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Some generalized integral inequalities are established for the fractional expectation and the fractional variance for continuous
random variables. Special cases of integral inequalities in this paper are studied by Barnett et al. and Dahmani.

1. Introduction

Integral inequalities play a fundamental role in the theory
of differential equations, functional analysis, and applied
sciences. Important development in this theory has been
achieved in the last two decades. For these, see [1–8] and
the references therein. Moreover, the study of fractional type
inequalities is also of vital importance. Also see [9–13] for
further information and applications. The first one is given
in [14]; in their paper, using Korkine identity and Holder
inequality for double integrals, Barnett et al. established
several integral inequalities for the expectation 𝐸(𝑋) and the
variance 𝜎2(𝑋) of a random variable 𝑋 having a probability
density function (p.d.f.) 𝑓 : [𝑎, 𝑏] → R+. In [15–17] the
authors presented new inequalities for the moments and for
the higher order central moments of a continuous random
variable. In [17, 18] Dahmani and Miao and Yang gave
new upper bounds for the standard deviation 𝜎(𝑋), for the
quantity 𝜎2(𝑋)+(𝑡−𝐸(𝑋))2, 𝑡 ∈ [𝑎, 𝑏], and for the 𝐿𝑝 absolute
deviation of a random variable𝑋. Recently, Anastassiou et al.
[9] proposed a generalization of the weighted Montgomery
identity for fractional integrals with weighted fractional
Peano kernel. More recently, Dahmani and Niezgoda [17, 19]
gave inequalities involvingmoments of a continuous random
variable defined over a finite interval. Other papers dealing
with these probability inequalities can be found in [20–22].

In this paper, we introduce new concepts on “generalized
fractional random variables.” We obtain new generalized

integral inequalities for the generalized fractional dispersion
and the generalized fractional variance functions of a con-
tinuous random variable 𝑋 having the probability density
function (p.d.f.) 𝑓 : [𝑎, 𝑏] → R+ by using these concepts.
Our results are extension of [12, 14, 17].

2. Preliminaries

Definition 1 (see [23]). Let 𝑓 ∈ 𝐿
1
[𝑎, 𝑏]. The Riemann-

Liouville fractional integrals 𝐽𝛼
𝑎
+𝑓(𝑥) and 𝐽𝛼

𝑏
−𝑓(𝑥) of order

𝛼 ≥ 0 are defined by

𝐽
𝛼

𝑎
+ [𝑓 (𝑥)] =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡 𝑥 > 𝑎, (1)

𝐽
𝛼

𝑏
− [𝑓 (𝑥)] =

1

Γ (𝛼)
∫

𝑏

𝑥

(𝑡 − 𝑥)
𝛼−1

𝑓 (𝑡) 𝑑𝑡 𝑥 < 𝑏, (2)

respectively, where Γ(𝛼) = ∫∞
0
𝑒
−𝑢
𝑢
𝛼−1
𝑑𝑢 is Gamma function

and 𝐽0
𝑎
+𝑓(𝑥) = 𝐽

0

𝑏
−𝑓(𝑥) = 𝑓(𝑥).

We give the following properties for the 𝐽𝛼
𝑎
+ :

𝐽
𝛼

𝑎
+𝐽
𝛽

𝑎
+
[𝑓 (𝑡)] = 𝐽

𝛼+𝛽

𝑎
+
[𝑓 (𝑡)] , 𝛼 ≥ 0, 𝛽 ≥ 0,

𝐽
𝛼

𝑎
+𝐽
𝛽

𝑎
+
[𝑓 (𝑡)] = 𝐽

𝛽

𝑎
+
𝐽
𝛼

𝑎
+ [𝑓 (𝑡)] , 𝛼 ≥ 0, 𝛽 ≥ 0.

(3)
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Definition 2 (see [24]). Consider the space 𝐿
𝑝,𝑘
(𝑎, 𝑏) (𝑘 ≥

0, 1 ≤ 𝑝 < ∞) of those real-valued Lebesgue measurable
functions 𝑓 on [𝑎, 𝑏] for which

𝑓
𝐿
𝑝,𝑘(𝑎,𝑏)

= (∫

𝑏

𝑎

𝑓 (𝑥)


𝑝

𝑥
𝑘
𝑑𝑥)

1/𝑝

< ∞,

1 ≤ 𝑝 < ∞, 𝑘 ≥ 0.

