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The smoothed ℓ
0
norm algorithm is a reconstruction algorithm in compressive sensing based on approximate smoothed ℓ

0
norm.

It introduces a sequence of smoothed functions to approximate the ℓ
0
norm and approaches the solution using the specific iteration

process with the steepest method. In order to choose an appropriate sequence of smoothed function and solve the optimization
problem effectively, we employ approximate hyperbolic tangent multiparameter function as the approximation to the big “steep
nature” in ℓ

0
norm. Simultaneously, we propose an algorithm based on minimizing a reweighted approximate ℓ

0
norm in the

null space of the measurement matrix. The unconstrained optimization involved is performed by using a modified quasi-Newton
algorithm. The numerical simulation results show that the proposed algorithms yield improved signal reconstruction quality and
performance.

1. Introduction

Sparse representation of signals has been extensively studied
for decades. The concept of signal sparsity and ℓ

1
norm

based on recovery techniques can be traced back to the work
of Logan [1] in 1965, Santosa and Symes [2] in 1986, and
Donoho and Stark in 1989 [3]. It is generally agreed that
the foundation of the current state of the art in compressive
sensing (CS) theory was laid by Candés et al. [4], Donoho
[5], and Candés and Tao [6] in 2006. Mathematically, under
sparsity assumptions, one would want to recover a signal 𝑥 ∈

R𝑛, for example, the coefficient sequence of the signal in the
appropriate basis, by solving the combinatorial optimization
problem:

min
𝑥
‖𝑥‖0 s.t. 𝑦 = Ψ𝑥, (1)

where 𝑦 is an observed signal, Ψ is the dictionary matrix,
𝑥 means a coefficient vector for the linear combination, and
‖𝑥‖
0
is the ℓ

0
norm of the vector 𝑥 indicating the number of

its nonzero elements.

Exactly solving (1) is reported to be NP-hard [5, 7];
thus a relaxed approach [8–10] was proposed to address
this challenge. By replacing nonconvex ℓ

0
norm with convex

ℓ
1
norm, the method finds optimal solution using convex

optimization [8, 11–13]. It was also introduced [6, 14–17]
that, for many problems, the minimizing of the ℓ

1
norm is

equivalent to that of the ℓ
0
norm under certain conditions.

However, experimental results in [13] posed a strong question
about the equivalence of minimizing both norms in practical
problems. The sparse signal reconstruction (SSR) algorithm
based on the optimization of a smoothed approximate ℓ

0

norm is studied in [11] where simulation results are compared
with corresponding results obtainedwith several existing SSR
algorithms with respect to reconstruction performance and
computational complexity. These results favor the use of the
approximate ℓ

0
norm.

In this paper, we present a new signal reconstruction
algorithm for CS, which is based on the minimization
of a smoothed approximate ℓ

0
norm. But it differs from

the previous algorithms in several aspects. First, we use
approximation hyperbolic tangent function to approximate
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the ℓ
0
norm, which is found to have better approximation

quality of ℓ
0
norm than the standard Gauss function. Second,

the ℓ
0
norm minimization algorithm in this paper is carried

out in null space of the measurement matrix, in which the
constraints on measurements are eliminated and become
unconstrained. Third, we use a reweighting technique in the
null space of the measurement matrix to force the algorithm
to reach the desired sparse solution faster. The rest of the
paper is organized as follows. In Section 2, the smoothed ℓ

0

norm algorithm is briefly presented. Section 3 is about the
signal reconstruction on the base of the reweighted approx-
imation smoothed ℓ

0
norm algorithm. Section 4 provides

the experimental results. The paper is finally concluded in
Section 5.

2. Smoothed ℓ
0

Norm Algorithm (SL0)

Smoothed ℓ
0
norm attempts to solve the problem in (1)

by approximating the ℓ
0
norm with a continuous function.

