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Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with
evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is
assumed that the capillary pressure is neglected (Morris, 2003). Results are provided for liquid film thickness, total heat flux, and
evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics,
computations based on the current model were performed to generate results for comparisons with the analytical results ofWang et
al. (2008) andWayner Jr. et al. (1976).The calculated results from the current model match closely with those of analytical results of
Wang et al. (2008) andWayner Jr. et al. (1976).This work will lead to a better understanding of heat transfer and fluid flow occurring
in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.

1. Introduction

Over the last decade, micromachining technology has been
increasingly used to develop highly efficient heat sink cooling
devices due to advantages such as lower coolant demands
and smaller machinable dimensions. One of the most impor-
tant micromachining technologies is the ability to fabricate
microchannels. Hence, the studies of fluid flow and heat
transfer in microchannels which are two essential parts of
such devices have attracted attention due to their broad
potential for solving both engineering andmedical problems.
Heat sinks are classified as either single-phase or two-
phase according to whether liquid boiling occurs inside the
microchannels. The primary parameters that determine the
single-phase and two-phase operating regimes are the heat
flux through the channel wall and the coolant flow rate. For a
fixed heat flux (heat load), the coolantmaymaintain its liquid
state throughout the microchannels. For a lower flow rate,
the liquid coolant flowing inside themicrochannel may reach
its boiling point, causing flow boiling to occur, resulting in

a two-phase heat sink [1–3]. Since the initial conception of
microheat pipes in 1984 by Cotter [4], a number of analytical
and experimental investigations have been conducted. Most
of these investigations have concentrated on the capillary heat
transport capability. With rapid advancements in microelec-
tronic devices, their required total power and power density
are significantly increasing. Thin-film evaporation plays an
important role in these modern highly efficient heat transfer
devices. When thin-film evaporation occurs in the thin-film
region, most of the heat transfers through a narrow area
between the nonevaporation region and intrinsic meniscus
region as shown in Figure 1. The flow resistance of the vapor
phase during thin-film evaporation is very small compared
with the vapor flow in the liquid phase in a typical nucleate
boiling heat transfer configuration. In addition, the superheat
needed for the phase change in the thin-film region is much
smaller than that for a bubble growth in a typical nucleate
boiling, in particular, at the initial stage of the bubble growth.
The heat transfer efficiency of thin-film evaporation is much
higher than the nucleate boiling heat transfer. Because
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thin-film evaporation occurs in a small region, increasing
thin-film regions andmaintaining its stability are very impor-
tant for heat transfer enhancement. It is known that the
thermodynamic properties of the liquid thin-film region are
very different from those of the macroregion. The effect of
the intermolecular forces between the liquid thin film and
wall can be characterized by the disjoining pressure, which
controls thewettability and stability of liquid thin film formed
on the wall. A better understanding of the evaporation
mechanisms governed by the disjoining pressure in the thin-
film region, especially for high heat flux, is very important
in the development of highly efficient heat transfer devices.
As early as 1972, Potash Jr. and Wayner Jr. [5] expanded the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [6] to
describe evaporation and fluid flow from an extendedmenis-
cus. Following this work, extensive investigations have been
conducted to further understand mechanisms of fluid flow
coupled with evaporating heat transfer in thin-film region.
Stephan and Busse [7] developed a mathematical model
based on the theoretical analysis presented by Wayner Jr. et
al. [5, 8] to investigate the heat transfer coefficient occurring
in small triangular grooves and found that the interface
temperature variation plays an important role in the thin-
film evaporation. Schonberg andWayner Jr. [9] developed an
analytical model by ignoring capillary pressure and found an
analytical solution for the maximum heat evaporation from
the thin film. Ma and Peterson [10] studied the thin-film
profile, heat transfer coefficient, and temperature variation
along the axial direction of a triangular groove. Hanlon and
Ma [11] found that when particles become smaller, thin-film
region can be significantly increased. More recently, Shao
and Zhang [12] considered the effect of thin-film evaporation
on the heat transfer performance in an oscillating heat pipe.
Wang et al. [13, 14] established a simplified model based
on the Young-Laplace equation and obtained an analytical
solution for the total heat transfer in the thin-film region. In
the current investigation, amathematicalmodel is established
and its analytical solutions are obtained to evaluate the heat
flux, total heat transport per unit length along the thin-
film profile, thin-film thickness, and location for the maxi-
mum heat evaporation in the thin-film region andmaximum
heat transfer rate per unit length by thin-film evaporation.

