weakly lower semicontinuous, and strictly convex in
𝑋. Therefore, by Theorem 1.1 in [16], ̃𝐼

𝑢
admits a unique

global minimizer in 𝑋 which is the unique solution to the
problem

− (𝑎 + 𝑏 ‖𝑢‖

2
) ΔV + 𝑉 (𝑥) V = 𝑓 (𝑥, 𝑢) , 𝑢 ∈ 𝑋. (31)

Here we introduce an auxiliary operator 𝐴, which will be
used to construct the descending flow for the functional 𝐽(⋅).
We define an operator 𝐴 : 𝑋 → 𝑋: for 𝑢 ∈ 𝑋,𝐴𝑢 ∈ 𝑋 is
the unique solution of (31). Then the set of fixed points of 𝐴
coincide with the set𝐾 of critical point of 𝐽.

Furthermore, the operator𝐴 has the following important
properties.

Lemma 6. (1) 𝐴 is continuous and maps bounded sets to
bounded sets.

(2) For any 𝑢 ∈ 𝑋, one has

⟨𝐽


(𝑢) , 𝑢 − 𝐴𝑢⟩ ≥ 𝑎 ‖𝑢 − 𝐴𝑢‖

2
,











𝐽


(𝑢)











≤ (𝑎 + 𝐶

2

+ 𝑏 ‖𝑢‖

2
) ‖𝑢 − 𝐴𝑢‖ ,

(32)

where 𝐶 > 0 is defined in (11).
(3) There exists 𝜀

0
> 0 for enough small such that 𝐴(𝑃±

𝜀
) ⊂

𝑃

±

𝜀
, ∀𝜀 ∈ (0, 𝜀

0
).

Proof. (1) Let {𝑢
𝑛
} ⊂ 𝑋 such that 𝑢

𝑛
→ 𝑢 in 𝑋. For any

𝑤 ∈ 𝑋, by the definition of 𝐴, we have

(𝑎 + 𝑏









𝑢

𝑛









2
) ∫

Ω

∇ (𝐴𝑢

𝑛
) ∇𝑤𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) (𝐴𝑢𝑛
) 𝑤𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢

𝑛
) 𝑤𝑑𝑥,

(33)

(𝑎 + 𝑏









𝑢

𝑛









2
) ∫

Ω

∇ (𝐴𝑢) ∇𝑤𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) (𝐴𝑢)𝑤𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢)𝑤𝑑𝑥.

(34)

Let V
𝑛
= 𝐴𝑢

𝑛
and V = 𝐴𝑢. Taking 𝑤 = V

𝑛
− V ∈ 𝑋 in (33) and

(34), we obtain

(𝑎 + 𝑏









𝑢

𝑛









2
)









V
𝑛
− V




2
+ ∫

Ω

𝑉 (𝑥) (V𝑛 − V)
2
𝑑𝑥

= ∫

Ω

[𝑓 (𝑥, 𝑢

𝑛
) − 𝑓 (𝑥, 𝑢)] (V𝑛 − V) 𝑑𝑥

+ 𝑏 (‖𝑢‖

2
−









𝑢

𝑛









2
) ∫

Ω

∇V ⋅ ∇ (V
𝑛
− V) 𝑑𝑥.

(35)

Using the Hölder inequality and the Sobolev embedding
theorem, we have









𝐴𝑢

𝑛
− 𝐴𝑢









≤ 𝐶

1









𝑓 (𝑥, 𝑢

𝑛
) − 𝑓 (𝑥, 𝑢)







𝑝/(𝑝−1)

+

𝑏

𝑎



















𝑢

𝑛









2
− ‖𝑢‖

2








⋅ ‖V‖ ,
(36)

where 𝐶
1
> 0 is a constant. By (𝑓

1
) and Theorem A.1 in [17],

one has𝑓(𝑥, 𝑢
𝑛
)−𝑓(𝑥, 𝑢) → 0 in 𝐿𝑝/(𝑝−1)(Ω). Because 𝑢

𝑛
→

𝑢 in 𝑋 as 𝑛 → ∞, then ‖𝑢
𝑛
‖ → ‖𝑢‖ as 𝑛 → ∞. By (36),

we obtain ‖𝐴𝑢
𝑛
− 𝐴𝑢‖ → 0 in 𝑋, which implies that 𝐴 is

continuous on𝑋.
On the other hand, for any 𝑢 ∈ 𝑋, taking 𝑤 = 𝐴𝑢 ∈ 𝑋 in

(34), we obtain

(𝑎 + 𝑏 ‖𝑢‖

2
) ∫

Ω

|∇ (𝐴𝑢)|

2
𝑑𝑥 + ∫

Ω

𝑉 (𝑥) |𝐴𝑢|

2
𝑑𝑥

= ∫

Ω

𝑓 (𝑥, 𝑢) 𝐴𝑢𝑑𝑥.