(4)

Definition 3 (see [24]). Consider the space 𝑋𝑝
𝑐
(𝑎, 𝑏) (𝑐 ∈

𝑅, 1 ≤ 𝑝 < ∞) of those real-valued Lebesgue measurable
functions 𝑓 on [𝑎, 𝑏] for which

𝑓
𝑋
𝑝

𝑐

= (∫

𝑏

𝑎

𝑥
𝑐
𝑓 (𝑥)



𝑝 𝑑𝑥

𝑥
)

1/𝑝

< ∞,

(1 ≤ 𝑝 < ∞, 𝑐 ∈ 𝑅)

(5)

and for the case 𝑝 = ∞

𝑓
𝑋∞
𝑐

= ess sup
𝑎≤𝑥≤𝑏

[𝑥
𝑐
𝑓 (𝑥)] , 𝑐 ∈ 𝑅. (6)

In particular, when 𝑐 = (𝑘 + 1)/𝑝 (1 ≤ 𝑝 < ∞, 𝑘 ≥ 0) the
space 𝑋𝑝

𝑐
(𝑎, 𝑏) coincides with the 𝐿

𝑝,𝑘
(𝑎, 𝑏)-space and also if

we take 𝑐 = (1/𝑝) (1 ≤ 𝑝 < ∞) the space 𝑋𝑝
𝑐
(𝑎, 𝑏) coincides

with the classical 𝐿𝑝(𝑎, 𝑏)-space.

Definition 4 (see [24]). Let 𝑓 ∈ 𝐿
1,𝑘
[𝑎, 𝑏]. The generalized

Riemann-Liouville fractional integrals 𝐽𝛼,𝑘
𝑎
+ 𝑓(𝑥) and 𝐽𝛼,𝑘

𝑏
− 𝑓(𝑥)

of orders 𝛼 ≥ 0 and 𝑘 ≥ 0 are defined by

𝐽
𝛼,𝑘

𝑎
+ 𝑓 (𝑥) =

(𝑘 + 1)
1−𝛼

Γ (𝛼)
∫

𝑥

𝑎

(𝑥
𝑘+1

− 𝑡
𝑘+1
)
𝛼−1

𝑡
𝑘
𝑓 (𝑡) 𝑑𝑡 𝑥 > 𝑎,

(7)

𝐽
𝛼,𝑘

𝑏
− 𝑓 (𝑥) =

(𝑘 + 1)
1−𝛼

Γ (𝛼)
∫

𝑏

𝑥

(𝑡
𝑘+1

− 𝑥
𝑘+1
)
𝛼−1

𝑡
𝑘
𝑓 (𝑡) 𝑑𝑡 𝑏 > 𝑥.

(8)

Here Γ(𝛼) is Gamma function and 𝐽0,𝑘
𝑎
+ 𝑓(𝑥) = 𝐽

0,𝑘

𝑏
− 𝑓(𝑥) =

𝑓(𝑥). Integral formulas (7) and (8) are called right generalized
Riemann-Liouville integral and left generalized Riemann-
Liouville fractional integral, respectively.

Definition 5. The fractional expectation function of orders
𝛼 ≥ 0 and 𝑘 ≥ 0, for a random variable 𝑋 with a positive
p.d.f. 𝑓 defined on [𝑎, 𝑏], is defined as

𝐸
𝑋,𝛼
(𝑡) := 𝐽

𝛼,𝑘

𝑎
+ [𝑡𝑓 (𝑡)]

=
(𝑘 + 1)

1−𝛼

Γ (𝛼)
∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

𝜏
𝑘+1
𝑓 (𝜏) 𝑑𝜏,

𝑎 < 𝑡 ≤ 𝑏.

(9)

In the sameway, we define the fractional expectation function
of𝑋 − 𝐸(𝑋) by what follows.

Definition 6. The fractional expectation function of orders
𝛼 ≥ 0, 𝑘 ≥ 0, and 𝑎 < 𝑡 ≤ 𝑏, for a random variable 𝑋 − 𝐸(𝑋),
is defined as

𝐸
𝑋−𝐸(𝑋),𝛼

(𝑡)

:=
(𝑘 + 1)

1−𝛼

Γ (𝛼)
∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

× (𝜏 − 𝐸 (𝑋)) 𝜏
𝑘
𝑓 (𝜏) 𝑑𝜏,

(10)

where 𝑓 : [𝑎, 𝑏] → R+ is the p.d.f. of𝑋.