2. Theoretical Analysis

Figure 1 illustrates a schematic of an evaporating thin film
formed on a wall. For the current investigation, it is assumed
that fluid flow in the thin-film region is two-dimensional and
pressure in the liquid film is a function of the 𝑥-coordinate
only. The wall temperature, 𝑇

𝑤
, is greater than the vapor

temperature, 𝑇V. The momentum equation governing the
fluid flow in the thin film can be found by
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Figure 1: Schematic of an evaporating thin film.
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Solving (1) with boundary condition (2), we get
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where 𝛽 is the slip coefficient. If 𝛽 is equal to zero, then no
slip boundary condition is obtained.

So we can find
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where
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) , (5)

where 𝛽
0
is the limiting slip length and 𝛾

𝑐
represents the

critical value of the shear rate. The slip coefficient under
the condition of this study turns out to be approximately
1 ∗ 10

−9m. From (4), the mass flow rate at a given location 𝑥
can be found as
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Taking a derivative of (6),
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But
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so the net evaporative mass transfer can be obtained as
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The heat transfer rate by evaporation occurring at the liquid-
vapor interface in the thin-film region can be determined by
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But at the same time 𝑞󸀠󸀠 in (10) is equal to the heat transfer
rate through the liquid thin film; that is,

𝑞
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From expanding the Clausius-Clapeyron equation, we can
find
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The pressure difference between vapor and liquid, Δ𝑝, at the
liquid-vapor interface is due to both the capillary pressure
and disjoining pressure and is expressed using the augmented
Young-Laplace equation:

Δ𝑝 = 𝑝V − 𝑝𝑙 = 𝑝
𝑐
+ 𝑝
𝑑
. (14)

The disjoining pressure for a nonpolar liquid is expressed as

𝑝
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𝛿
3
, (15)

where𝐴 is the dispersion constant and 𝛿 is the film thickness.
The capillary pressure is the product of interfacial curvature
𝐾 and surface tension coefficient 𝜎:
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Substituting (13) into (11) the heat flux can be rewritten as
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We can find 𝑑𝑝
𝑙
/𝑑𝑥 by differentiating (14) with respect to 𝑥,

and assume uniform vapor pressure, 𝑝V, along the meniscus:
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Substituting (21) into (20) yields
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For the evaporating thin-film region, the disjoining pressure
is one dominant parameter, which governs the fluid flow in
the evaporating thin-film region. And in the evaporating thin
film region, the absolute disjoining pressure is much larger
than the capillary pressure especially when the curvature
variation along the meniscus is very small. In order to find
the primary factor affecting the thin-film evaporation in the
evaporating thin-film region, it is assumed that the capillary
pressure, 𝑝

𝑐
, is neglected.

Then, (22) becomes
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From (15) we find 𝑝
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Substituting (15) and (24) into (23) yields
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We can rewrite the heat flux as
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Simplifying (25) gives
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We need to solve (27) to find 𝑑𝛿/𝑑𝑥.
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By multiplying 2 sides by 2 ∗ [(𝑑𝛿/𝑑𝑥)(1/𝛿 + 3𝛽/𝛿2)] and
integrating two sides with respect to 𝑥 we get
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𝐷, 𝐶 are integration constants.
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Figure 5: Dimensionless evaporative film thickness profile at a
superheat of 1 K.
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To find constant 𝐵 we apply the boundary condition

𝑑𝛿

𝑑𝑥

= 0 𝛿 = 𝛿
𝑜
. (32)

So we get

𝐵 = −

2𝜇
𝑙

ℎ
𝑓𝑔
𝐴𝜌
𝑙

× [

𝑘
𝑙

𝛿
𝑜

(𝑇V − 𝑇wall) +
3𝑘
𝑙
𝛽

2𝛿
2

𝑜

(𝑇V − 𝑇wall)

+

𝑘
𝑙
𝑇V𝐴

4𝜌Vℎ𝑓𝑔𝛿
4

𝑜

+

3𝛽𝑘
𝑙
𝑇V𝐴

5𝜌Vℎ𝑓𝑔𝛿
5

𝑜

] .