(37)

Using the Hölder inequality, the Sobolev embedding theo-
rem, (𝑓

1
), and the fact 𝑏 ≥ 0, we obtain

‖𝐴𝑢‖ ≤ 𝐶 (1 + ‖𝑢‖

𝑝−1
) , (38)

where 𝐶 > 0 is constant. This shows that 𝐴𝑢 is bounded in𝑋
whenever 𝑢 is bounded in𝑋.

(2) Taking 𝑤 = 𝑢 − 𝐴𝑢 ∈ 𝑋 in (34), we have

(𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇ (𝐴𝑢) ⋅ ∇ (𝑢 − 𝐴𝑢) 𝑑𝑥

+ ∫

Ω

𝑉 (𝑥)𝐴𝑢 ⋅ (𝑢 − 𝐴𝑢) 𝑑𝑥

= ∫

Ω

𝑓 (𝑥, 𝑢) (𝑢 − 𝐴𝑢) 𝑑𝑥;

(39)
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thus

⟨𝐽


(𝑢) , 𝑢 − 𝐴𝑢⟩ = (𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇𝑢∇ (𝑢 − 𝐴𝑢) 𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) 𝑢 (𝑢 − 𝐴𝑢) 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) (𝑢 − 𝐴𝑢) 𝑑𝑥

≥ 𝑎 ‖𝑢 − 𝐴𝑢‖

2
,

(40)

for all 𝑢 ∈ 𝑋. Moreover, using again (34), we have

⟨𝐽


(𝑢) , 𝑤⟩ = (𝑎 + 𝑏 ‖𝑢‖

2
) ∫

Ω

∇𝑢∇𝑤𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) 𝑢𝑤𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢)𝑤𝑑𝑥

= (𝑎 + 𝑏 ‖𝑢‖

2
) ∫

Ω

∇ (𝑢 − 𝐴𝑢) ∇𝑤𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) (𝑢 − 𝐴𝑢)𝑤𝑑𝑥.

(41)

By the Hölder inequality, we conclude that











𝐽


(𝑢)











≤ (𝑎 + 𝐶

2

+ 𝑏 ‖𝑢‖

2
) ‖𝑢 − 𝐴𝑢‖ , (42)

where 𝐶 > 0 is defined in (11).
(3) From (𝑓

1
) and (𝑓

2
), for any 𝜀 > 0, there exists 𝐶

𝜀
> 0

such that









𝑓 (𝑥, 𝑡)









≤ 𝜀 |𝑡| + 𝐶𝜀 |
𝑡|

𝑝−1
, ∀𝑡 ∈ R, (43)

|𝐹 (𝑥, 𝑡)| ≤ 𝜀 |𝑡|

2
+ 𝐶

𝜀 |
𝑡|

𝑝
, ∀𝑡 ∈ R. (44)

Set 𝑢 ∈ 𝑋 and V = 𝐴𝑢 ∈ 𝑋. We denote 𝑤+
= max{0, 𝑤} and

𝑤

−
= min{0, 𝑤}, for any 𝑤 ∈ 𝑋. Taking 𝑤 = V+ in (34) and

using the Hölder inequality, we obtain

𝑎









V+




2

≤ 𝜀









𝑢

+




2









V+


2
+ 𝐶

𝜀









𝑢

+






𝑝−1

𝑝









V+


𝑝
, (45)

which implies









V+




2

≤

1

𝑎

(𝜀









𝑢

+




2









V+


2
+ 𝐶

𝜀









𝑢

+






𝑝−1

𝑝









V+


𝑝
) .

(46)

Since ‖𝑧+‖
𝑠
≤ ‖𝑧 −𝑤‖

𝑠
, for all 𝑧 ∈ 𝑋,𝑤 ∈ −𝑃, and 2 ≤ 𝑠 ≤ 2∗,

it follows from the Sobolev embedding theorem that there is
a constant 𝐶

1
= 𝐶

1
(𝑠) > 0 such that ‖𝑢+‖

𝑠
≤ 𝐶

1
dist(𝑢, −𝑃).

