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Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow
applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent
factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they
have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve
these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor
is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its
regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the
scheduling avoid premature convergence by properly balancing between global and local exploration.The experimental simulation
shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

1. Introduction

Cloud computing is a pay-as-you-go model which provides
resources at lower costs with greater reliability and delivers
the resources by means of virtualization technologies [1].The
goal of cloud computing is to provide on-demand computing
service with high reliability, scalability, and availability [2].
Workflow model is often used to manage complex scientific
computing applications. A workflow is defined as a collection
of tasks that are processed in a specific order [3]. And a
workflowmanagement system needs to schedule and execute
the workflow efficiently to meet users’ needs [4]. A cloud
workflow system is a kind of platform servicewhich facilitates
the automation of workflow applications based on cloud
computing. Market-oriented business model is one of the
most distinguished factors between a cloud workflow system
and its counterparts [5].

Workflow topology structure is very important to express
relationships among tasks. Usually it is represented by task

dependency graph DAG (Directed Acyclic Graph) [6]. In
DAG each node indicates a workflow task and directed link
represents the task dependencies. Except the root node, each
node in DAG only has one parent node. By this single parent-
child relationship, DAG can visually represent common
workflow structures. The workflow scheduling algorithm
benefits from theDAG clearly of the precedence relationships
among workflow tasks.

In cloud workflow systems, hierarchical scheduling is
an important and challenging issue in cloud computing
facilitating [7]. The hierarchical scheduling includes two
stages: service-level and task-level.The service-level schedul-
ing deals with the assignment of tasks to services based on
Quality of Service (QoS) [8]. And the cloud computing offers
an entire application as a service to the end users. At task-
level, the cloud computing provides kinds of on-demand
Virtual Machines (VMs) to the tasks and minimizes the total
cost to satisfy the QoS constraint for individual tasks. VMs
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that are configured before deployment have the potential
to reduce inefficient resource allocation and excessive cost.
In a VM there is an independently configured environment
[9]. Task-level scheduling usually distributes the load on
processors and maximizes their utilization. At the task-level,
each scheduler manages multiple VMs. Workflow tasks and
other nonworkflow tasks can be allocated to VMs [7]. Task-
level scheduling can be static or dynamic. Static scheduling
allocates tasks in build-time stage, while dynamic scheduling
depends on system runtime states. We focus on the static
scheduling in this paper. In scheduling, there are many QoS
constraints, such as cost [5, 10], makespan [11], reliability
[12], security [13], and availability [7]. In particular, the cost
constraint is an important factor which aims to minimize the
cost.

The market-oriented business model is a remarkable
feature of cloud workflow systems. Many task-level schedul-
ing strategies focus on the cost, such as communication
cost, storage cost, and computation cost. In particular, the
computation cost is a main part of the whole cost that we can
never neglect. There are some scheduling algorithms which
optimize themarket-oriented scheduling cost in recent years.
Workflow scheduling is a classical NP-complete problem
in cloud environment [14]. Heuristic algorithms, such as
Genetic Algorithm (GA) [15, 16], ACO [17, 18], and PSO
[19, 20], are used to solve the task-level scheduling problems.
In [15], Benedict and Vasudevan describe a GA algorithm
to minimize cost in grid computing environment. In [18],
Hirsch et al. present an ACO-based scheduling algorithm to
optimize the makespan of scheduler within a datacenter. In
particular, PSO is a typical heuristic algorithm. Netjinda et al.
develop a PSO algorithm which aims at minimizing the total
cost of workflow system [21]. In [22], Kumar et al. present a
PSO-based heuristic algorithm to achieve the minimum cost
in a cloud environment. Wu et al. propose a PSO algorithm
to minimize the running cost [5]. However, the performance
of GA, ACO, and PSOmostly depends on its parameters, and
it has the characteristic of being trapped in local optima. In
a word, these algorithms cannot achieve the optimal cost of
scheduling. In this paper, we present scheduling based on
Chaotic Particle Swarm Optimization (CPSO) to tackle this
problem.

