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The purpose of this study is to create distribution models of seventeen Lutzomyia species in Venezuela. Presence records were
obtained from field collections over 30 years by several research teams. We used maximum entropy method for model construction
based on 30 arc-second resolution environmental layers: 19 bioclimatic variables, elevation, and land cover. Three species were
distributed throughout north-central Venezuelan, two restricted to northern Venezuelan coast, and three throughout the west; five
were restricted mainly to the Andean and finally two species within sparse pattern. The most important variables that contributed
were related to precipitation. The environmental niche model of sandflies might be a useful tool to contribute to the understanding

of the ecoepidemiological complexity of the transmission dynamics of the leishmaniases.

1. Introduction

The phlebotomine sandflies are important vectors of bar-
tonellosis [1], flaviviruses, orbiviruses, phleboviruses, and
vesiculoviruses [2, 3] as well as leishmaniases [4].

Cutaneous leishmaniasis in Venezuela is endemic and
focal but is distributed almost all over the country where
the population is about 25,000,000. The number of cases
reported by the Ministry of Health during the period 1988-
2007 was 52,402 with an average incidence 0f10.23 in 100,000
inhabitants; 98.67% were diagnosed as localized cutaneous
leishmaniasis, 1.1% as mucocutaneous leishmaniasis, and
0.23% as diffuse leishmaniasis [5, 6]. In relation to visceral
leishmaniasis (VL), for the period 1990-2009, the number of
registered cases was 597 and the average incidence was 0.12
per 100,000 inhabitants (unpublished files of the Department
of Informatics, Instituto de Biomedicina, Caracas).

Feliciangeli [7] reported about 100 species of phle-
botomine sandflies known in Venezuela, 30 of which are
anthropophilic and eight are recognized as suspected or
proven vectors of the leishmaniases. Following Young and

Duncan’s classification [8], we list here the proven vectors
of cutaneous leishmaniasis (CL): Lutzomyia ovallesi (Ortiz,
1952), L. gomezi (Nitzulescu, 1931), L. panamensis (Shannon,
1926), L. youngi Feliciangeli & Murillo, 1985, L. spinicrassa
Morales, Osorno-Mesa, Osorno, and Munoz de Hoyos, 1969,
and L. migonei (Franga, 1920) and the proven vectors of
visceral leishmaniasis (VL): L. longipalpis s.l. (Lutz & Neiva,
1912), L. pseudolongipalpis Arrivillaga & Feliciangeli, 2001,
and L. evansi (Nuniez-Tovar, 1924).

Earlier studies have demonstrated that historical field and
laboratory data regarding the ecology and distribution of
vector-borne diseases can provide the basis for development
of spatial-temporal environmental risk models by the use of
standardized analysis of Geographical Information Systems,
remote sensing data from earth-observing satellites, and
ecological niche modeling [9-13]. Ecological niche modeling
(ENM) uses record data in conjunction with environmental
data to develop models of habitat range for a given organism
[14, 15]. Some authors stated that ENM today plays a central
role in many areas of ecology, conservation, and evolutionary
biology, both because they can fill gaps in knowledge and



allow a better estimate of multiple components of species
diversity [16-18]. This technique has been used in modeling
distribution of diseases, such as dengue, malaria, and West
Nile and yellow fever vectors, such as Aedes Meigen 1818
[19], Anopheles Meigen 1818 [20-22], Culex Linnaeus 1758
[23], and Haemagogus Williston 1896 [24], respectively. In
addition, ENM has been used to examine the potential
distribution of Lutzomyia Franga 1924 in America [25-30]
and Phlebotomus Rondani 1840 in western Asia [31]. Recently,
Foley et al. [32] proposed a new map service that allows free
public online access to global sandfly collection records and
habitat suitability models.

In this study, we use ENM to develop distribution models
for seventeen species of phlebotomine sandflies (sixteen from
Lutzomyia and one of Brumptomyia Franca & Parrot, 1921)
in Venezuela. Using these models, we attempt to identify
environmental factors which influence the distribution of
these species, in order to contribute to leading to a more
sophisticated risk analysis for leishmaniasis in Venezuela.