Moreover, one can easily verify that dist(V, −𝑃) ≤ ‖V+‖.
Consequently, by (46) and the Sobolev embedding theorem,
we have

dist (V, −𝑃) 




V+




≤









V+




2

≤ 𝐶

2
[𝜀 dist (𝑢, −𝑃) + 𝐶𝜀

dist (𝑢, −𝑃)𝑝−1] 




V+




,

(47)

where 𝐶
2
> 0. Therefore,

dist (V, −𝑃) ≤ 𝐶2
[𝜀 dist (𝑢, −𝑃) + 𝐶𝜀

dist (𝑢, −𝑃)𝑝−1] . (48)

Similarly, we can prove that

dist (V, +𝑃) ≤ 𝐶3
[𝜀 dist (𝑢, +𝑃) + 𝐶𝜀

dist (𝑢, +𝑃)𝑝−1] , (49)

for some constant 𝐶
3
> 0.

Hence

dist (V, ±𝑃) ≤ 𝐶4
[𝜀 dist (𝑢, ±𝑃) + 𝐶𝜀

dist (𝑢, ±𝑃)𝑝−1] , (50)

where𝐶
4
= max{𝐶

2
, 𝐶

3
}. We can choose 𝜀

0
> 0 small enough

so that, for all 𝜀 ∈ (0, 𝜀
0
),

dist (V, ±𝑃) ≤ 1
2

dist (𝑢, ± 𝑃)

whenever dist (𝑢, ±𝑃) < 𝜀.
(51)

It then follows that 𝐴(𝑃±
𝜀
) ⊂ 𝑃

±

𝜀
, ∀𝜀 ∈ (0, 𝜀

0
).

Notice that the vector field 𝐴 is not locally Lipschitz.
However, it can be used as [18] to construct a locally Lipschitz
vector field which will satisfy condition (𝐴

𝜀0
). More precisely,

we have the following result.

Lemma 7 (see [19, Lemma 3.4]). There exists a locally Lips-
chitz continuous operator 𝐵 : 𝐸 ≜ 𝑋 \ 𝐾 → 𝑋 (𝐵 odd when 𝐽
is even) such that

(1) ⟨𝐽(𝑢), 𝑢 − 𝐵𝑢⟩ ≥ (1/2)‖𝑢 − 𝐴𝑢‖2, for any 𝑢 ∈ 𝐸.

(2) (1/2)‖𝑢 − 𝐵𝑢‖ ≤ ‖𝑢 −𝐴𝑢‖ ≤ 2‖𝑢 − 𝐵𝑢‖, for any 𝑢 ∈ 𝐸.

(3) 𝐵(𝑃±
𝜀
∩𝐸) ⊂ 𝑃

±

𝜀
for any 𝜀 ∈ (0, 𝜀

0
), where 𝜀

0
is obtained

in Lemma 6(3).

Remark 8. Lemmas 6 and 7 imply that

⟨𝐽


(𝑢) , 𝑢 − 𝐵𝑢⟩ ≥

1

8

‖𝑢 − 𝐵𝑢‖

2
,











𝐽


(𝑢)











≤ 2 (𝑎 + 𝐶

2

+ 𝑏 ‖𝑢‖

2
) ‖𝑢 − 𝐵𝑢‖ .

(52)

Lemma 9. Let 𝜌
1
< 𝜌

2
and 𝛼 > 0. Then there exists 𝛽 > 0

such that ‖𝑢−𝐵𝑢‖ ≥ 𝛽 if 𝑢 ∈ 𝑋 is such that 𝐽(𝑢) ∈ [𝜌
1
, 𝜌

2
] and

‖𝐽


(𝑢)‖ ≥ 𝛼.

Proof. By the definition of the operator 𝐴, we have

(𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇𝑢 ⋅ ∇ (𝐴𝑢) 𝑑𝑥 + ∫

Ω

𝑉 (𝑥) 𝑢 (𝐴𝑢) 𝑑𝑥

= ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢𝑑𝑥, ∀𝑢 ∈ 𝑋.

(53)



6 Discrete Dynamics in Nature and Society

It follows that

𝐽 (𝑢) −

1

𝜇

(𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω

∇𝑢 ⋅ ∇ (𝑢 − 𝐴𝑢) 𝑑𝑥

−

1

𝜇

∫

Ω

𝑉 (𝑥) 𝑢 (𝑢 − 𝐴𝑢) 𝑑𝑥

= [𝑎(

1

2

−

1

𝜇

) + 𝑏(

1

4

−

1

𝜇

) ‖𝑢‖

2
] ⋅ ‖𝑢‖

2

+ (

1

2

−

1

𝜇

)∫

Ω

𝑉 (𝑥) 𝑢

2
𝑑𝑥

+ ∫

Ω

[

1

𝜇

𝑓 (𝑥, 𝑢) 𝑢 − 𝐹 (𝑥, 𝑢)] 𝑑𝑥

≥ 𝑎(

1

2

−

1

𝜇

) ‖𝑢‖

2
+ 𝑏(

1

4

−

1

𝜇

) ‖𝑢‖

4
.