In cloud computing environment, it is important to
consider both tasks and VMs for workflow scheduling [5].
Netjinda et al. propose an analysis of cloudworkflow schedul-
ing and a hierarchical scheduling strategy based on PSO,
which is called PSO-based scheduling. As a good achieve-
ment was gained by [21], we select it as the most relevant
work. This scheduling ignores the influence of premature
convergence with PSO. To avoid the premature convergence,
we propose the CPSO-based scheduling algorithm to reduce
the cost of scheduler within a datacenter. In other word, the
CPSO-based scheduling algorithm aims at minimizing the
cost of the workflow system.

The rest of paper is organized as follows. Section 2
describes a brief introduction of CPSO. In Section 3, a small
workflow example is given and iteration processes of PSO
and CPSO algorithms are demonstrated. In Section 4, several

models including makespan, cost, and fitness for the task-
level scheduling problem are built. Section 5 presentsmarket-
oriented task-level scheduling based on CPSO. Section 6
demonstrates experimental results. Section 7 concludes and
discusses our future work.

2. Overview of Chaotic PSO (CPSO)

In this section, the overview of simple PSO and chaotic PSO
is given. And then chaotic sequence, fitness calculation, and
adaptive inertia weight factor are introduced.

2.1. Simple PSO and CPSO. PSO proposed by Kennedy
and Eberhart originates from exchanging and sharing of
information in the process of searching for food among birds
[23]. Each bird can benefit from the flight experience of
another. In PSO, the particle swarm is randomly initialized
to acquire initial speed and position in the feasible solution
space. The track is updated through the individual optimal
position and the global optimal position found by the
whole swarm. Each particle constantly moves to the optimal
solution and ultimately tends to the global optimal solution.
However, the performance of simple PSO greatly depends
on its parameters, and it is easy to achieve the local optima,
which is premature convergence [13].

Therefore, muchwork has been carried out on the param-
etersmodification [24], diversity increase [25], and algorithm
variation [26]. To optimize PSO, the CPSO algorithm uses
chaotic sequence to increase diversity [27]. Chaotic sequence
can improve the diversity of solutions by high randomness
and make a good global convergence by regularity. By this
way, the premature convergence is avoided.

In [28], Tao et al. propose a novel CPSO-based algorithm
for trustworthy workflow scheduling in a large-scale grid
with a mass of service resources to optimize the scheduling
performance in a multidimensional complex space. A novel
CPSO algorithm is used to improve logistic map [29]. The
water discharge and death penalty function are described
as the decision variables. In [30], Gaing and Lin propose
CPSO to solve short-term unit commitment problems with
security constraints. The objective of security-constrained
unit commitment is to minimize the total generation cost,
which is the total of both transition cost and production
cost of the scheduled units. These researches adopt chaotic
sequence instead of random sequence in PSO to improve the
efficiency of the algorithm.

2.2. Chaotic Sequence. Random sequence of PSO is very use-
ful for simulating complex phenomena, sampling, analysis,
and decision making in heuristic optimization [27]. Its qual-
ity determines the reduction of storage and computation time
to achieve satisfactory accuracy. This sequence is random for
one task set, but not random enough for another.

The chaos is apparently random and unpredictable and
it also has an element of regularity. It is easy and fast to
generate and store chaotic sequence. In CPSO, the sequence
generated from chaotic systems substitute random sequence
for PSO parameters. In this way, CPSO improves the global
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convergence and obtains a global best solution. Awell-known
logistic equation is donated as follows:

𝑥
𝑛+1 = 𝜇 ⋅ 𝑥𝑛 (1−𝑥𝑛) , 0 ≤ 𝑥0 ≤ 1. (1)

𝜇 is the control parameter and 𝑥 is a random variable.
According to [27], 𝜇 is 4.

The process of the chaotic local search is defined as
follows:

𝑐𝑥
ITER+1
𝑖

= 4𝑐𝑥ITER
𝑖

(1− 𝑐𝑥ITER
𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (2)

Here, 𝑐𝑥ITER
𝑖

is the 𝑖th chaotic variable with the iteration
amount ITER for structure chaotic sequence. And 𝑐 is a
random number in [0, 1].