For 𝑡 = 𝑏, we introduce the following concept.

Definition 7. The fractional expectation of orders 𝛼 ≥ 0, 𝑎 <
𝑡 ≤ 𝑏, and 𝑘 ≥ 0, for a random variable𝑋with a positive p.d.f.
𝑓 defined on [𝑎, 𝑏], is defined as

𝐸
𝑋,𝛼

=
(𝑘 + 1)

1−𝛼

Γ (𝛼)
∫

𝑏

𝑎

(𝑏
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

𝜏
𝑘+1
𝑓 (𝜏) 𝑑𝜏. (11)

For the fractional variance of𝑋, we introduce the follow-
ing two definitions.

Definition 8. Thefractional variance function of orders𝛼 ≥ 0,
𝑎 < 𝑡 ≤ 𝑏, and 𝑘 ≥ 0, for a random variable 𝑋 having a p.d.f.
𝑓 : [𝑎, 𝑏] → R+, is defined as

𝜎
2

𝑋,𝛼
:= 𝐽
𝛼,𝑘

𝑎
+ [(𝑡 − 𝐸(𝑋))

2
𝑓 (𝑡)]

=
(𝑘 + 1)

1−𝛼

Γ (𝛼)
∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝜏 − 𝐸(𝑋))
2
𝜏
𝑘
𝑓 (𝜏) 𝑑𝜏,

(12)

where 𝐸(𝑋) := ∫𝑏
𝑎
𝜏𝑓(𝜏)𝑑𝜏 is the classical expectation of𝑋.

Definition 9. The fractional variance of order 𝛼 ≥ 0, for a
random variable 𝑋 with a p.d.f. 𝑓 : [𝑎, 𝑏] → R+, is defined
as

𝜎
2

𝑋,𝛼
=
(𝑘 + 1)

1−𝛼

Γ (𝛼)
∫

𝑏

𝑎

(𝑏
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

× (𝜏 − 𝐸(𝑋))
2
𝜏
𝑘
𝑓 (𝜏) 𝑑𝜏.

(13)

We give the following important properties.

(1) If we take 𝛼 = 1 and 𝑘 = 0 in Definition 5, we obtain
the classical expectation 𝐸

𝑋,1
= 𝐸(𝑋).

(2) If we take 𝛼 = 1 and 𝑘 = 0 in Definition 7, we
obtain the classical variance 𝜎2

𝑋,1
= 𝜎
2
(𝑋) = ∫

𝑏

𝑎
(𝜏 −

𝐸(𝑋))
2
𝑓(𝜏)𝑑𝜏.

(3) If we take 𝑘 = 0 in Definitions 5–9, we obtain
Definitions 2.2–2.6 in [17].

(4) For 𝛼 > 0, the p.d.f. 𝑓 satisfies 𝐽𝛼[𝑓(𝑏)] = (𝑏 −

𝑎)
𝛼−1
/Γ(𝛼).

(5) For 𝛼 = 1, we have the well known property
𝐽
𝛼
[𝑓(𝑏)] = 1.
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3. Main Results

Theorem 10. Let 𝑋 be a continuous random variable having
a p.d.f. 𝑓 : [𝑎, 𝑏] → R+. Then

(a) for all 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, and 𝑘 ≥ 0,

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡) − (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))
2

≤
𝑓


2

∞

[

[

(𝑘 + 1)
1−𝛼

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛼

Γ (𝛼 + 1)
𝐽
𝛼,𝑘

𝑎
+ [𝑡
2𝑘+2

]

− (𝐽
𝛼,𝑘

𝑎
+ [𝑡])

2
]

]

,

(14)

provided that 𝑓 ∈ 𝐿
∞
[𝑎, 𝑏];

(b) the inequality

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡) − (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))
2

≤
1

2
(𝑡
𝑘+1

− 𝑎
𝑘+1
)
2

(𝐽
𝛼,𝑘

𝑎
+ [𝑡])

2
(15)

is also valid for all 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, and 𝑘 ≥ 0.

Proof. Let us define the quantity for p.d.f. 𝑔 and ℎ:

𝐻(𝜏, 𝜌) := (𝑔 (𝜏) − 𝑔 (𝜌)) (ℎ (𝜏) − ℎ (𝜌)) ;

𝜏, 𝜌 ∈ (𝑎, 𝑡) , 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0.