(54)

If 𝑏 > 0, using Lemma 7(2) and theHölder inequality, one
has

𝑎(

1

2

−

1

𝜇

) ‖𝑢‖

2
+ 𝑏(

1

4

−

1

𝜇

) ‖𝑢‖

4

≤ |𝐽 (𝑢)| +

1

𝜇

(𝑎 + 𝐶

2

+ 𝑏 ‖𝑢‖

2
) ‖𝑢‖ ⋅ ‖𝑢 − 𝐴𝑢‖

≤ |𝐽 (𝑢)| +

2

𝜇

(𝑎 + 𝐶

2

+ 𝑏 ‖𝑢‖

2
) ‖𝑢‖ ⋅ ‖𝑢 − 𝐵𝑢‖ ,

(55)

for 𝐶 > 0 (see (11)). Suppose that there exists a sequence
{𝑢

𝑛
} ⊂ 𝑋 such that 𝐽(𝑢

𝑛
) ∈ [𝜌

1
, 𝜌

2
], ‖𝐽(𝑢

𝑛
)‖ ≥ 𝛼 and

‖𝑢

𝑛
− 𝐵𝑢

𝑛
‖ → 0. By (55), we see that {‖𝑢

𝑛
‖} is bounded. It

follows from Remark 8 above that ‖𝐽(𝑢
𝑛
)‖ → 0, which is a

contradiction.
If 𝑏 = 0, the conclusion is concluded by Remark 8.

Lemma 10. The functional 𝐽 satisfies the (𝑃𝑆) condition at any
level 𝑐 ∈ R.

Proof. In view of (9) and (12), (𝑓
3
), for any 𝑢 ∈ 𝑋, one has

𝐽 (𝑢) −

1

𝜇

⟨𝐽


(𝑢) , 𝑢⟩

= 𝑎(

1

2

−

1

𝜇

) ‖𝑢‖

2
+ 𝑏(

1

4

−

1

𝜇

) ‖𝑢‖

4

+ (

1

2

−

1

𝜇

)∫

Ω

𝑉 (𝑥) 𝑢

2
𝑑𝑥

+ ∫

Ω

[

1

𝜇

𝑓 (𝑥, 𝑢) 𝑢 − 𝐹 (𝑥, 𝑢)] 𝑑𝑥

≥ 𝑎(

1

2

−

1

𝜇

) ‖𝑢‖

2
.

(56)

Let {𝑢
𝑛
} ⊂ 𝑋 be a sequence such that sup

𝑛
|𝐽(𝑢

𝑛
)| < ∞ and

𝐽


(𝑢

𝑛
) → 0 in 𝑋∗ as 𝑛 → ∞. Inequality (56) implies that

{𝑢

𝑛
} is bounded in 𝑋. Then, up to a subsequence, we have

𝑢

𝑛
⇀ 𝑢 in 𝑋 and 𝑢

𝑛
→ 𝑢𝐿

𝑠
(Ω) for 2 ≤ 𝑠 < 2∗. Using a

standard argument, one has 𝐽(𝑢) = 0. Notice that

𝑜

𝑛 (
1) = ⟨𝐽


(𝑢

𝑛
) − 𝐽


(𝑢) , 𝑢𝑛

− 𝑢⟩

= (𝑎 + 𝑏 ‖𝑢‖

2
)∫

Ω









∇ (𝑢

𝑛
− 𝑢)









2
𝑑𝑥

+ 𝑏 (









𝑢

𝑛









2
− ‖𝑢‖

2
) ∫

Ω

∇𝑢 ⋅ ∇ (𝑢

𝑛
− 𝑢) 𝑑𝑥

+ ∫

Ω

𝑉 (𝑥) (𝑢𝑛
− 𝑢)

2
𝑑𝑥

− ∫

Ω

[𝑓 (𝑥, 𝑢

𝑛
) − 𝑓 (𝑥, 𝑢)] (𝑢𝑛

− 𝑢) 𝑑𝑥

≥ 𝑎









𝑢

𝑛
− 𝑢









2
+ 𝑏 (









𝑢

𝑛









2
− ‖𝑢‖

2
) ∫

Ω

∇𝑢

⋅ ∇ (𝑢

𝑛
− 𝑢) 𝑑𝑥

− ∫

Ω

[𝑓 (𝑥, 𝑢

𝑛
) − 𝑓 (𝑥, 𝑢)] (𝑢𝑛

− 𝑢) 𝑑𝑥.