2.3. Fitness Calculation. Fitness is to evaluate the quality of
the scheduling. It is suitable for twoprocesses: task scheduling
simulation and cost calculation. Firstly, the strategy allo-
cates the task according to the particle string. Secondly the
scheduling allocates the tasks to suitable VMs and then
identifies some tasks that are ready to be executed.The fitness

consists of three parts. The first part is cost for the total cloud
workflow scheduling. The second is penalty for scheduling
when the makespan is over the deadline. The third is penalty
for the idle time of VMs. In this way, fitness is an overall
assessment value for the scheduling. Its calculation formula
is shown in Section 4.

2.4. Adaptive Inertia Weight Factor. In PSO, it is critical to
find a proper method to control the global and local explo-
ration. The balance between global and local exploration is
decided by the value of𝑤. Obviously, the performance of PSO
mostly depends on its parameters. It is clear that the influence
of previous velocity is important to provide the necessary
momentum for particles in the search space [31]. In order to
properly control the impact of previous velocity, a suitable
adaptive inertia weight factor is applied into CPSO. This
weight factor depends on the optimization value of fitness
calculation. The fitness value is to evaluate the quality of
the solution (see Section 4). These particles with low fitness
are reserved. And those particles with high fitness above the
average are removed. In this way, the search space increases
[32]. The adaptive inertia weight factor is described in the
following formula:

𝑤 =

{
{

{
{

{

𝑤min +
(𝑤max − 𝑤min) (fitness − fitnessmin)

fitnessavg − fitnessmin
, fitness ≤ fitnessavg,

𝑤max, fitness > fitnessavg.
(3)

Here, 𝑤min and 𝑤max are the maximum and minimum of
𝑤. fitnessmin and fitnessavg donate the minimum and average
fitness of all particles.

Obviously, larger inertia weight factor leads particles to
global search, whilst smaller factor guides particles to current
local search. Thus, a proper factor is significant to find the
best possible solution accurately and efficiently. In other
words, the adaptive inertia weight factor provides a good
way to preserve diversity of population and maintain good
convergence.

3. Problem Analysis

At first, a small example of workflow is given. Secondly,
in order to clearly display how the performance of CPSO
is better than that of PSO, the scheduling plan iteration
processes of PSO and CPSO algorithms are demonstrated
in detail. In addition, time and cost of scheduling plan are
compared.

3.1. Small Example of Workflow. An example of workflow by
task dependency graph DAG is given in Figure 1. After task
A has executed, tasks B, C are ready to execute. Task D will
execute after task C. When tasks B, D have finished, task E
is ready. The execution time of task on VM type is shown in
Table 1.

3.2. Iteration Processes of PSO and CPSO Algorithms. The
PSO algorithm is divided into four processes: scheduling plan
initialization, update, cost calculation, and selection. Differ-
ent from PSO, the CPSO algorithm uses chaotic sequence in
scheduling plan initialization and update.

Table 2 shows iteration processes of PSO and CPSO
algorithms. The VM types of small, medium, and large are
represented by 1, 2, and 3, respectively. 𝑥𝑛

𝑚
and V𝑛
𝑚
represent

the position and velocity of the 𝑚th particle in the 𝑛th
iteration. 𝑥𝑛

𝑚
and V𝑛

𝑚
initialize randomly from 0 to 1 in

PSO, while they do by chaotic sequence in CPSO. Plan𝑗
𝑖
is

scheduling plan of the 𝑖th particle in the 𝑗th iteration. Its
value is VM type (1–3). Best

𝑘
is the best scheduling plan in the

𝑘th iteration. ET represents the execution time of scheduling
plan.

The scheduling plan iteration continues until it reaches
the maximum number of iterations. As shown in Table 2,
there are 3 iterations in both PSO and CPSO. The best
scheduling plan of the last iteration is the final solution. It is
clear that the time and cost of final CPSO solution are lower
than PSO. The CPSO algorithm finds better scheduling plan.

3.3. Comparison of Scheduling Plan. After iteration processes
of PSO and CPSO algorithms, the scheduling plans are
generated and shown by Gantt chart in Figure 2.These charts
are clear to express scheduling plans.
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Figure 1: Small example of workflow.

Table 1: Execution Time (hrs.) of Task on VM.