(33)

𝛿
/𝛿

0

x/𝛿0

60

40

20

0

0 2 4 6

Tw − T� = 2K

Numerical solution
Analytical solution

Figure 6: Dimensionless evaporative film thickness profile at a
superheat of 2 K.

From (26) and (27),
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Figure 7: Dimensionless evaporative film thickness profile at a
superheat of 5 K.

The optimum thickness of the evaporating thin film, 𝛿optimum,
where the heat flux reaches its maximum, can be found by
taking a derivative of 𝑥 for heat flux equation (34):

𝑑𝑞
󸀠󸀠

𝑑𝑥

= 0

=

𝑑 (𝑘
𝑙
𝑇wall/𝛿 − 𝑘𝑙𝑇V/𝛿 − 𝑘𝑙𝑇V𝐴/𝜌Vℎ𝑓𝑔𝛿

4

)
𝛿=𝛿optimum

𝑑𝑥

.

(38)

So

(−

𝑇wall

(𝛿optimum)
2
+

𝑇V

(𝛿optimum)
2
+

4𝑇V𝐴

𝜌Vℎ𝑓𝑔 (𝛿optimum)
5
) = 0.

(39)

Then

𝛿optimum =
3
√

4𝐴𝑇V

𝜌Vℎ𝑓𝑔 (𝑇𝑤 − 𝑇V)
. (40)

For the nonevaporating film region, the heat flux is zero.
Clearly, the interface temperature is equal to the wall tem-
perature. The equilibrium thickness 𝛿

𝑜
can be readily found

by

𝑞
󸀠󸀠

= (

𝑘
𝑙
𝑇wall
𝛿
𝑜

−

𝑘
𝑙
𝑇V

𝛿
𝑜

−

𝑘
𝑙
𝑇V𝐴

𝜌Vℎ𝑓𝑔𝛿
4

𝑜

) = 0. (41)
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Figure 8: Dimensionless evaporative film thickness profile at a
superheat of 10 K.

So

𝛿
0
≥
3
√

𝐴𝑇V

𝜌Vℎ𝑓𝑔 (𝑇𝑤 − 𝑇V)
,

𝛿
min
0

=
3
√

𝐴𝑇V

𝜌Vℎ𝑓𝑔 (𝑇𝑤 − 𝑇V)
.

(42)

From (31), (33), and (34) we get

𝛿optimum =
3
√4𝛿
𝑜
. (43)

The total heat transfer rate per unit width along themeniscus,
𝑞
𝑡
, can be calculated by

𝑞
𝑡
= ∫

𝑥

0

𝑞
󸀠󸀠

𝑑𝑥. (44)

From (34)

𝑞
𝑡
= ∫

𝑥

0

ℎ
𝑓𝑔

𝑑

𝑑𝑥

[

𝜌
𝑙
𝐴

𝜇
𝑙

𝑑𝛿

𝑑𝑥

(

1

𝛿

+

3𝛽

𝛿
2
)]𝑑𝑥. (45)

So

𝑞
𝑡
=

ℎ
𝑓𝑔
𝜌
𝑙
𝐴

𝜇
𝑙

𝑑𝛿

𝑑𝑥

(

1

𝛿

+

3𝛽

𝛿
2
) . (46)

Dimensionless thickness of the evaporating region can be
defined as

̂
𝛿 =

𝛿

𝛿
𝑜

, (47)

where 𝛿
𝑜
is the thickness of the nonevaporating region.
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Figure 9: Dimensionless heat flux profile at a superheat of 0.3 K.
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Figure 10: Dimensionless heat flux profile at a superheat of 0.7 K.

A dimensionless position also can be defined as

𝜓 =

𝑥

𝛿
𝑜

. (48)
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Figure 11: Dimensionless heat flux profile at a superheat of 1 K.
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Figure 12: Dimensionless heat flux profile at a superheat of 2 K.

For dimensionless heat flux,

𝜙 =

𝑞
󸀠󸀠

𝑞
󸀠󸀠

𝑜

, (49)
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Figure 13: Dimensionless heat flux profile at a superheat of 5 K.
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Figure 14: Dimensionless heat flux profile at a superheat of 10 K.

where

𝑞
󸀠󸀠

𝑜
=

𝑘
𝑙
(𝑇
𝑤
− 𝑇V)

𝛿
𝑜

(50)

is the heat flux at the interface temperature equal to the vapor
temperature.

x/𝛿0
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Figure 15: Dimensionless heat flux profile at a 𝛽 = 0 nm.