(57)

Consequently, by (43), the Hölder inequality, and the bound-
ness of {𝑢

𝑛
} in 𝑋, we know that, for any 𝜀 > 0, there is a

constant 𝐶
𝜀
> 0 such that

𝑎









𝑢

𝑛
− 𝑢









2
≤ 𝜀









𝑢

𝑛







2
⋅









𝑢

𝑛
− 𝑢







2
+ 𝐶

𝜀









𝑢

𝑛









𝑝−1

𝑝

⋅









𝑢

𝑛
− 𝑢







𝑝
+ 𝜀 ‖𝑢‖2

⋅









𝑢

𝑛
− 𝑢







2

+ 𝐶

𝜀 ‖
𝑢‖

𝑝−1

𝑝
⋅









𝑢

𝑛
− 𝑢







𝑝
+ 𝑜

𝑛 (
1) .

(58)

By the arbitrariness of 𝜀 and 𝑋 → 𝐿

𝑠
(Ω) which is compact

for 𝑠 ∈ [2, 2∗), we have 𝑢
𝑛
→ 𝑢 in𝑋.

Lemma 11. For 𝑠 ∈ [1, 2∗], there exists 𝑘 > 0 such that for any
𝜀 > 0

‖𝑢‖𝑠
≤ 𝑘𝜀, ∀𝑢 ∈ 𝑃

+

𝜀
∩ 𝑃

−

𝜀
. (59)

Proof. For any 𝑢 ∈ 𝑋, this follows from the fact that








𝑢

±




𝑠
= inf

𝑤∈∓𝑃

‖𝑢 − 𝑤‖𝑠
≤ 𝐶

𝑠
inf
𝑤∈∓𝑃

‖𝑢 − 𝑤‖

= 𝐶

𝑠
dist (𝑢, ∓𝑃) ,

(60)

where 𝐶
𝑠
> 0 is the Sobolev constant in the continuous

embedding𝑋 → 𝐿𝑠(Ω) for all 𝑠 ∈ [1, 2∗].

Lemma 12. For 𝜀 > 0 small enough, one has

𝐽 (𝑢) ≥

𝑎

8

𝜀

2
, ∀𝑢 ∈ 𝜕𝑃

+

𝜀
∩ 𝜕𝑃

−

𝜀
. (61)

Proof. Let 𝑢 ∈ 𝜕𝑃+
𝜀
∩ 𝜕𝑃

−

𝜀
. It is clear that









𝑢

±






≥ dist (𝑢, ∓𝑃) = 𝜀, ∀𝜀 > 0. (62)

Using Lemma 11, we obtain

𝐽 (𝑢) ≥

𝑎

4

𝜀

2
− 𝐶𝜀

𝑝
, (63)

where 𝐶 > 0.
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Let us denote by 0 < 𝜆
1
< 𝜆

2
< 𝜆

3
≤ ⋅ ⋅ ⋅ the distinct

eigenvalues of the problem

−Δ𝑢 = 𝜆𝑢 in Ω,

𝑢 = 0, on 𝜕Ω.
(64)

It is well known that each𝜆
𝑗
(𝑗 ≥ 2) has finitemultiplicity, the

principle eigenvalue 𝜆
1
is simple with positive eigenfunction

𝑒

1
, and the eigenfunctions 𝑒

𝑗
corresponding to 𝜆

𝑗
(𝑗 ≥ 2) are

sign-changing. Let 𝑋
𝑗
be the eigenspace associated with 𝜆

𝑗
.

We set 𝑘 ≥ 2

𝑌

𝑘
fl

𝑘

⨁

𝑗=1

𝑋

𝑗
,

𝑍

𝑘
fl

∞

⨁

𝑗=𝑘

𝑋

𝑗
.

(65)

Note that any element of 𝑍
𝑘
\ {0} is sign-changing.

We define

𝑁

𝑘
fl {𝑢 ∈ 𝑍

𝑘
:

‖𝑢‖

𝑝

𝑝

‖𝑢‖

2
+

‖𝑢‖ ⋅ ‖𝑢‖𝑝

‖𝑢‖ + 𝛽

−𝜎

𝑘
⋅ ‖𝑢‖𝑝

= 𝜌} , (66)

where

𝜌 fl
𝑎

8𝐶

𝜀

, 𝐶

𝜀
is obtained in (43), (67)

𝛽

𝑘
fl sup
𝑢∈𝑍
𝑘

‖𝑢‖=1

‖𝑢‖𝑝
,

𝜎 fl
2

𝑝 (𝑝 − 2)

.

(68)

Lemma 13. One has for any fixed 𝛼 > 0

inf
𝑢∈𝑁𝑘∩𝐽

𝛼
𝐽 (𝑢) → +∞, 𝑘 → ∞. (69)

Proof. By the definition𝑁
𝑘
, we have

‖𝑢‖

𝑝

𝑝

‖𝑢‖

2
≤ 𝜌, ∀𝑢 ∈ 𝑁

𝑘
.