VM Type Tasks
A B C D E

Small 3.2 8.0 4.8 1.6 4.8
Medium 2.6 6.5 3.9 1.3 3.9
Large 2.0 5.0 3.0 1.0 3.0

The per-hour cost for small, medium, and large instance
is 0.12, 0.24, and 0.48, respectively. From the Gantt chart
in Figure 2, the total execution time of scheduling plan
generated by PSO is 16.7 and the total cost is 4.3, while the
total execution time of scheduling plan generated by CPSO
is 14.6 and the total cost is 3.98. Therefore, time and cost of
CPSO’s scheduling plan are less than those of PSO. It can be
drawn that performance of CPSO is better than PSO.

4. Models for Task-Level Scheduling Problem

In this section, firstly several basic definitions are given.Then
some models including makespan, cost, and fitness for task-
level scheduling optimization problem are presented.

Definition 1. Task 𝑇
𝑖
is donated as ⟨time, cost⟩, where time is

the execution time of 𝑇
𝑖
and cost is the expense.

Definition 2. VM 𝑉
𝑗
is defined as ⟨price, speed⟩, where price

is the purchase price of 𝑉
𝑗
and speed is the execution speed

set according to Amazon EC2 (http://aws.amazon.com/cn/
ec2/).

Definition 3. Workflow 𝑊 = (𝑇
𝑖
, 𝑉
𝑗
) is denoted as a DAG,

where 𝑇
𝑖
is a task and 𝑉

𝑗
is a VM.

Definition 4. 𝑆
𝑘
= {(𝑇

𝑖1 ,
𝑉
𝑗1
), . . . , (𝑇

𝑖
𝑛
,
𝑉
𝑗
𝑚

)} is the scheduling
of tasks on VMs, where (𝑇

𝑖
𝑛
,
𝑉
𝑗
𝑚

) is task 𝑇
𝑖
𝑛

assigned to VM
𝑉
𝑗
𝑚

.

Definition 5. Task set TS
𝑗
which includes some tasks on

𝑉
𝑗
is represented by ⟨cost,makespan,wastetime⟩. cost is the

total cost of TS
𝑗
, makespan is the total execution time, and

wastetime is the idle time; TS𝑆𝑘
𝑗
⋅wastetime = TS𝑆𝑘

𝑗
⋅makespan−

∑
𝑛

𝑖=1
𝑇
𝑗

𝑖
⋅ time. Here, TS𝑆𝑘

𝑗
⋅makespan is the execution time of

TS
𝑗
with 𝑆

𝑘
and 𝑇𝑗

𝑖
⋅ time is the execution time of 𝑇

𝑖
on 𝑉
𝑗
.

Table 2: Iteration processes of PSO and CPSO algorithms.