Substituting (36), (34), and (50) in (49) we found

𝜙 =

ℎ
𝑓𝑔
𝜌
𝑙
𝐴

𝜇
𝑙

×

([(𝑘
𝑙
𝜐
𝑙
/ℎ
𝑓𝑔
𝐴) (𝑇

𝑤
− 𝑇V)] − (𝑘𝑙𝜐𝑙𝑇V/ℎ

2

𝑓𝑔
𝜌V) 𝛿
−3

) /𝛿

(𝑘
𝑙
(𝑇
𝑤
− 𝑇V) /𝛿𝑜)

=

𝛿
𝑜

𝛿

−

𝛿
4

𝑜

𝛿
4
,

(51)

or

𝜙 =

1

̂
𝛿

(1 −

1

̂
𝛿
3

) . (52)

By considering 𝑑𝜙/𝑑̂𝛿 = 0, we can determine the maximum
dimensionless heat flux 𝜙max. The local heat flux through the
evaporating thin film reaches its maximum when ̂

𝛿 = 4
1/3.

Letting ̂
𝛿 = 4

1/3 in (52), the maximum dimensionless heat
flux, ̂𝛿max, can be found as

̂
𝛿max =

3

4
4/3

≈ 0.473. (53)

Equation (53) indicates that the maximum heat flux occur-
ring in the evaporating thin-film region is not greater than
0.473 times of the characteristic flux heat.
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Figure 16: Dimensionless heat flux profile at a 𝛽 = 0.5 nm.

Consider the heat transfer coefficient of

𝑞
󸀠󸀠

= ℎ (𝑇
𝑠
− 𝑇V) . (54)

To solve (31) we have two methods:

(1) exact solution or analytical solution,

(2) numerical solution.

We are going to solve (31) by using both methods

2.1. Analytical Solution. We can rewrite (31) in the form

𝑑𝛿

𝑑𝑥

= (Σ𝜎 (𝛿) (1 −

𝛿
0

𝛿

) + Ψ𝜎 (𝛿) (1 −

𝛿
2

0

𝛿
2
)

+ Ω𝜎 (𝛿) (

𝛿
4

0

𝛿
4
− 1) + Π𝜎 (𝛿) (

𝛿
5

0

𝛿
5
− 1))

1/2

,

(55)

where

𝜎 (𝛿) =

𝛿
2

0

(𝛿
0
/𝛿 + (3𝛽/𝛿

0
) (𝛿
2

0
/𝛿
2
))
2
,

Σ =

2𝜇
𝑙
𝑘
𝑙
(𝑇
𝑤
− 𝑇V)

ℎ
𝑓𝑔
𝐴𝜌
𝑙

1

𝛿
0

,

𝛽 = 1 ∗ 10−9 m
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Figure 17: Dimensionless heat flux profile at a 𝛽 = 1 nm.

Ψ =

3𝜇
𝑙
𝛽 (𝑇
𝑤
− 𝑇V)

ℎ
𝑓𝑔
𝐴𝜌
𝑙

(

1

𝛿
0

)

2

,

Ω =

𝜇
𝑙
𝑘
𝑙
𝑇V

2ℎ
2

𝑓𝑔
𝜌V
(

1

𝛿
0

)

4

,

Π =

6𝜇
𝑙
𝑘
𝑙
𝛽𝑇V

5ℎ
2

𝑓𝑔
𝜌V

(

1

𝛿
0

)

5

,

Λ =

3𝛽

𝛿
0

.

(56)

Since Σ ≫ Ψ,Π,Ω so we can rewrite (55) as

𝑑𝛿

𝑑𝑥

= √Σ(

𝛿
2

0

(𝛿
0
/𝛿 + 3 (𝛽𝛿

2

0
/𝛿
0
𝛿
2
))

× [(1 −

𝛿
0

𝛿

) +

Ψ

Σ

(1 −

𝛿
2

0

𝛿
2
)

+

Ω

Σ

(

𝛿
4

0

𝛿
4
− 1) +

Π

Σ

(

𝛿
5

0

𝛿
5
− 1)])

1/2

.

