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The derivative-based trapezoid rule for the Riemann-Stieltjes integral is presented which uses 2 derivative values at the endpoints.
This kind of quadrature rule obtains an increase of two orders of precision over the trapezoid rule for the Riemann-Stieltjes integral
and the error term is investigated. At last, the rationality of the generalization of derivative-based trapezoid rule for Riemann-
Stieltjes integral is demonstrated.

1. Introduction

In mathematics, the Riemann-Stieltjes integral is a kind of
generalization of theRiemann integral, named after Bernhard
Riemann andThomas Stieltjes. It is Stieltjes that first gave the
definition of this integral [1] in 1894. It serves as an instructive
and useful precursor of the Lebesgue integral. It is known
that the Riemann-Stieltjes integral has wide applications in
the field of probability theory [2, 3], stochastic process [4],
and functional analysis [5], especially in original formulation
of F. Riesz’s theorem and the spectral theorem for self-adjoint
operators in a Hilbert space.

Definite integration is one of the most important and
basic concepts in mathematics. And it has numerous appli-
cations in fields such as physics and engineering. In several
practical problems, we need to calculate integrals. As is
known to all, as for 𝐼 = ∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥, once the primitive

function 𝐹(𝑥) of integrand 𝑓(𝑥) is known, the definite
integral of 𝑓(𝑥) over the interval [𝑎, 𝑏] is given by Newton-
Leibniz formula, that is,

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎) . (1)

However, the explicit primitive function 𝐹(𝑥) is not
available or its primitive function is not easy to obtain, such
as 𝑒±𝑥

2

, sin𝑥2, and (sin𝑥)/𝑥 . Moreover, the integrand 𝑓(𝑥)

is only available at certain points 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑛. How to get
high-precision numerical integration formulas becomes one
of the challenges in fields of mathematics [6].

The methods of quadrature are usually based on the
interpolation polynomials and can bewritten in the following
form:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈

𝑛

∑

𝑖=0

𝑤𝑖𝑓 (𝑥𝑖) , (2)

where there are 𝑛 + 1 distinct integration points at
𝑥0, 𝑥1, . . . , 𝑥𝑛 within the interval [𝑎, 𝑏] and 𝑛 + 1 weights 𝑤𝑖.
If the integration points are uniformly distributed over the
interval, so 𝑥𝑖 = 𝑥0 + 𝑖ℎ in which ℎ = (𝑏 − 𝑎)/𝑛.

These 𝑤𝑖 can be derived in several different ways [7–9].
One is interpolate𝑓(𝑥) at the 𝑛+1 points 𝑥0, 𝑥1, . . . , 𝑥𝑛, using
the Lagrange polynomials and then integrating the foresaid
polynomials to obtain (2).

The other is based on the precision of a quadrature
formula. Select the 𝑤𝑖, 𝑖 = 0, 1, . . . , 𝑛, so that the error,

𝑅𝑛 (𝑓) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 −

𝑛

∑

𝑖=0

𝑤𝑖𝑓 (𝑥𝑖) , (3)

is exactly zero for 𝑓(𝑥) = 𝑥
𝑗, 𝑗 = 0, 1, . . . , 𝑛. Using

the method of undetermined coefficients, this approach
generates a system of 𝑛 + 1 linear equations for weights 𝑤𝑖.
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Since themonomials 1, 𝑥, . . . , 𝑥𝑛 are linearly independent, the
linear system of equations has a unique solution.

The trapezoidal rule is the most well-known numerical
integration rule of this type. Trapezoidal rule for classical
Riemann integral is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏)) −

(𝑏 − 𝑎)
3

12
𝑓
󸀠󸀠
(𝜉) , (4)

where 𝜉 ∈ (𝑎, 𝑏).
In spite of the many accurate and efficient methods

for numerical integration being available in [7–9], recently
Mercer has obtained trapezoid rule for Riemann-Stieltjes
integral which engender a generalization of Hadamard’s
integral inequality [10]. Then he develops Midpoint and
Simpson’s rules forRiemann-Stieltjes integral [11] by using the
concept of relative convexity. Burg has proposed derivative-
based closed Newton-Cotes numerical quadrature [12] which
uses both the function value and the derivative value on uni-
formly spaced intervals. Zhao and Li have proposedmidpoint
derivative-based closed Newton-Cotes quadrature [13] and
numerical superiority has been shown. Recently, Simos and
his partners have made a contribution to the Newton-Cotes
formula for the Riemann integral and its applications [14–
21], especially the connection between closed Newton-Cotes,
trigonometrically fitted differentialmethods, symplectic inte-
grators, and efficient solution of the Schrodinger equation
[17–21].

Motivation for the research presented here lies in con-
struction of derivative-based trapezoid rule for the Riemann-
Stieltjes integral, which is generalization of the results in
[10–12]. In this paper, the derivative-based trapezoid rule for
the Riemann-Stieltjes integral is presented. This new scheme
is investigated in Section 2. In Section 3, the error term is
presented. Finally, conclusions are drawn in Section 4.