2. Material and Methods

2.1. Species Records. As part of a sandfly biogeographical
study, presence data for the species were taken from Venezue-
lan collections performed by the Centro Nacional de Refer-
encia de Flebotomos y otros Vectores (CNRFV), BIOMED,
Universidad de Carabobo, Maracay, Venezuela, during 30
years, and bibliographic revision in scientific literature dating
from 1970 through the present compiled by one of the authors
(Marfa Dora Feliciangeli). This study was restricted only
to species with ten or more presence records and included
six species of medical importance. Small sample sizes pose
challenges to any statistical analysis and result in decreased
predictive potential when compared to models developed
with more occurrences. Hernandez et al. [33] evaluate several
ENM algorithms and found that model accuracy increased
with larger sample sizes for all modeling methods across
the taxa tested. Nonetheless, useful models were produced
with as few as 5-10 positive observations. Because of that,
we included the sandflies species within small records sizes,
in order to evaluate the accuracy of obtained models in such
taxa. We compiled a country database (from 21 administrative
states, excluding Monagas, Vargas, and Delta Amacuro)
with 681 specimen records (98% represents CNRFV site
collections) of 17 species: Brumptomyia beaupertuyi (Ortiz,
1954) (n = 18), Lutzomyia antunesi (Coutinho, 1939) (24),
L. atroclavata (Knab, 1913) (80), L. cayennensis cayennensis
(Floch & Abonnenc, 1941) (81), L. dubitans (Sherlock, 1962)
(38), L. evansi (43), L. gomezi (92), L. lichyi (Floch &
Abonnenc, 1950) (49), L. longipalpis s.l. (67), L. micropyga
(Mangabeira, 1942) (19), L. migonei (23), L. nuneztovari
(Ortiz, 1954) (12), L. olmeca bicolor Fairchild & Theodor,
1971 (12), L. ovallesi (47), L. panamensis (33), L. pilosa
(Damasceno & Causey, 1944) (14), and L. punctigeniculata
(Floch & Abonnenc, 1944) (29). Lutzomyia pseudolongipalpis
was not included in this study because its known distribution
is only restricted to three close localities in Lara state. The
database coordinates were converted to the decimal degrees
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format, using GPS coordinates, 1:100,000 regional maps,
and geographical gazetteers, and for database standardization
protocols we followed [34, 35].

2.2. Environmental Layers. We used 19 bioclimatic vari-
ables [36] derived from climatic data from the 1950-2000
period: annual mean temperature (BIOI), mean diurnal
range (BIO2), isothermality (BIO3), temperature seasonality
(BIO4), maximum temperature of warmest month (BIO5),
minimum temperature of coldest month (BIO6), temperature
annual range (BIO7), mean temperature of wettest quarter
(BIOS8), mean temperature of driest quarter (BIO9), mean
temperature of warmest quarter (BIO10), mean temperature
of coldest quarter (BIOI11), annual precipitation (BIOI12),
precipitation of wettest month (BIOI13), precipitation of driest
month (BIO14), precipitation seasonality (BIO15), precip-
itation of wettest quarter (BIO16), precipitation of driest
quarter (BIOI17), precipitation of warmest quarter (BIOIS),
and precipitation of coldest quarter (BIO19) and one topo-
graphic variable [37]: elevation (ELEV) and one ecological
[38]: fifteen land cover classes (LAND). All variables were
reduced to a grid resolution of 30 arc-seconds or 0.008333°
(approximately 1 Km?) for the analysis.

2.3. Model Building and Evaluation. We modeled the species
distribution using maximum entropy method [17, 39] with
MaxEnt 2.3 [17]. The analysis was performed using the
default parameters: maximum iterations to 500 and using
convergence threshold in 1.0E — 5 [40, 41]. Seventy-five
percent of the data points for each species were randomly
selected as training points and used in model building. The
remaining 25% of the records were test points and used in
model validation. Duplicate presence records were removed
by the program prior to model development. The model
output was set to logistic: it is an attempt to get as close as we
can to estimate the relative habitat suitability that the species
is present, given the environment. The program returns an
estimated presence probability for a given location between
cell values of 0 (no probability of species presence) and 1
(species is certain to be present); we based our predictions
maps on a probability of 0.70 (values above this thresh-
old were considered presence and they represented higher
suitability). The model was evaluated using the area under
the curve (AUC) of the receiver operating characteristic
(ROC); this technique computes the total area under the
curve created by plotting sensitivity against the fractional
predicted area for the species. Also, a one-tailed binomial
test was calculated with the null hypothesis being that the
model does not predict the test points better than random
(17, 31, 39, 42].

3. Results

Table 1 represents the accuracy of the niche models in the
sandflies species. Of these 17 niche models all possessed
an AUC greater than 0.80, with 15 of them being statisti-
cally significant (P < 0.05) as indicated by the binomial
test. Niche models were produced for Lutzomyia antunesi,
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TABLE 1: Accuracy of the niche models in the sandflies species.