(57)
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Figure 18: Dimensionless heat flux profile at a 𝛽 = 3 nm.

We introduce ̂𝛿 = 𝛿/𝛿
0
and 𝑥 = 𝑥√Σ to get

𝑑
̂
𝛿

𝑑𝑥

= (

̂
𝛿
2

(1 + Λ (1/
̂
𝛿))

2

× [(1 −

1

̂
𝛿

) +

Ψ

Σ

(1 −

1

̂
𝛿
2

)

+

Ω

Σ

(

1

̂
𝛿
4

− 1) +

Π

Σ

(

1

̂
𝛿
5

− 1)])

1/2

.

(58)

Since 3𝛽/𝛿
0
≪ 1, we can make the following approximation:

1

(1 + Λ (1/
̂
𝛿))

2
= 1 − 2

Λ

̂
𝛿

+ (

Λ

̂
𝛿

)

2

. (59)

To get

𝑑
̂
𝛿

𝑑𝑥

= (
̂
𝛿
2

[1 − 2

Λ

̂
𝛿

+ 3(

Λ

̂
𝛿

)

2

]

× [(1 −

1

̂
𝛿

) +

Ψ

Σ

(1 −

1

̂
𝛿
2

)

+

Ω

Σ

(

1

̂
𝛿
4

− 1) +

Π

Σ

(

1

̂
𝛿
5

− 1)])

1/2

,

x/𝛿0

𝛽 = 0 (no slip)
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Figure 19: Dimensionless evaporative film thickness profile at a 𝛽 =

0 nm.

𝑑
̂
𝛿

𝑑𝑥

= ([1 − 2

Λ

̂
𝛿

+ 3(

Λ

̂
𝛿

)

2

]

× [ (
̂
𝛿
2

−
̂
𝛿) +

Ψ

Σ

(
̂
𝛿
2

− 1)

+

Ω

Σ

(

1

̂
𝛿
2

−
̂
𝛿
2

) +

Π

Σ

(

1

̂
𝛿
3

−
̂
𝛿
2

)])

1/2

(60)

we have

𝑑
̂
𝛿

𝑑𝑥

= (
̂
𝛿
2

[1 +

Ψ

Σ

−

Ω

Σ

−

Π

Σ

]

−
̂
𝛿 [1 + 2Λ [1 +

Ψ

Σ

−

Ω

Σ

−

Π

Σ

]]

− [

Ψ

Σ

− 2Λ] + ⋅ ⋅ ⋅

1

̂
𝛿

+ ⋅ ⋅ ⋅

1

̂
𝛿
2

+ ⋅ ⋅ ⋅ )

1/2

.

(61)

Let

Γ = 1 +

Ψ

Σ

−

Ω

Σ

−

Π

Σ

. (62)

Because ̂
𝛿 ≥ 1, we neglect 1/̂𝛿, 1/̂𝛿2, . . . . Therefore, the

solution is accurate for ̂𝛿 ≫ 1 as

𝑑
̂
𝛿

𝑑𝑥

=
√̂
𝛿
2
Γ −

̂
𝛿 [1 + 2ΛΓ] − [Γ − 1 − 2ΛΓ]. (63)

The general solution of (63) by using the initial condition

̂
𝛿 = 1 𝑥 = 0 (64)
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Figure 20: Dimensionless evaporative film thickness profile at a 𝛽 =

0.5 nm.

is

̂
𝛿 =

1

4 × (Γ/ (1 + 2ΛΓ))

×

1

2 × (Γ/ (1 + 2ΛΓ)) − 1

× 𝑒
−𝑥√Γ

{4

Γ

1 + 2ΛΓ

(

Γ

1 + 2ΛΓ

− 1)

+ [1 + (2

Γ

1 + 2ΛΓ

− 1) 𝑒
−𝑥√Γ

]

2

} .