(a) PSO Initialization

Search variable Tasks ET Cost
A B C D E

𝑥
0

1
0.6 0.8 0.4 0.2 0.9

11.1 5.6V0
1

0.2 −0.3 0.1 0.4 −0.2
Plan0
1

2 3 2 1 3
𝑥
0

2
0.8 0.7 0.1 0.3 0.9

10 5.5V0
2

0 0.2 0.5 0.1 −0.2
Plan0
2

3 3 1 1 3
𝑥
0

3
0.3 0.8 0.7 0.5 0.9

20.5 6.0V0
3

0.5 −0.4 −0.3 0 −0.3
Plan0
3

1 3 3 2 3
Best
0

3 3 1 1 3 10 5.5

(b) CPSO initialization

Search variable Tasks ET Cost
A B C D E

𝑥
0

1
0.5 0.9 0.7 0.6 0.8

20.5 6.0V0
1

0.2 −0.3 −0.6 −0.2 −0.6
Plan0
1

1 3 3 2 3
𝑥
0

2
0.3 0.5 0.7 0.6 0.1

15.8 4.3V0
2

0.5 0.1 −0.4 −0.2 0
Plan0
2

1 2 3 2 1
𝑥
0

3
0.2 0.3 0.7 0.5 0.3

17.3 4.5V0
3

0.5 0.1 −0.1 −0.2 0.4
Plan0
3

1 1 3 2 1
Best0 1 3 3 2 1 15.8 4.3

(c) PSO first iteration

Search variable Tasks ET Cost
A B C D E

𝑥
1

1
0.8 0.5 0.5 0.6 0.7

16.7 4.3V1
1

0.1 0.2 −0.2 −0.3 0.1
Plan1
1

3 2 2 2 3
𝑥
1

2
0.8 0.5 0.6 0.4 0.7

16.7 4.3V1
2

−0.1 0.1 0 0.2 0.2
Plan1
2

3 2 2 2 3
𝑥
1

3
0.8 0.4 0.4 0.5 0.6

18.7 4.7V1
3

0.1 0.2 0.1 −0.1 0.2
Plan1
3

3 2 2 2 2
Best1 3 2 2 2 3 16.7 4.3

(d) CPSO first iteration

Search variable Tasks ET Cost
A B C D E

𝑥
1

1
0.7 0.6 0.1 0.4 0.2

14.6 3.9V1
1

0.1 0 0 0.2 0
Plan1
1

3 2 1 2 1
𝑥
1

2
0.8 0.6 0.3 0.4 0.1

V1
2

−0.1 0 −0.2 0.2 0 14.6 3.9
Plan1
2

3 2 1 2 1
𝑥
1

3
0.7 0.4 0.6 0.4 0.7

V1
3

0.2 0 −0.4 0.2 −0.6 16.7 4.3
Plan1
3

3 2 2 2 3
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(d) Continued.

Search variable Tasks ET Cost
A B C D E

Best1 3 2 1 2 1 14.6 3.9

(e) PSO last iteration

Search variable Tasks ET Cost
A B C D E

𝑥
2

1
0.9 0.7 0.3 0.3 0.8

16.7 4.3V2
1

−0.1 −0.1 0 0.1 0.2
Plan2
1

3 2 2 2 3
𝑥
2

2
0.7 0.6 0.6 0.6 0.9

16.7 4.3V2
2

0.7 0.1 −0.2 −0.3 0.1
Plan2
2

3 2 2 2 3
𝑥
2

3
0.9 0.6 0.5 0.4 0.8

V2
3

0.1 0.4 −0.2 −0.1 −0.3 16.7 4.3
Plan2
3

3 2 2 2 3
Best2 3 2 2 2 3 16.7 4.3

(f) CPSO last iteration

Search variable Tasks ET Cost
A B C D E

𝑥
2

1
0.8 0.6 0.1 0.6 0.2

14.6 3.9V2
1

−0.1 −0.2 0.1 0 0.2
Plan2
1

3 2 1 2 1
𝑥
2

2
0.7 0.6 0.1 0.6 0.1

14.6 3.9V2
2

0.1 0 0.2 −0.1 0.1
Plan2
2

3 2 1 2 1
𝑥
2

3
0.9 0.4 0.3 0.6 0.1

14.6 3.9V2
3

0.1 0 −0.2 −0.2 0
Plan2
3

3 2 1 2 1
Best
2

3 2 1 2 1 14.6 3.9

According to Definitions 1–5, three models makespan,
cost, and fitness are built by Formulas (4)–(11) as follows.

FirstlyMakespan
𝑆
𝑘

is themaximummakespan of all tasks
with 𝑆

𝑘
:

Makespan
𝑆
𝑘

= max
1≤𝑗≤𝑚

{TS𝑆𝑘
𝑗
⋅makespan} . (4)

Here, TS𝑆𝑘
𝑗
⋅makespan is the total of the vacant time and

execution time of TS
𝑗
:

TS𝑆𝑘
𝑗
⋅makespan = EFT

𝑖
−EST

𝑖
. (5)

EST
𝑖
is the earliest start time of TS

𝑗
:

EST
𝑖
= max (Finish

𝑖−1
,Available

𝑗
) . (6)

Here, Finish
𝑖−1

is the completion time of the preceding
task of 𝑇

𝑖
and Available

𝑗
is the available time of 𝑉

𝑗
.

EFT
𝑖
is the earliest finish time of 𝑇

𝑖
and its succeeding

tasks:

EFT
𝑖
= Start

𝑖
+RT
𝑖
. (7)

Here, RT
𝑖
is the total of the execution time of 𝑇

𝑖
and all of

its succeeding tasks and Start
𝑖
is the start time of 𝑇

𝑖
:

RT
𝑖
= 𝑇
𝑗

𝑖
⋅ time+max (RT

𝑘
) . (8)

Here, RT
𝑘
is the execution time of succeeding tasks.