(70)

For each fixed 𝑢 ∈ 𝑁
𝑘
, for 𝜀 > 0 small enough, by (44) and

(67), we have

𝐽 (𝑢) ≥

𝑎

4

‖𝑢‖

2
− 𝐶

𝜀 ‖
𝑢‖

𝑝

𝑝
= ‖𝑢‖

2
(

𝑎

4

− 𝐶

𝜀

‖𝑢‖

𝑝

𝑝

‖𝑢‖

2
)

≥

𝑎

8

‖𝑢‖

2
.

(71)

Notice that

‖𝑢‖𝑝
≤ 𝜌 (1 + 𝐶

𝑝
𝛽

−𝜎

𝑘
) , ∀𝑢 ∈ 𝑁

𝑘
, (72)

where𝐶
𝑝
> 0 is the Sobolev constant in the embedding𝑋 →

𝐿

𝑝
(Ω).

For any 𝑢 ∈ 𝑁
𝑘
∩ 𝐽

𝛼, one has
𝑎

4

‖𝑢‖

2
≤ 𝛼 + 𝐶 ‖𝑢‖

𝑝

𝑝
. (73)

This implies that

‖𝑢‖ ≤ 𝐶∗
fl 𝐶 (𝛼, 𝑝, 𝜌) (1 + 𝛽−(𝜎/2)𝑝

𝑘
) ,

∀𝑢 ∈ 𝑁

𝑘
∩ 𝐽

𝛼
,

(74)

where 𝐶(𝛼, 𝑝, 𝜌) > 0.
Furthermore, ∀𝑢 ∈ 𝑁

𝑘
∩ 𝐽

𝛼, one has

𝜌 =

‖𝑢‖

𝑝

𝑝

‖𝑢‖

2
+

‖𝑢‖ ⋅ ‖𝑢‖𝑝

‖𝑢‖ + 𝛽

−𝜎

𝑘
‖𝑢‖𝑝

≤

‖𝑢‖

𝑝

𝑝

‖𝑢‖

2

+

‖𝑢‖ ⋅ ‖𝑢‖𝑝

2 (‖𝑢‖ ⋅ 𝛽

−𝜎

𝑘
‖𝑢‖𝑝

)

1/2
= (

‖𝑢‖𝑝

‖𝑢‖

)

2

‖𝑢‖

𝑝−2

𝑝

+

1

2

(‖𝑢‖ ⋅ 𝛽

𝜎

𝑘
⋅ ‖𝑢‖𝑝

)

1/2

≤ 𝛽

2

𝑘
⋅ 𝐶

𝑝−2

𝑝
⋅ ‖𝑢‖

𝑝−2

+

√

𝐶

𝑝

2

⋅ 𝛽

𝜎/2

𝑘
⋅ ‖𝑢‖ = 𝛽

2

𝑘
⋅ 𝐶

𝑝−2

𝑝
⋅ 𝐶

𝑝−2

∗
⋅

















1

𝐶

∗

𝑢

















𝑝−2

+

√

𝐶

𝑝

2

⋅ 𝛽

𝜎/2

𝑘
⋅ 𝐶

∗
⋅

















1

𝐶

∗

𝑢

















≤ (𝛽

2

𝑘
𝐶

𝑝−2

𝑝
𝐶

𝑝−2

∗
+

√

𝐶

𝑝

2

𝛽

𝜎/2

𝑘
𝐶

∗
)

⋅max{
















1

𝐶

∗

𝑢

















,

















1

𝐶

∗

𝑢

















𝑝−2

} ,

(75)

where𝐶
𝑝
> 0 is the Sobolev constant in the embedding𝑋 →

𝐿

𝑝
(Ω). By (74), one has ‖(1/𝐶

∗
)𝑢‖ ≤ 1, for𝑢 ∈ 𝑁

𝑘
∩𝐽

𝛼. Hence,

max{
















1

𝐶

∗

𝑢

















,

















1

𝐶

∗

𝑢

















𝑝−2

} =

















1

𝐶

∗

𝑢

















,

𝜌 ≤ (𝛽

2

𝑘
𝐶

𝑝−2

𝑝
𝐶

𝑝−3

∗
+

√

𝐶

𝑝

2

𝛽

𝜎/2

𝑘
)‖𝑢‖ ,

∀𝑢 ∈ 𝑁

𝑘
∩ 𝐽

𝛼
.