(65)

And from (65) we can evaluate an analytical solution for
𝑞
𝑡
(𝛿 → ∞) as

𝑞
𝑡
=

ℎ
𝑓𝑔
𝜌
𝑙
𝐴

𝜇
𝑙

√Σ. (66)

2.2. Numerical Solution. The solution can be readily obtained
using the fourth order Runge-Kutta method for the evaporat-
ing thin film profile. The governing equation (31) is solved
with the use of a Runge-Kutta (4) method; the solution
procedure is iterative. As a first guess 𝛿

0
, the values from

the previous step are used, and the calculated values are
returned from the Runge-Kutta solver and compared to the
guess values. A comparison of the guess and calculated values
is performed and looped until reaching convergence criteria
for both film thicknesses. The numerical solver is coded in
MATLAB. With these initial conditions, we have

𝛿 = 𝛿
0

𝑥 = 0,

𝑑𝛿

𝑑𝑥

= 0 𝑥 = 0.

(67)
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Figure 21: Dimensionless evaporative film thickness profile at a 𝛽 =

1 nm.

Table 1: Liquid properties and operating conditions.

Liquid Water
𝐴 10−20 J
𝑇V 353K∘

𝜌V 0.083 kg/m3

𝜐
𝑙

0.4996 ∗ 10−6m2/s
ℎ
𝑓𝑔

2382700 J/kg
𝑘
𝑙

0.65w/m⋅K

3. Results and Discussion

3.1. Comparison of Analytical Solution and Full Model. As
presented above, a mathematical model for predicting evap-
oration and fluid flow in thin-film region is developed.
Utilizing dimensionless analysis, analytical and numerical
solutions are obtained for the heat flux distribution, total
heat transfer rate per unit length, location of the maximum
heat flux, and ratio of the conduction to convection thermal
resistance in the evaporating film region. In order to verify
the analytical solution derived herein, results predicted by
Wang et al. [13] and numerical solution by Wayner Jr. et al.
[8] are used. Figure 2 shows the comparison of analytical
and numerical results of the total heat transfer rate through
thin-film region with results presented by Wang et al. [13]
and Wayner Jr. et al. [8]. Total heat flux is presented in
function of the superheat temperature. Our numerical and
analytical solutions are compared to the ones of Wang
and Schonberg and Wayner. It shows good agreement for
moderate superheat temperatures; however, our analytical
solution tends to underestimate total heat flux at large
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Table 2: Comparison of previous studies on evaporating extended meniscus.

Authors Numerical solution analytical solution Finding analytical equation for 𝛿 Slip condition
Potash and Wayner [5] o x x x
Moosman and Homsy [15] o o x x
Schonberg and Wayner [9] o o x x
Stephan and Busse [7] o x x x
Schonberg et al. [16] o o x x
Shikhmurzaev [17] x o x x
Ma and Peterson [10] o x x x
Pismen and Pomeau [18] x o x x
Catton and Stroes [19] o o x x
Choi et al. [20] o x x o
Qu and Ma [21] o o x x
Choi et al. [22] o x x o
Park and Lee [23] o x x x
By Morris [24] x o x x
Demsky and Ma [25] o x x x
Jiao et al. [26] x o x x
Na et al. [27] o o x x
Sultan et al. [28] x o x x
Wang et al. [14] o x x x
Ma et al. [29] o x x x
Wang et al. [13] o o x x
Zhao et al. [30] o x x o
Zhao et al. [31] o x x o
Benselama et al. [32] x o x x
Biswal et al. [33] o x x o
Liu et al. [34] x o x x
Bai et al. [35] o o x x
Biswal et al. [36] o x x x
Thokchom et al. [37] o x x x
Yang et al. [38] o x x x
Current study o o o o

superheat temperatures. In addition, the model presented
herein can be used to predict analytically and numerically
all of the equilibrium film thickness, heat flux distribution,
film thickness variation of evaporating film region,maximum
total heat transfer rate through the evaporating film region,
and ratio of the conduction to convection thermal resistance.
The following calculations and predictions are based on
the thermal properties and operating conditions shown in
Table 1.

3.2. Comparison of Analytic Equation for 𝛿 with Previous
Studies. It was seen from Table 2 that, in many studies on a
wide range of time, we did not find any researcher who found
the analytical equation for 𝛿 even only approximately, but we
found that they have numerical studies. So according to this,
we can say that (65) is the first analytical equation for 𝛿 or at
least approximately.