(16)

Taking a function 𝑝 : [𝑎, 𝑏] → R+, multiplying (16) by ((𝑡𝑘+1

−𝜏
𝑘+1
)
𝛼−1
/Γ(𝛼))𝑝(𝜏)𝜏

𝑘
, 𝜏 ∈ (𝑎, 𝑡), and then integrating the

resulting identity with respect to 𝜏 from 𝑎 to 𝑡, we have

(𝑘 + 1)
1−𝛼

Γ (𝛼)
∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

𝑝 (𝜏)𝐻 (𝜏, 𝜌) 𝜏
𝑘
𝑓 (𝜏) 𝑑𝜏

= 𝐽
𝛼,𝑘

𝑎
+ [𝑝𝑔ℎ (𝑡)] − ℎ (𝜌) 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔 (𝑡)]

− 𝑔 (𝜌) 𝐽
𝛼,𝑘

𝑎
+ [𝑝ℎ (𝑡)] + 𝑔 (𝜌) ℎ (𝜌) 𝐽

𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] .

(17)

Similarly, multiplying (17) by ((𝑡𝑘+1 − 𝜌𝑘+1)𝛼−1/Γ(𝛼))𝑝(𝜌)𝜌𝑘,
𝜌 ∈ (𝑎, 𝑡), and integrating the resulting identity with respect
to 𝜌 over (𝑎, 𝑡), we can write

(𝑘 + 1)
2−2𝛼

Γ2 (𝛼)
∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑝 (𝜏) 𝑝 (𝜌)𝐻 (𝜏, 𝜌) 𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

= 2𝐽
𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔ℎ (𝑡)]

− 2𝐽
𝛼,𝑘

𝑎
+ [𝑝𝑔 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝ℎ (𝑡)] .

(18)

If, in (18), we take 𝑝(𝑡) = 𝑓(𝑡) and 𝑔(𝑡) = ℎ(𝑡) = 𝑡𝑘+1 − 𝐸(𝑋),
𝑡 ∈ (𝑎, 𝑏), then we have

(𝑘 + 1)
2−2𝛼

Γ2 (𝛼)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑓 (𝜏) 𝑓 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

= 2𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))

2

]

− 2 [𝐽
𝛼,𝑘

𝑎
+ 𝑓(𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))]

2

.

(19)

On the other hand, we have

(𝑘 + 1)
2−2𝛼

Γ2 (𝛼)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑓 (𝜏) 𝑓 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

≤
𝑓


2

∞

[

[

2

(𝑘 + 1)
1−𝛼

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛼

Γ (𝛼 + 1)
𝐽
𝛼,𝑘

𝑎
+ [𝑡
2𝑘+2

]

− 2 (𝐽
𝛼,𝑘

𝑎
+ [𝑡])

2
]

]

.

(20)

Thanks to (19) and (20), we obtain part (a) of Theorem 10.
For part (b), we have

(𝑘 + 1)
2−2𝛼

Γ2 (𝛼)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑓 (𝜏) 𝑓 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

≤ sup
𝜏,𝜌∈[𝑎,𝑡]


(𝜏
𝑘+1

− 𝜌
𝑘+1
)


2

[𝐽
𝛼,𝑘

𝑎
+ 𝑓 (𝑡)]

2

= (𝑡
𝑘+1

− 𝑎
𝑘+1
)
2

[𝐽
𝛼,𝑘

𝑎
+ 𝑓 (𝑡)]

2

.

(21)

Then, by (19) and (21), we get the desired inequality (14).

We give also the following corollary.

Corollary 11. Let 𝑋 be a continuous random variable with a
p.d.f. 𝑓 defined on [𝑎, 𝑏]. Then
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(i) if 𝑓 ∈ 𝐿
∞
[𝑎, 𝑏], then for any 𝛼 ≥ 0 and 𝑘 ≥ 0, one has

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
(𝛼−1)

Γ (𝛼)
𝜎
2

𝑋,𝛼
− 𝐸
2

𝑋,𝛼

≤
𝑓


2

∞

[
[

[

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2𝛼+2

Γ (𝛼 + 1) Γ (𝛼 + 3)
− (

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
𝛼+1

Γ (𝛼 + 1)
)

2

]
]

]

;

(22)

(ii) the inequality

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
(𝛼−1)

Γ (𝛼)
𝜎
2

𝑋,𝛼
− 𝐸
2

𝑋,𝛼
≤
1

2

[

[

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2𝛼

Γ2 (𝛼)

]

]

(23)

is also valid for any 𝛼 ≥ 0 and 𝑘 ≥ 0.