(76)

For any 𝑢 ∈ 𝑁
𝑘
∩ 𝐽

𝛼, we deduce

𝜌 ≤

̃

𝐶 (𝛼, 𝑝, 𝜌) (𝛽

2

𝑘
+ 𝛽

𝜎/2

𝑘
+ 𝛽

2−(𝜎/2)𝑝(𝑝−2)

𝑘
) ‖𝑢‖ ,

(77)

where ̃𝐶(𝛼, 𝑝, 𝜌) > 0 is a constant. From (71), one has

𝐽 (𝑢) ≥

𝑎

8

𝜌

2
⋅

̃

𝐶 (𝛼, 𝑝, 𝜌)

−2

⋅ (𝛽

2

𝑘
+ 𝛽

𝜎/2

𝑘
+ 𝛽

2−(𝜎/2)𝑝(𝑝−2)

𝑘
)

−2

,

∀𝑢 ∈ 𝑁

𝑘
∩ 𝐽

𝛼
.

(78)
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By (68), one has 2 − (𝜎/2)𝑝(𝑝 − 2) = 1 > 0. From Lemma 3.8
in [17], we know that 𝛽

𝑘
→ 0, as 𝑘 → ∞. Set 𝑘 → ∞ in

(78); we have

inf
𝑢∈𝑁𝑘∩𝐽

𝛼
𝐽 (𝑢) → +∞, as 𝑘 → ∞. (79)

Lemma 14. For any 𝛼 > 0, one has

𝛿

0 (
𝛼) fl dist (𝑁

𝑘
∩ 𝐽

𝛼
, 𝑃) > 0. (80)

Proof. The proof is similar to the proof of Lemma 5.4 in [20].

Proof of Theorem 1.
Step 1 (the existence of a positive and a negative solution). By
(44) and the Sobolev embedding theorem, ∀0 < 𝜀 < (1/4)𝑎,
there exists constant 𝐶 > 0 such that

𝐽 (𝑢) ≥

𝑎

4

‖𝑢‖

2
− 𝐶 ‖𝑢‖

𝑝
. (81)

Consequently, there exists 𝑟 > 0 (small enough) such that

inf
‖𝑢‖=𝑟

𝐽 (𝑢) ≥

1

8

𝑟

2
> 0. (82)

From (𝑓
3
) and (44), we have

𝐹 (𝑥, 𝑡) ≥ 𝐶1 |
𝑡|

𝜇
− 𝐶

2
𝑡

2
, ∀ (𝑥, 𝑡) ∈ Ω ×R, (83)

for some positive constants 𝐶
1
and 𝐶

2
. Thus, by (83) and the

Sobolev embedding theorem, one has

𝐽 (𝑢) ≤ 𝐶3 ‖
𝑢‖

2
+

𝑏

4

‖𝑢‖

4
− 𝐶

4 ‖
𝑢‖

𝜇

𝜇
,

(84)

where 𝐶
3
> 0, 𝐶

4
> 0. Fixing 𝑒 ∈ 𝑋 \ {0}, it is easy to prove

that

𝐽 (𝑡𝑒) → −∞ as 𝑡 → +∞. (85)

Therefore, we can find 𝑒
±
∈ ±𝑃 such that








𝑒

±









> 𝑟,

𝐽 (𝑒

±
) < 0.

(86)

This shows that condition (𝐴
1
) of Theorem 3 is satisfied. By

Lemmas 6, 7, and 9, condition (𝐴
𝜀0
) is satisfied for 𝜀

0
> 0

small enough. By Lemma 10, 𝐽 satisfies the (𝑃𝑆) condition at
any positive level 𝑐. Hence, the existence of a positive and a
negative solution follows fromTheorem 3.

In the following proof, we adopt the notations of
Theorem 4.

Step 2 (the existence of a sign-changing solution). Using
the the main idea of [21], we will verify the assumptions of
Theorem 4.

Let V
1
, V

2
∈ 𝐶

∞

0
(Ω)\{0} be such that supp(V

1
)∩supp(V

2
) =

Ø, V
1
≤ 0 and V

2
≥ 0.We define the continuousmap𝜑

0
: Δ →

𝑋 by 𝜑
0
(𝑠, 𝑡) = 𝑅(𝑠V

1
+ 𝑡V

2
) for all (𝑠, 𝑡) ∈ Δ, where 𝑅 > 0 is

a constant to be determined later. Obviously, 𝜑
0
(0, 𝑡) ∈ 𝑃

+

𝜀

and 𝜑
0
(𝑠, 0) ∈ 𝑃

−

𝜀
for all 𝜀 > 0. This implies that 𝜑

0
(𝜕

1
Δ) ⊂ 𝑃

+

𝜀

and 𝜑
0
(𝜕

2
Δ) ⊂ 𝑃

−

𝜀
; that is, Theorem 4(1) holds. Now a simple

computation is as follows:

𝛿 fl min {




(1 − 𝑡) V1 + 𝑡V2






2
: 𝑡 ∈ [0, 1]} > 0. (87)

Then ‖𝑢‖
2
≥ 𝛿𝑅 for 𝑢 ∈ 𝜑

0
(𝜕

0
Δ) and it follows fromLemma 11

that 𝜑
0
(𝜕

0
Δ) ∩ 𝑃

+

𝜀
∩ 𝑃

−

𝜀
= Ø, for 𝑅 large enough and for any

𝜀 > 0.
By (84), there exist constants𝐶

3
> 0 and𝐶

4
> 0 such that

𝐽 (𝑢) ≤ 𝐶3 ‖
𝑢‖

2
+

𝑏

4

‖𝑢‖

4
− 𝐶

4 ‖
𝑢‖

𝜇

𝜇
.

(88)

Combining with Lemma 12, for 𝑅 large enough and 𝜀 > 0
small enough, we obtain

𝑐

0
= sup

𝑢∈𝜑0(𝜕0Δ)

𝐽 (𝑢) < 0 < 𝑐

∗ fl inf
𝑢∈𝜕𝑃
+

𝜀
∩𝜕𝑃
−

𝜀

𝐽 (𝑢) . (89)

ByTheorem 4, 𝐽 has a sign-changing critical point.

Step 3 (the existence of infinitelymany high energy solutions).
Because dim𝑌

𝑘
< +∞, there exists 𝜃

𝑘
> 0 such that ‖𝑢‖ ≤

𝜃

𝑘
‖𝑢‖

𝜇
for any 𝑢 ∈ 𝑌

𝑘
. Combining with (83), one has

𝐽 (𝑢) ≤ 𝐶1 ‖
𝑢‖

2
+

𝑏

4

‖𝑢‖

4
− 𝐶

2 ‖
𝑢‖

𝜇
, ∀𝑢 ∈ 𝑌

𝑘
,

(90)

where 𝐶
1
> 0, 𝐶

2
> 0. Hence, we have 𝐽(𝑢) → −∞ on 𝑌

𝑘
as

‖𝑢‖ → ∞.
We can then choose 𝜌

𝑘
> 0 large enough so that

(𝜌

𝑘
/𝜃

𝑘
)

𝑝

𝜌

2

𝑘

+

𝜌

𝑘
(𝜌

𝑘
/𝜃

𝑘
)

𝜌

𝑘
+ 𝐶

𝑝
𝛽

−𝜎

𝑘
𝜌

𝑘

> 𝜌,

𝑎

𝑘
fl max
𝑢∈𝑌
𝑘

‖𝑢‖=𝜌𝑘

𝐽 (𝑢) < 0,

(91)

where 𝜎 is given by (67) and 𝐶
𝑝
is the Sobolev constant.

Combining with Lemma 13, condition (𝐵
1
) of Theorem 5 is

satisfied. By Lemma 14,

𝛿

0
(𝑎

0
) fl dist (𝑁

𝑘
∩ 𝐽

𝑎0
, 𝑃) > 0, (92)

where 𝑎
0
fl max

𝑢∈𝐵𝑘
𝐽(𝑢) > 0.

For any 𝑢 ∈ 𝑁
𝑘
∩ 𝐽

𝑎0 , V ∈ 𝑃, and 𝑤 ∈ 𝑃+
𝜀
∩ 𝑃

−

𝜀
, one has

0 < 𝛿

0
(𝑎

0
) = inf
𝑢∈𝑁
𝑘
⋂𝐽
𝑎0

V∈𝑃

‖𝑢 − V‖

≤ ‖𝑢 − 𝑤‖ +









𝑤

+
− V+





+









𝑤

−
− V−





,

(93)

where V+ = max{V, 0}, V− = min{V, 0},𝑤+
∈ 𝑃

+

𝜀
, and𝑤−

∈ 𝑃

−

𝜀
.

Hence

0 < 𝛿

0
(𝑎

0
) = dist (𝑢, 𝑃+

𝜀
∪ 𝑃

−

𝜀
) + 2𝜀. (94)

Set 𝜀
0
∈ (0, (1/2)𝛿

0
(𝑎

0
)); one has

dist (𝑢, 𝑃+
𝜀
∪ 𝑃

−

𝜀
) ≥ 𝛿

0
(𝑎

0
) − 2𝜀 > 0, ∀𝜀 ∈ (0, 𝜀

0
) . (95)

This implies that condition (𝐵
2
) ofTheorem 5 holds.Thus, by

Theorem 5, we obtain that 𝐽 possess a sequence {𝑢
𝑘
} of sign-

changing critical point such that 𝐽(𝑢
𝑘
) → ∞ as 𝑘 → ∞.
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