3.3. Distribution of Evaporative Film Thickness. Figures 3,
4, 5, 6, 7, and 8 compare our numerical and analytical
predictions for the dimensionless film thickness as function
of the dimensionless position for 0.1 K, 0.5 K, 1 K, 2 K, 5 K, and
10K superheat temperatures.They clearly show that the error
of the analytical approximation is decreasing with increasing
superheat temperature.We can see that for large positions the
solution is dominated by exponential growth.

Figures 9, 10, 11, 12, 13, and 14 compare our numerical
and analytical predictions for the dimensionless heat flux as
function of the dimensionless position for 0.3 K, 0.7 K, 1 K,
2 K, 5 K, and 10K superheat temperatures. Similar property
can be seen; that is, the error of the analytical approximation
is decreasing with increasing superheat temperature. The
maximum of the heat flux is predicted correctly for all
values of the superheat temperature analytically; however, the
location of themaximum is predictedwith significant error at
low superheat temperatures.
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Figure 22: Dimensionless evaporative film thickness profile at a 𝛽 =

3 nm.

Figures 15, 16, 17, and 18 show that nondimensional heat
flux is presented as function of the nondimensional position
for different values of 𝛽: 0, 0.5, 1 and 3×10−9. As 𝛽 gets larger,
the error in the analytical heat flux approximation is getting
larger.

Figures 19, 20, 21, and 22 compare our numerical and
analytical predictions for the dimensionless film thickness as
function of the dimensionless position for different values of
the slip coefficient, 𝛽: 0, 0.5, 1 and 3×10−9. Comparing the fig-
ures indicates similar conclusions as previously mentioned:
smaller slip coefficient yields smaller error in the analytical
approximation.

4. Conclusions

This paper presents a mathematical model for predicting
evaporation and fluid flow in thin-film region. The thin-
film region of the extended meniscus is delineated. Utilizing
analytical solutions were obtained for heat flux distribution,
total heat transfer, and liquid film thickness in the evapo-
rating film region. The mathematical model also develops
an analytic equation for 𝛿. So according to this, we can say
that (65) is the first analytical equation for 𝛿 or at least
approximately. Also we can conclude that there is small effect
of slip condition𝛽 on the thin-film evaporation for two-phase
flow in microchannel. The dimensionless heat flux through
thin-film region is a function of dimensionless thickness.
Also the results showed the assumption that neglecting the
capillary pressure is acceptable.

Highlights

(i) Analytical two-phase flow formicrochannel heat sink
is studied.

(ii) Numerical two-phase flow formicrochannel heat sink
is studied.

(iii) New evaporating film thickness equation is devel-
oped.

Nomenclature

𝐴: Dispersion constant (J)
ℎ
𝑓𝑔
: Heat of vaporization (J/kg)

𝑘: Conductivity (W/m⋅K)
𝑚̇
𝑒
: Interface net evaporative mass transfer (kg/(m2s))

𝑚̇
𝑥
: Mass flow rate (kg/ms)

𝑝
𝑐
: Capillary pressure (N/m2)

𝑝
𝑙
: Liquid pressure (N/m2)

𝑝V: Vapor pressure (N/m2)
Δ𝑝: 𝑝

1
− 𝑝
2
(N/m)

𝑞
󸀠󸀠: Heat flux (w/m2)
𝑞
󸀠󸀠

𝑜
: Characteristic heat flux (w/m2)

𝜙: Dimensionless heat flux
𝜙max: Maximum dimensionless heat flux
𝑞tot: Total heat transfer rate per unit width (W/m)
𝑇: Temperature (K)
𝑢: Velocity along 𝑥-axis (m/s)
𝑥: 𝑥-coordinate (m)
𝜓: Dimensionless 𝜓-coordinate
𝑦: 𝑦-coordinate (m).

Greek Symbols

𝛿: Film thickness (m)
𝛿
0
: Equilibrium film thickness or

characteristic thickness (m)
̂
𝛿: Dimensionless film thickness
𝛿optimum: Optimum thickness corresponding to the

maximum heat flux (m)
𝜇: Dynamic viscosity (N s/m2)
𝜐: Kinematic viscosity (m2/s)
𝜌: Density (kg/m3)
𝜎: Surface tension (N/m)
𝛽: The slip coefficient (m).

Subscripts

⋅: Time rate of change
𝑙: Liquid
max: Maximum quantity
tot: Total
V: Vapor
𝑤: Wall.
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