Remark 12. (r1) Taking 𝛼 = 1 and 𝑘 = 0 in (i) of Corollary 11,
we obtain the first part of Theorem 1 in [14].

(r2) Taking 𝛼 = 1 and 𝑘 = 0 in (ii) of Corollary 11, we
obtain the last part of Theorem 1 in [14].

Wewill further generalizeTheorem 10 by considering two
fractional positive parameters.

Theorem 13. Let X be a continuous random variable having a
p.d.f. 𝑓 : [𝑎, 𝑏] → R+. Then one has the following.

(a) For all 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝑘 ≥ 0,

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛽
(𝑡) + 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡)

− 2 (𝐸
𝑋−𝐸(𝑋),𝛼

(𝑡)) (𝐸
𝑋−𝐸(𝑋),𝛽

(𝑡))

≤
𝑓


2

∞

[

[

(𝑘 + 1)
1−𝛼

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛼

Γ (𝛼 + 1)
𝐽
𝛽,𝑘

𝑎
+
[𝑡
2𝑘+2

]]

]

+
𝑓


2

∞

[

[

(𝑘 + 1)
1−𝛽

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛽

Γ (𝛽 + 1)
𝐽
𝛼,𝑘

𝑎
+ [𝑡
2𝑘+2

]

− 2 (𝐽
𝛼,𝑘

𝑎
+ [𝑡]) (𝐽

𝛽,𝑘

𝑎
+ [𝑡])

]

]

,

(24)

where 𝑓 ∈ 𝐿
∞
[𝑎, 𝑏].

(b) The inequality

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛽
(𝑡) + 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡)

− 2 (𝐸
𝑋−𝐸(𝑋),𝛼

(𝑡)) (𝐸
𝑋−𝐸(𝑋),𝛽

(𝑡))

≤ (𝑡
𝑘+1

− 𝑎
𝑘+1
)
2

(𝐽
𝛼,𝑘

𝑎
+ [𝑡]) (𝐽

𝛽,𝑘

𝑎
+ [𝑡])

(25)

is also valid for any 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝑘 ≥ 0.

Proof. Using (15), we can write

(𝑘 + 1)
2−𝛼−𝛽

Γ (𝛼) Γ (𝛽)
∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑝 (𝜏) 𝑝 (𝜌)𝐻 (𝜏, 𝜌) 𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

= 𝐽
𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑝𝑔ℎ (𝑡)] + 𝐽

𝛽,𝑘

𝑎
+
[𝑝 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔ℎ (𝑡)]

− 𝐽
𝛼,𝑘

𝑎
+ [𝑝ℎ (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑝𝑔 (𝑡)]

− 𝐽
𝛽,𝑘

𝑎
+
[𝑝ℎ (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔 (𝑡)] .

(26)

Taking 𝑝(𝑡) = 𝑓(𝑡) and 𝑔(𝑡) = ℎ(𝑡) = 𝑡𝑘+1 − 𝐸(𝑋), 𝑡 ∈ (𝑎, 𝑏),
in the above identity, yields

(𝑘 + 1)
2−𝛼−𝛽

Γ (𝛼) Γ (𝛽)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑝 (𝜏) 𝑝 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

= 𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))

2

]

+ 𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

]

− 2𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] 𝐽

𝛽,𝑘

𝑎
+

× [𝑓 (𝑡) (𝑡
𝑘+1

− 𝐸 (𝑋))] .

(27)

We have also

(𝑘 + 1)
2−𝛼−𝛽

Γ (𝛼) Γ (𝛽)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑝 (𝜏) 𝑝 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

≤
𝑓


2

∞

[

[

(𝑘 + 1)
1−𝛼

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛼

Γ (𝛼 + 1)
𝐽
𝛽,𝑘

𝑎
+
[𝑡
2𝑘+2

]

+

(𝑘 + 1)
1−𝛽

(𝑡
𝑘+1

− 𝑎
𝑘+1
)
𝛽

Γ (𝛽 + 1)
𝐽
𝛼,𝑘

𝑎
+ [𝑡
2𝑘+2

]

− 2 (𝐽
𝛼,𝑘

𝑎
+ [𝑡]) (𝐽

𝛽,𝑘

𝑎
+ [𝑡])

]

]

.