Species AUC Omission rate P value
Brumptomyia beaupertuyi  0.882 0.000 n.s
Lutzomyia antunesi 0.825 0.000 <0.05
L. atroclavata 0.872 0.067 <0.001
L. c. cayennensis 0.929 0.065 <0.001
L. dubitans 0.953 0.034 <0.001
L. evansi 0.926 0.061 <0.001
L. gomezi 0.805 0.087 <0.001
L. lichyi 0.977 0.054 <0.001
L. longipalpis s.I. 0.802 0.137 <0.001
L. micropyga 0.948 0.067 <0.01
L. migonei 0.888 0.000 <0.05
L. nuneztovari 0.967 0.000 <0.001
L. olmeca bicolor 0.969 0.000 <0.05
L. ovallesi 0.900 0.083 <0.001
L. panamensis 0.889 0.040 <0.001
L. pilosa 0.821 0.091 n.s
L. punctigeniculata 0.829 0.045 <0.05

n.s: no significance.

L. atroclavata, L. c. cayennensis, L. dubitans, L. evansi, L.
gomezi, L. lichyi, L. longipalpis s.L, L. micropyga, L. migonei,
L. nuneztovari, L. olmeca bicolor, L. ovallesi, L. panamensis,
and L. punctigeniculata. Figures 1-3 present maps of the
predicted geographical distributions of sandflies species.
Darker regions are those of high relative probability (>0.70) of
occurrence while lighter areas are those in which the relative
probability of occurrence is low (<0.70). The species present a
variety of distributional patterns across Venezuela: Lutzomyia
evansi and L. panamensis were distributed throughout north-
central Venezuela; L. cayennensis and L. olmeca bicolor were
restricted to northern Venezuelan coast; L. nuneztovari,
L. longipalpis s.I., L. punctigeniculata, and L. gomezi were
distributed throughout the west, L. micropyga, L. migonei, L.
lichyi, and L. ovallesi were restricted mainly to the Andean
region; L. atroclavata is distributed throughout northern
Venezuela; finally L. dubitans and L. antunesi were present in
a sparse pattern in the country.

Table 2 informs about the environmental variable con-
tribution based on the Jackknife test; first, the AUC of each
niche model was calculated using each of the environmental
variables individually. Those variables that resulted in the
highest AUC were interpreted as those which possessed
the most information regarding the niche of a species.
Second, the AUC of each niche model was calculated after
omitting each of the environmental variables one at a
time. In our study, the variables that increment the AUC
value when included separately were precipitation of wettest
quarter (BIO16), precipitation of wettest month (BIO13),
annual precipitation (BIO12), and precipitation of coldest
quarter (BIO19). The remaining variables showed smallest
importance in the AUC contribution: precipitation of dri-
est month (BIO14), elevation (ELEV), temperature annual
range (BIO7), land cover (LAND), and so forth. However,

some variables decrease the AUC when they are omitted
from the models: isothermality (BIO3), BIO12, mean diurnal
range (BIO2), LAND, and ELEV. For additional MaxEnt
output, see the Supplementary Material available online
at http://dx.doi.org/10.1155/2015/108306, within the omission
and predicted area and Jackknife regularized trained gain
figures for each species.

4. Discussion

The predicted distributions of Venezuela sandflies produce
useful models within species that differ from 12 records
(L. olmeca bicolor and L. nuneztovari) to 92 records (L.
gomezi); however, in L. pilosa (14 records) and B. beaupertuyi
(18) the models performance was poor. Some studies have
demonstrated deterioration in predictive performance as
sample sizes are decreased [26, 42]. In others, accuracy
models were produced with few records maybe due to
ecologically specialized species with smallest geographic
extent of occurrence and very low tolerance [33]. Our
records showed L. olmeca bicolor to be restricted to lowland
deciduous forests (100-250 masl), L. nuneztovari to montane
evergreen forests (500-1900 masl), L. gomezi to various land
cover types and wide elevation range, L. pilosa to montane
evergreen forest, agriculture types and wide elevation range,
and finally B. beaupertuyi to various land cover types and
wide elevation range. Our results are similar to ten Lutzomyia
species potential distribution maps generated by the global
geospatially referenced clearinghouse for sandfly disease vec-
tor species collection records (http://www.sandflymap.org/;
access: 1/19/2015). However, the differences may be due
to the environmental variables used to build the model
and the number of records (presences) in each species. In
Venezuela, there are only 40 records for seventeen species in
the SandflyMap database, in contrast to the 681 records in our
study.