Deadline is the upper limit of the makespan. deadlinemin
is the minimum deadline, and deadlinemax is the maximum
deadline.

deadlinemin = min {Makespan
𝑆
𝑘

} ,

deadlinemax = max {Makespan
𝑆
𝑘

} .

(9)

Secondly Cost
𝑆
𝑘

is the total cost of 𝑆
𝑘
. It evaluates the

performance of 𝑆
𝑘
. The less the cost of scheduling plan 𝑆

𝑘
,

the better the performance of this scheduling. Consider

Cost
𝑆
𝑘

=

𝑚

∑

𝑗=1
TS𝑆𝑘
𝑗
⋅ cost. (10)

Here, TS𝑆𝑘
𝑗
⋅ cost = 𝑉

𝑗
⋅ price × TS𝑆𝑘

𝑗
⋅makespan is the cost

of a task set TS
𝑗
, and 𝑉

𝑗
⋅ price is the purchase price of 𝑉

𝑗
.

TS𝑆𝑘
𝑗
⋅makespan is the total of the vacant time and execution

time of TS
𝑗
. The cost calculation is divided into two parts:

price ofVMand the totalmakespan of tasks. At the sameprice
of VM condition, the more the makespan of tasks, the higher
the cost of this scheduling plan.

At last, fitness evaluates the quality of the scheduling and
is shown in the following formula according to [21]:

fitness = (𝑡1 ×Cost𝑆
𝑘

)

+(𝑡2 × 10×Cost𝑆
𝑘

×

Makespan
𝑆
𝑘

deadline
)

+

𝑚

∑

𝑖=1
(𝑉
𝑗
⋅ price×TS𝑆𝑘

𝑗
⋅wastetime) .

(11)

Here, ifMakespan
𝑆
𝑘

does not exceed the given deadline, 𝑡
1

is 1 and 𝑡
2
is 0; otherwise, 𝑡

1
is 0 and 𝑡

2
is 1. Cost

𝑆
𝑘

,Makespan
𝑆
𝑘

,
and deadline can be calculated by Formulas (4) and (9). Here,
TS𝑆𝑘
𝑗
⋅ wastetime is the idle time of 𝑉

𝑗
with 𝑆

𝑘
.

The execution time of task set is decided by themaximum
makespan of tasks (Formula (4)). The makespan of task set
is calculated by EST, RT, and EFT (Formulas (6)–(8)). The
deadline is the upper limit of the makespan (Formula (9)).
The cost of scheduling plan (Formula (10)) depends upon
the impact of three factors: cost and performance of VM
(Definition 2), execution time of task set (Definition 5), and
scheduling plan of tasks (Definition 4). The fitness is an
overall assessment value for the scheduling (Formula (11)).
Obviously, when the value of fitness is smaller, the cost is
less and then the scheduling is more efficient. Otherwise, it
is inefficient.
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Figure 2: Gantt charts of scheduling plans.

5. Market-Oriented Task-Level
Scheduling Based on CPSO

To avoid the premature convergence, we propose a novel
market-oriented scheduling algorithm based on CPSO to
reduce the cost within a datacenter. This algorithm is divided
into two parts. From lines (3) to (6), scheduling plan is
initialized and fitness is updated. From lines (8) to (15),
the scheduling strategy allocates the tasks to suitable VMs.
Chaotic sequence improves the diversity of solutions by high
randomness and assures a good global convergence by regu-
larity.The fitness evaluates the quality of the scheduling. And
adaptive inertia weight factor depends on fitness. Because it
is a proper balance between global and local exploration, it
makes the scheduling avoid premature convergence.

Algorithm 6 (market-oriented task-level scheduling). The
algorithm is as follows.

Input: Tasks, VMs, Deadline
Output: Optimize Task-Level Scheduling Plan

(1) Initialize scheduling plan (Formula (2));
(2) For ITER = 1:maxiteration;
(3) Calculate fitness of each scheduling plan (Formula

(11));
(4) Initialize search velocity of each scheduling plan

(Formula (2));
(5) Calculate EST, RT and EFT (Formulas (6)–(8));
(6) Update current best fitness (Formula (11));
(7) For task = 1:tasklist;
(8) Select VM;
(9) Update search velocity and scheduling plan;
(10) Calculate the cost (Formula (10));
(11) Update current best fitness (Formula (11));
(12) Update the current best solution with chaotic

sequences (Formula (2));

(13) Decrease the scheduling space and generate new
scheduling plan (Formula (3));

(14) Construct the new scheduling plan and old top ones;
(15) Update the best and its fitness in new scheduling plan

(Formulas (2) and (11));
(16) End
(17) End
(18) Return best-possible scheduling plan(s).