(28)

Thanks to (27) and (28), we obtain (a).
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To prove (b), we use the fact that sup
𝜏,𝜌∈[𝑎,𝑡]

|(𝜏
𝑘+1

−

𝜌
𝑘+1
)|
2
= (𝑡
𝑘+1

− 𝑎
𝑘+1
)
2. We obtain

(𝑘 + 1)
2−𝛼−𝛽

Γ (𝛼) Γ (𝛽)

× ∫

𝑡

𝑎

∫

𝑡

𝑎

(𝑡
𝑘+1

− 𝜏
𝑘+1
)
𝛼−1

(𝑡
𝑘+1

− 𝜌
𝑘+1
)
𝛼−1

× 𝑓 (𝜏) 𝑓 (𝜌) (𝜏
𝑘+1

− 𝜌
𝑘+1
)
2

𝜏
𝑘
𝜌
𝑘
𝑓 (𝜏) 𝑑𝜏 𝑑𝜌

≤ (𝑡
𝑘+1

− 𝑎
𝑘+1
)
2

(𝐽
𝛼,𝑘

𝑎
+ [𝑡]) (𝐽

𝛽,𝑘

𝑎
+ [𝑡]) .

(29)

And, by (27) and (29), we get (25).

Remark 14. (r1) Applying Theorem 13 for 𝛼 = 𝛽, we obtain
Theorem 10.

We give also the following fractional integral result.

Theorem 15. Let 𝑓 be the p.d.f. of𝑋 on [𝑎, 𝑏]. Then for all 𝑎 <
𝑡 ≤ 𝑏, 𝛼 ≥ 0, and 𝑘 ≥ 0, one has

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡) − (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))
2

≤
1

4
(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2

(𝐽
𝛼,𝑘

𝑎
+ [𝑡])

2

.

(30)

Proof. UsingTheorem 1 of [25], we can write


𝐽
𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔

2
(𝑡)] − (𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔 (𝑡)])

2

≤
1

4
(𝐽
𝛼,𝑘

𝑎
+ [𝑝(𝑡)])

2

(𝑀 − 𝑚)
2
.

(31)

Taking 𝑝(𝑡) = 𝑓(𝑡) and 𝑔(𝑡) = 𝑡𝑘+1 − 𝐸(𝑋), 𝑡 ∈ (𝑎, 𝑏), then
𝑀 = 𝑏

𝑘+1
−𝐸(𝑋) and𝑚 = 𝑎

𝑘+1
−𝐸(𝑋). Hence, (30) allows us

to obtain

0 ≤ 𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))

2

]

− (𝐽
𝛼,𝑘

𝑎
+ [𝑓(𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

])

2

≤
1

4
(𝐽
𝛼,𝑘

𝑎
+ [𝑓(𝑡)])

2

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2

.

(32)

This implies that

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡) − (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))
2

≤
1

4
(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2

(𝐽
𝛼,𝑘

𝑎
+ [𝑡])

2

.

(33)

Theorem 15 is thus proved.

For 𝑡 = 𝑏, we propose the following interesting inequality.

Corollary 16. Let 𝑓 be the p.d.f. of 𝑋 on [𝑎, 𝑏]. Then for any
𝛼 ≥ 0 and 𝑘 ≥ 0, one has

(𝑏
𝑘+1

− 𝑎
𝑘+1
)
(𝛼−1)

Γ (𝛼)
𝜎
2

𝑋,𝛼
− (𝐸
𝑋−𝐸(𝑋),𝛼

(𝑡))
2

≤
1

4Γ2 (𝛼)
(𝑏
𝑘+1

− 𝑎
𝑘+1
)
2𝛼

.

(34)

Remark 17. Taking 𝛼 = 1 in Corollary 16, we obtainTheorem
2 of [14].

We also present the following result for the fractional
variance function with two parameters.

Theorem 18. Let 𝑓 be the p.d.f. of the random variable 𝑋 on
[𝑎, 𝑏]. Then for all 𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝑘 ≥ 0, one has

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝜎

2

𝑋,𝛽
(𝑡) + 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝜎

2

𝑋,𝛼
(𝑡)

+ 2 (𝑎
𝑘+1

− 𝐸 (𝑋)) (𝑏
𝑘+1

− 𝐸 (𝑋))

× 𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)]

≤ (𝑎
𝑘+1

+ 𝑏
𝑘+1

− 2𝐸 (𝑋))

× (𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] (𝐸𝑋−𝐸(𝑋),𝛽 (𝑡))

+𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))) .