In strict epidemiological sense, the Venezuelan Andes
(Trujillo, Merida, Tachira states) and the Lara state showed
to be the most important area with CL transmission [43-46].
Feliciangeli et al. [47] stated that the distribution of Lutzomyia
evansi (VL vector) and L. ovallesi almost overlaps the Andean
lowland forests as well in the Northern Coast Cordillera; L.
ovallesi is restricted to 0-800 masl and L. nuneztovari to areas
close or to above 1,000 masl. In a review of the subgenus
Micropygomyia of Lutzomyia, Feliciangeli [48] showed that
the geographical distribution of L. micropyga to the Andean
states may represent the natural continuity of the Colombian
distribution; L. c¢. cayennensis occupies wide range of life
zones (dry to moist tropical forests), whereas L. atroclavata
is normally found in the lowlands (0-400 masl).

Rotureau [49] stated that Lutzomyia vectors are generally
abundant year round in the Amazon. Nevertheless, the period
encompassing the end of the dry season and the beginning
of the rainy season is more propitious for their development.
Peterson and Shaw [25] proposed a niche model for cuta-
neous leishmaniasis vectors from southern Brazil: they found
that L. migonei had the broadest ecological distribution, and
Lutzomyia whitmani (Antunes & Coutinho 1939) tended to
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FIGURE 1: Distribution of sandflies species in Venezuela and gray points denoted occurrences and black areas high probability of relative
habitat suitability. Maps are provided for (a) Lutzomyia antunesi, (b) L. atroclavata, (c) L. c. cayennensis, (d) L. dubitans, and (e) L. evansi and
(f) L. gomezi.
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FIGURE 2: Distribution of sandflies species in Venezuela and gray points denoted occurrences and black areas high probability of relative
habitat suitability. Maps are provided for (a) L. lichyi, (b) L. longipalpis s.L, (c) L. micropyga, (d) L. migonei, (e) L. nuneztovari, and (f) L.
olmeca bicolor.
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FIGURE 3: Distribution of sandflies species in Venezuela and gray points denoted occurrences and black areas high probability of relative
habitat suitability. Maps are provided for (a) L. ovallesi, (b) L. panamensis, and (c) L. punctigeniculata.

be the most tropical in distribution (high precipitation, high
temperature, wet climates, and high vapour pressure). More
recently, a niche model for Leishmaniasis in north America
suggests that the most important environmental variables
were mean temperatures of the wettest and warmest quarters
in Lutzomyia anthophora (Addis, 1945) and annual mean
temperature and the minimum temperature of the coldest
month in L. diabolica (Hall, 1936) [27]. Colacicco-Mayhugh et
al. [31] determined the niche model in Phlebotomus alexandri
Sinton 1928 and P. papatasi (Scopoli, 1786), using land cover
classes derived from Normalized Difference Vegetation Index
(NVDI) and 19 bioclimatic variables. The variables with high
probabilities presence were urban, field/woody savanna, and

woody savannah coverage, while the remaining variables
have very modest training gains. They consider that this may
be partly due to sampling bias, as collections of phlebotomine
sand flies tend to be associated with research related to
human leishmaniasis and anthropogenic biomes. Almeida
et al. [50] observed in Mato Grosso state (Brazil) similar
predicted areas between niche models for L. longipalpis
and L. cruzi (Mangabeira 1938) when NVDI land cover
classes and climatic variables were included together or in a
separate analysis. Finally, they reported high abundance of
L. longipalpis in the rainy season, and in L. cruzi followed
moderate to regular precipitation and minimum temperature
elevation. Quintana et al. [29] showed that precipitation
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TABLE 2: Jackknife AUC contributions of the environmental variables of the niche models.