For the above algorithm, we first initialize the parameters
and the entire scheduling plan (line (1)). The velocity and
position of scheduling plans are initialized by the chaotic
sequence and adaptive inertia weight factor (lines (3)-(4)).
Then the EST, RT, and EFT of scheduling plans are calculated,
and the current best fitness is updated (lines (5)-(6)). The
scheduling plan chooses VMs for every task and calculates
the cost and then updates the current best fitness (lines
(8)–(11)). The current best scheduling plan is selected by
the chaotic sequence and adaptive inertia weight factor (lines
(12)–(15)).When scheduling plan converges to the optimum,
the inertia weight factor will decrease. By this way, the
scheduling plan will search in local way. In contrast, the
inertia weight factor will increase, and the plan will search
in global way. By this method, the algorithm decreases the
scheduling space and generates new scheduling plan. At
last, it returns best-possible scheduling plan(s) with deadline
constraint (line (18)).

6. Experiments

In this section, environment and parameter setting are
described. Experimental simulation and analysis are pre-
sented in Figures 3–5.

6.1. Environment and Setting. The amount of workflow
tasks is randomly generated between 50 and 300, and the
maximum amount of purchased cloud instances is 10. The
structure of workflow topology is generated randomly. The
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Figure 3: Comparison of fitness between PSO and CPSO.
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Table 3: Speed and price of Amazon VMs.

VM type Speed Reserved On-demand
Per-term ($) Per-hour ($) Per-hour ($)

Small 1.00 97.50 0.07 0.12
Medium 1.30 390.00 0.28 0.48
Large 1.60 780.00 0.56 0.96

average execution time of each task is random from 10 to
100 basic time units. The amount of VMs is 4 [33]. The
type of VM is decided randomly. According to Amazon, the
execution speed and price of VMs are shown in Table 3. Every
experiment runs 100 times and gets their average value.

In ACO algorithm, the ant amount is 50 and the max-
imum iteration times are 100. Other parameters are set
according to [17]. In PSO and CPSO algorithms, the swarm
size is set to 40 for all experiments. The maximum iteration
times are 100. The acceleration coefficient are both fixed to 2
[21]. In PSO algorithm the inertia weight factor is fixed to 0.73
[21]. However, it changes according to Formula (3) in CPSO
algorithm. And the two factors 𝑤min and 𝑤max are set as 0.2
and 1.2, respectively, according to [32].

The deadlinemin and deadlinemax are set according to
Formula (9).The total cost of the task set is themultiplication
of the execution time of tasks and the price of their VMs. Each
task set runs 50 times.

6.2. Comparison of Fitness. Figure 3 compares the fitness of
CPSO-based scheduling with that of the PSO-based schedul-
ing. In Figure 3, we show six experiments with the number
of tasks ranging from 50 to 300. The convergence of CPSO-
based and PSO-based scheduling is similar. But the fitness of
the CPSO-based scheduling is always lower than the PSO-
based scheduling. This means that the optimization results
of our scheduling is better than the PSO-based scheduling.
It is because the chaotic sequences update the current best
solution to choose the VMs with the cost to execute tasks.
The scheduling plan can reduce the cost of tasks and therefore
decrease the total cost of task sets. In Figure 3(a), the two
types of fitness are close, because the number of tasks is
too small to show obvious difference. In conclusion, chaotic

Table 4: Theoretical value of deadline.

Deadline Tasks
50 100 150 200 250 300

deadlinemin 4.2 9.2 15.9 21.4 26.1 30.4
deadlinemax 9.8 20.3 32.0 45.5 62.0 72.1

sequences can avoid the premature convergence for our
scheduling to find the best-possible cost efficiently.