(35)

Proof. Thanks toTheorem 4 of [25], we can state that

[𝐽
𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑝𝑔
2
(𝑡)] + 𝐽

𝛽,𝑘

𝑎
+
[𝑝 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔

2
(𝑡)]

−2𝐽
𝛼,𝑘

𝑎
+ [𝑝𝑔(𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑝𝑔(𝑡)]]

2

≤ [(𝑀𝐽
𝛼,𝑘

𝑎
+ [𝑝 (𝑡)] − 𝐽

𝛼,𝑘

𝑎
+ [𝑝𝑔 (𝑡)])

× (𝐽
𝛽,𝑘

𝑎
+
[𝑝𝑔 (𝑡)] − 𝑚𝐽

𝛽,𝑘

𝑎
+
[𝑝 (𝑡)])

+ (𝐽
𝛽,𝑘

𝑎
+
[𝑝𝑔 (𝑡)] − 𝑚𝐽

𝛽,𝑘

𝑎
+
[𝑝 (𝑡)])

× (𝑀𝐽
𝛽,𝑘

𝑎
+
[𝑝(𝑡)] − 𝐽

𝛽,𝑘

𝑎
+
[𝑝𝑔(𝑡)])]

2

.

(36)

In (35), we take 𝑝(𝑡) = 𝑓(𝑡) and 𝑔(𝑡) = 𝑡𝑘+1 −𝐸(𝑋), 𝑡 ∈ (𝑎, 𝑏).
We obtain

[𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))

2

]

+ 𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

]

− 2𝐽
𝛼,𝑘

𝑎
+ [𝑓(𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))] 𝐽

𝛽,𝑘

𝑎
+
[𝑓(𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))]]

2
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≤ [(𝑀𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] − 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))])

× (𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] − 𝑚𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)])

+ (𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] − 𝑚𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡)])

× (𝑀𝐽
𝛽,𝑘

𝑎
+
[𝑓(𝑡)] − 𝐽

𝛽,𝑘

𝑎
+
[𝑓(𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))])]

2

.

(37)

Combining (27) and (37) and taking into account the fact that
the left-hand side of (27) is positive, we get

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))

2

]

+ 𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

]

− 2𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))]

≤ (𝑀𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] − 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))])

× (𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] − 𝑚𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡)])

+ (𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))] − 𝑚𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡)])

× (𝑀𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] − 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸 (𝑋))]) .

(38)

Therefore,

𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] 𝐽

𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

]

+ 𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡)] 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡) (𝑡

𝑘+1
− 𝐸(𝑋))

2

]

≤ 𝑀(𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] (𝐸𝑋−𝐸(𝑋),𝛽 (𝑡))

+𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))])

+ 𝑚 (𝐽
𝛼,𝑘

𝑎
+ [𝑓 (𝑡)] (𝐸𝑋−𝐸(𝑋),𝛽 (𝑡))

+𝐽
𝛽,𝑘

𝑎
+
[𝑓 (𝑡) (𝐸

𝑋−𝐸(𝑋),𝛼
(𝑡))]) .

(39)

Substituting the values of 𝑚 and 𝑀 in (33), then a simple
calculation allows us to obtain (35). Theorem 18 is thus
proved.

To finish, we present to the reader the following corollary.

Corollary 19. Let 𝑓 be the p.d.f. of 𝑋 on [𝑎, 𝑏]. Then for all
𝑎 < 𝑡 ≤ 𝑏, 𝛼 ≥ 0, and 𝑘 ≥ 0, the inequality

𝜎
2

𝑋,𝛼
(𝑡) + (𝑎

𝑘+1
− 𝐸 (𝑋)) (𝑏

𝑘+1
− 𝐸 (𝑋)) 𝐽

𝛼,𝑘

𝑎
+ [𝑓 (𝑡)]

≤ (𝑎
𝑘+1

+ 𝑏
𝑘+1

− 2𝐸 (𝑋)) 𝐸
𝑋−𝐸(𝑋),𝛼

(𝑡)

(40)

is valid.
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