2. Derivative-Based Trapezoid Rule for the
Riemann-Stieltjes Integral

In this section, by adding the derivatives at the endpoints,
derivative-based trapezoid rule for the Riemann-Stieltjes
integral is presented.

Theorem 1. Suppose that 𝑓󸀠 and 𝑔 are continuous on [𝑎, 𝑏]

and 𝑔 is increasing there. The derivative-based trapezoid rule
for the Riemann-Stieltjes integral is

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑔

≈ 𝑇 = (
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

−𝑔 (𝑎) )𝑓 (𝑎)

+ (𝑔 (𝑏) −
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)𝑓 (𝑏)

+ (
2

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)𝑓
󸀠
(𝑎)

+ (
4

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

−∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡)𝑓
󸀠
(𝑏) .

(5)

Proof. Looking for the derivative-based trapezoid rule for the
Riemann-Stieltjes integral, we seek numbers 𝑎0, 𝑎1, 𝑏0, 𝑏1 such
that

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑔 ≈ 𝑎0 𝑓 (𝑎) + 𝑎1𝑓 (𝑏) + 𝑏0𝑓
󸀠
(𝑎) + 𝑏1 𝑓

󸀠
(𝑏) (6)

is equality for 𝑓(𝑡) = 1, 𝑡, 𝑡
2
, 𝑡
3. That is,

∫

𝑏

𝑎

1 𝑑𝑔 = 𝑎0 + 𝑎1;

∫

𝑏

𝑎

𝑡 𝑑𝑔 = 𝑎0𝑎 + 𝑎1𝑏 + 𝑏0 + 𝑏1;

∫

𝑏

𝑎

𝑡
2
𝑑𝑔 = 𝑎0𝑎

2
+ 𝑎1𝑏
2
+ 2𝑏0𝑎 + 2𝑏1𝑏;

∫

𝑏

𝑎

𝑡
3
𝑑𝑔 = 𝑎0𝑎

3
+ 𝑎1𝑏
3
+ 3𝑏0𝑎

2
+ 3𝑏1𝑏

2
.

(7)

Therefore,

𝑎0 + 𝑎1 = 𝑔 (𝑏) − 𝑔 (𝑎) ;

𝑎0𝑎 + 𝑎1𝑏 + 𝑏0 + 𝑏1 = 𝑏𝑔 (𝑏) − 𝑎𝑔 (𝑎) − ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡;

𝑎0𝑎
2
+ 𝑎1𝑏
2
+ 2𝑏0𝑎 + 2𝑏1𝑏

= 𝑏
2
𝑔 (𝑏) − 𝑎

2
𝑔 (𝑎) − 2𝑏∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡

+ 2∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡;
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𝑎0𝑎
3
+ 𝑎1𝑏
3
+ 3𝑏0𝑎

2
+ 3𝑏1𝑏

2

= 𝑏
3
𝑔 (𝑏) − 𝑎

3
𝑔 (𝑎) − 3𝑏

2
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡

+ 6𝑏∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

− 6∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡.

(8)

Solving simultaneous (8) for 𝑎0, 𝑎1, 𝑏0, 𝑏1, we obtain

𝑎0 =
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
12

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡 − 𝑔 (𝑎) ;

𝑎1 = 𝑔 (𝑏) −
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+
12

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡;

𝑏0 =
2

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡;

𝑏1 =
4

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡 − ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡.

(9)

So we have the derivative-based trapezoid rule for the
Riemann-Stieltjes integral as desired.

Corollary 2. The precision of the derivative-based trapezoid
rule for the Riemann-Stieltjes integral is 3.

Proof. From the construction of 𝑎0, 𝑎1, 𝑏0, 𝑏1, we obtain
that the derivative-based trapezoidal rule for the Riemann-
Stieltjes integral has degree of precision not less than 3.

In Section 3Theorem 3, we can easily see that the quadra-
ture is not equality for 𝑓(𝑡) = 𝑡

4. So the precision of this
method is 3.

3. The Error Term for Riemann-Stieltjes
Derivative-Based Trapezoid Rule

In this section, the error term of the derivative-based trape-
zoid rule for the Riemann-Stieltjes is investigated. The error
term can be found in mainly 3 different ways [8, 9].

Here, we use the concept of precision to calculate the error
term,where the error term is related to the difference between
the quadrature formula for themonomial 𝑥𝑝+1/(𝑝 + 1)! and

the exact value (1/(𝑝+1)!) ∫𝑏
𝑎
𝑥
𝑝+1

𝑑𝑥, where𝑝 is the precision
of the quadrature formula.