6.3. Comparison of Cost. Figure 4 shows the comparison of
cost between ACO, PSO, and CPSO. As shown in Figure 4,
the parameters of PSO and CPSO are set the same as in
Section 6.1.The cost of the CPSO-based is the lowest and pre-
mature convergence can be avoided by our scheduling. The
chaotic sequence with high randomness improves solutions
diversity, and its regularity assures a good global convergence.
Adaptive inertia weight factor controls a proper balancing
between global and local exploration to make the scheduling
avoid premature convergence.

The cost of scheduling increases with the variation of task
amount. When the task amount is 50, the cost of the CPSO-
based is 458.9. It is similar to the cost of the ACO-based
and the PSO-based scheduling. With the increase of task
amount, our cost is always the lowest. In particular, when the
amount of tasks is 300, the cost of the PSO-based scheduling
is 4120.9, and the cost of the ACO-based scheduling roughly
shrinks by 9.4%, namely, 385.8, and the cost of the CPSO-
based scheduling is about 12.2% reduction, namely, 501.2. In
conclusion, our scheduling can optimize the global best cost
efficiently with the CPSO, instead of ACO and PSO.

6.4. Cost with Deadline Constraint. In Table 4, deadlinemin
and deadlinemax of randomly generated tasks are calculated
according to Formula (9).

Figure 5 states how the deadline is set and what effect the
deadline has on cost. In Figure 5, other parameters are the
same as in Section 6.1. In Figure 5(a), the deadline is 4.2, but
there is no solution. By experiments, there are some solutions,
when the deadline is 5, which is the start value. As the
deadlines are 9 and 10, the cost are 458.9 and 455.9. The cost
of near-best solution is 458.9 according to Figure 4. While
the deadline varies from 5 to 9, the cost gradually decreases.
When the deadline is more than 9, the cost becomes stable.
The near-best solution can be found while the deadline is
12, which is the end value. For other different task sets, the
deadline is changed in the same way according to Table 4.

In conclusion, when deadline is near deadlinemin, there
may be no suitable solution. While deadline is between
deadlinemin and deadlinemax, the cost will reduce with the
increase of deadline. The reason is that more tasks are allo-
cated into higher performance and more expensive VMs. As
deadline is bigger than deadlinemax, the cost will not reduce
anymore.The reason is that each task has been scheduled into
the highest performance and the most expensive VMs. This
experiment can guide us to select a suitable deadline.
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Figure 5: Cost with deadline.

Overall, our CPSO-based scheduling can overcome pre-
mature convergence and achieve smaller cost than the PSO-
based scheduling in Figures 3-4. In Figure 3 the CPSO-
based has the lowest fitness, and therefore our scheduling
strategy is efficient so as to apply to large-scale task sets
for cloud workflow. With consideration of cost requirement
of users, the algorithm aims to optimize the cost of whole
scheduling. In Figure 4, the CPSO-based scheduling can
efficiently reduce the cost. Furthermore, with the increase
of available deadline, our scheduling always can achieve a
near-best cost in Figure 5. Figure 5 presents that the deadline
is set by theoretical and experimental value and the cost
reduces while ranging the deadline from start value to end
value. Therefore, the cost is constrained by the deadline. It
is necessary for cloud workflows to pay for the execution of
tasks on VMs to cloud providers. If it is expected to obtain
smaller cost for cloud workflows, more deadline is necessary.

7. Summary and Future Work

In this paper, a task-level scheduling algorithm based on
CPSO is presented. It can optimize the cost of whole schedul-
ing and overcome the premature convergence of PSO algo-
rithm to satisfy the market-oriented characteristic of cloud
workflow. A series of experiments using our method and
comparing the results with other representative counterparts
is conducted. The performance of our scheduling is efficient
and the cost is the lowest.

In consideration of the market-oriented scheduling, we
only focus on the cost. However, other QoS constraints
such as reliability, availability, makespan, and security will be
investigated in future. Our strategy is a task-level scheduling
which only optimizes the mapping of tasks to VMs. Its
upper level for the service-level scheduling, which aims at
the optimization of tasks to services, also deserves further
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research. In experiment setting, the amount of VMs is only
fixed to 4. When the amount of VMs increases, more tasks
can execute simultaneously and therefore the makespan of
task set will decrease. So, experiment with more than 4VMs
will be conducted in the future. Furthermore, the market-
oriented scheduling from task-level and service-level will be
studied.
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