Species

Variables that produce the largest AUC

when included separately

Variables that produce the
smallest AUC when omitted

B. beaupertuyi BIO19 (0.892) BIOI6 (0.874) BIOI2 (0.866) ELEV (0.849) BIO2 (0.872) BIOI1 (0.879)
L. antunesi BIO7 (0.915) BIO19 (0.886) BIOS5 (0.845) BIO2 (0.812) BIO3 (0.819) BIOI16 (0.821)
L. atroclavata BIOI13 (0.856) BIO19 (0.855) BIOI6 (0.848) BIOI2 (0.839) ELEV (0.858) BIO5 (0.859)
L. c. cayennensis BIO16 (0.908) BIO19 (0.906) BIOI3 (0.901) BIOI2 (0.898) BIO2 (0.907) BIO3 (0.909)
L. dubitans BIOI2 (0.957) BIOI3 (0.952) BIO16 (0.950) BIO2 (0.942) BIO19 (0.950) ELEV (0.951)
L. evansi BIO12 (0.926) BIOI3 (0.921) BIOI6 (0.917) BIO3 (0.912) BIO2 (0.920) BIOI2 (0.922)
L. gomezi BIOI6 (0.872) BIOI2 (0.859) BIOI3 (0.856) BIOI1 (0.792) BIO4 (0.793) LAND (0.793)
L. lichyi BIO6 (0.964) BIOI1 (0.961) BIO9 (0.959) ELEV (0.965) BIOI6 (0.973) BIO2 (0.975)
L. longipalpis s.1. BIOI2 (0.934) BIOI3 (0.930) BIOI16 (0.925) BIOI2 (0.786) BIO3 (0.789) BIO9 (0.803)
L. micropyga LAND (0.921) BIOI13 (0.826) BIOI16 (0.819) BIO3 (0.944) BIOI2 (0.945) BIOI13 (0.946)
L. migonei BIO17 (0.888) BIO?7 (0.886) BIO14 (0.870) LAND (0.867) BIO2 (0.875) BIO3 (0.876)
L. nuneztovari BIOS5 (0.989) BIO1 (0.987) BIOI0 (0.986) BIOIS (0.957) BIOI5 (0.962) BIOI2 (0.967)
L. olmeca bicolor ~ BIOI12 (0.953) BIO19 (0.940) ELEV (0.727) LAND (0.961) BIO17 (0.972) BIO3 (0.973)
L. ovallesi BIOI6 (0.906) BIOI3 (0.902) BIOI2 (0.884) BIOI12 (0.876) LAND (0.896) BIO6 (0.898)
L. panamensis BIOI9 (0.935) BIO16 (0.913) BIOI2 (0.912) BIO12 (0.879) LAND (0.882) BIO3 (0.886)
L. pilosa BIOI5 (0.868) BIO14 (0.849) ELEV (0.802) BIOI5 (0.810) BIOS (0.816) BIOI0 (0.817)
L. punctigeniculata  BIO14 (0.896) BIO4 (0.883) BIO17 (0.882) BIOI3 (0.822) BIO17 (0.824) BIO7 (0.827)

seasonality and precipitation in the warmest quarter were the
variables that most contributed to the ENM of Lutzomyia
neivai and Lutzomyia migonei in Argentina. Our results
suggest that precipitation of driest quarter and precipitation
of driest month were the most important variables in L.
migonei model prediction. In Colombia, [30] noted that
distributions of L. longipalpis and L. evansi are strongly
correlated with precipitation; their breeding success depends
on the availability of rich humid soils, and precipitation
during dry months, when the river flow can decrease, can
become a limiting factor. These findings are similar to ours;
annual precipitation is the most important variable for these
species that contributes to the model construction.

The VL vectors L. evansi and L. longipalpis s.I. showed
to be sympatric in northern Venezuela [49, 51]. Then L.
panamensis and L. evansi were also reported to be focused in
Caribbean coast of eastern Venezuela where cutaneous and
visceral leishmaniasis coexist [52]; Lutzomyia gomezi and L.
ovallesi in the north-central Venezuela are the main anthro-
pophilic species implicated as vectors of this disease [49, 53].
Feliciangeli [7] reported the geographic distribution of eight
leishmaniasis vectors; of these, five species showed the widest
distribution within fourteen to twenty administrative states,
and the remaining species were restricted to one to four
states. Our results are congruent with this author, showing
wide predicted distributions for L. longipalpis s.l., L. evansi,
L. ovallesi, and L. gomezi; however, the potential distribution
in L. panamensis was limited to fewer states.

Recently, in Mexico, [27] estimate the probable distribu-
tion of all sandfly species with potential medical importance
for leishmaniasis and related it to the transmission areas.

In conclusion, although we are aware about the lim-
itations of using secondary data collected with different
methods across many years, our results show that the ENM

might be a useful tool to contribute to the understanding
of the ecoepidemiological complexity of the transmission
dynamics of the leishmaniases. To reach this goal, further
studies are needed which must include epidemiological vari-
ables, such as the distribution of CL/VL cases and reservoirs.
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