Theorem 3. Suppose that 𝑓(4) and 𝑔󸀠 are continuous on [𝑎, 𝑏]

and 𝑔 is increasing there. The derivative-based trapezoid rule
for the Riemann-Stieltjes integral with the error term is

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑔

= (
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

− 𝑔 (𝑎) )𝑓 (𝑎)

+ (𝑔 (𝑏) −
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)𝑓 (𝑏)

+ (
2

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)𝑓
󸀠
(𝑎)

+ (
4

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

− ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡)𝑓
󸀠
(𝑏)

+ (
(𝑏 − 𝑎)

2

12
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
𝑏 − 𝑎

12
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

+ ∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡)

× 𝑓
(4)

(𝜉) 𝑔
󸀠
(𝜂) ,

(10)
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where 𝜉, 𝜂 ∈ (𝑎, 𝑏). And the error term 𝑅[𝑓] of this method is

(
(𝑏 − 𝑎)

2

12
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
𝑏 − 𝑎

12
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

+∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡)𝑓
(4)

(𝜉) 𝑔
󸀠
(𝜂) .

(11)

Proof. Let 𝑓(𝑡) = 𝑡
4
/4!.

So

1

4!
∫

𝑏

𝑎

𝑡
4
𝑑𝑔 =

1

24
(𝑏
4
𝑔 (𝑏) − 𝑎

4
𝑔 (𝑎))

−
𝑏
3

6
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡 +
𝑏
2

2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥

− 𝑏∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

+ ∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡.

(12)

ByTheorem 1, we have

𝑇 = (
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡 − 𝑔 (𝑎))
𝑎
4

24

+ (𝑔 (𝑏) −
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)
𝑏
4

24

+ (
2

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡)
𝑎
3

6

+ (
4

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

− ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡)
𝑏
3

6
.

(13)

By Equations (12)-(13), we obtain

1

4!
∫

𝑏

𝑎

𝑡
4
𝑑𝑔 − 𝑇

=
(𝑏 − 𝑎)

2

12
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
𝑏 − 𝑎

12
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

+ ∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡.

(14)

This implies that

𝑅 [𝑓] = (
(𝑏 − 𝑎)

2

12
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

−
𝑏 − 𝑎

12
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑡

+∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑔 (𝑥) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡)

× 𝑓
(4)

(𝜉) 𝑔
󸀠
(𝜂) .

(15)

Corollary 4. Conditions are the same as forTheorem 3.When
𝑔(𝑡) = 𝑡, (10) reduces to the derivative-based trapezoid rule (see
[12]) for the classical Riemann integral.

Proof. It is easy to obtain

∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥 𝑑𝑥 𝑑𝑡 =
1

6
𝑏
3
−
1

2
𝑎
2
𝑏 +

1

3
𝑎
3
,

∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡

=
1

24
𝑏
4
−
1

4
𝑎
2
𝑏
2
+
1

3
𝑎
3
𝑏 −

1

8
𝑎
4
,

∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑡

=
1

120
𝑏
5
−

1

12
𝑎
2
𝑏
3
+
1

6
𝑎
3
𝑏
2
−
1

8
𝑎
3
𝑏 +

1

30
𝑎
5
.

(16)

ByTheorem 3,

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑔 = ∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡

= (
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥 𝑑𝑥 𝑑𝑡

−
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡 − 𝑎)𝑓 (𝑎)
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+ (𝑏 −
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥𝑑𝑥𝑑𝑡

+
12

(𝑏 − 𝑎)
3
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡)𝑓 (𝑏)

+ (
2

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡)𝑓
󸀠
(𝑎)

+ (
4

𝑏 − 𝑎
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥 𝑑𝑥 𝑑𝑡

−
6

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡

− ∫

𝑏

𝑎

𝑡 𝑑𝑡)𝑓
󸀠
(𝑏)

+ (
(𝑏 − 𝑎)

2

12
∫

𝑏

𝑎

∫

𝑡

𝑎

𝑥 𝑑𝑥 𝑑𝑡

−
𝑏 − 𝑎

12
∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑡

+ ∫

𝑏

𝑎

∫

𝑡

𝑎

∫

𝑧

𝑎

∫

𝑦

𝑎

𝑥 𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑡)𝑓
(4)

(𝜉)

=
𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏))

+
(𝑏 − 𝑎)

2

12
(𝑓
󸀠
(𝑎) −𝑓

󸀠
(𝑏))

+
(𝑏 − 𝑎)

5

720
𝑓
(4)

(𝜉) .

(17)

Remark 5. From Corollary 4, we know that the results in
Theorem 3 possess the reducibility. When 𝑔(𝑡) = 𝑡, formula
(10) reduces to the derivative-based trapezoid rule for the
classical Riemann integral. So Theorem 3 is a reasonable
generalization of the results in [12].

4. Conclusions

We briefly summarize our main conclusions in this paper as
follows.

(1) The derivative-based trapezoid rule for the Riemann-
Stieltjes integral is presented which uses 2 derivative
values at the endpoints.

(2) This kind of quadrature rule obtains an increase of
two orders of precision over the trapezoid rule for the
Riemann-Stieltjes integral.

(3) The error term for Riemann-Stieltjes derivative-based
trapezoid rule is investigated. And the rationality of
the generalization of derivative-based trapezoid rule
for Riemann-Stieltjes integral is demonstrated.

The derivative-based midpoint and Simpson’s rules for
the Riemann-Stieltjes integral will be achieved by further
research.
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