Consider the continuous Gaussian function 𝑓
𝜎
(𝑥) with the

parameter 𝜎:

𝑓
𝜎
(𝑥) = 𝑒

−𝑥
2
/2𝜎
2

, 𝑥 ∈ R, 𝜎 ∈ R
+
. (2)

The parameter 𝜎 determines the quality of the approxi-
mation and for any family of functions 𝑓

𝜎
(𝑥) which approxi-

mates the Kronecker delta function.
Define the continuous multivariate function 𝑔(𝑥) as

𝑔 (𝑥) =

𝑁

∑

𝑖=1

𝑓
𝜎
(𝑥
𝑖
) , 𝑥 ∈ R

𝑁×1
. (3)

It follows from (2) and (3) that 𝜎 → 0 and

lim
𝜎→0

𝑓
𝜎
(𝑥) = {

1 𝑥 = 0

0 𝑥 ̸= 0.
(4)

Since the number of entries in 𝑥 is 𝑁 and the function
𝑔(𝑥) is an indicator of the number of zero entries in 𝑥, the ℓ

0

norm of reconstructed vector 𝑥 is approximated by

‖𝑥‖0 ≈ 𝑁 − 𝑔 (𝑥) . (5)

Substituting this approximation into (1) yields the prob-
lem

minimise
𝑁

∑

𝑖=1

(1 − 𝑒
−𝑥
2

𝑖
/2𝜎
2

)

s.t. 𝑦 = Ψ𝑥.

(6)

The approach is then to solve the problem (6) for a
decreasing sequence of 𝜎’s. The underlying thought is to
select a 𝜎 which ensures that the initial solution is in the
subset of R𝑁×1 over which the approximation is convex and
gradually increases the accuracy of the approximation. Here,
the final smoothed ℓ

0
algorithm is proved to be faster with the

possibility of recovering a sparser solution [11].

Algorithm 1. The final smoothed ℓ
0
norm (SL0 algorithm) is

as follows.

(1) Initialization: choose an arbitrary solution from the
feasible set, for example, the minimum ℓ

2
norm

solution of 𝑥 = Ψ𝑥; that is,

𝑥 = Ψ
𝑇
(ΨΨ
𝑇
)
−1

𝑦. (7)

(2) Choose a decreasing sequence for 𝜎
𝑖
, 𝑖 = 1, 2, . . . , 𝐾.

(3) For 𝑘 = 1, 2, . . . , 𝐾, let 𝜎 = 𝜎
𝑘
. Minimize function (6)

using 𝐿 iterations of the steepest ascent algorithm.

(a) Let Δ𝑥 = [𝑥
1
exp(−𝑥2

1
/2𝜎
2

𝑘
), . . . , 𝑥

𝑛
exp(−𝑥2

𝑛
/

2𝜎
2

𝑘
)]
𝑇.

(b) Let 𝑥 ← 𝑥 − 𝜇Δ𝑥 (where 𝜇 is a small position
constant); then

𝑥 ← 𝑥 − Ψ
𝑇
(ΨΨ
𝑇
)
−1

𝑦. (8)

(4) Final answer is 𝑥.

3. Signal Reconstruction Based on
Approximation Function

3.1. Approximate ℓ
0
Norm with Approximate Hyperbolic Tan-

gent Sequence. The key to SL0 algorithm is to select high
quality smoothed continuous function to approximate ℓ

0

norm. The optimal value of ℓ
0
norm is achieved through the

solution of the minimum value of the approximate smoothed
continuous function. In general, the approximation of the ℓ

0

norm with Gauss function cannot produce desired result. To
effectively approximate ℓ

0
norm, we analyzed inverse tangent

function [18], hyperbolic tangent function, and approximate
hyperbolic tangent sequence.

Inverse tangent function is as follows:

ℎ
𝜎
(𝑥
𝑖
) =

2

𝜋
arctan(

𝑥
2

𝑖

2𝜎2
) . (9)

Hyperbolic tangent function is as follows:

𝑔
𝜎
(𝑥
𝑖
) =

𝑒
𝑥
2

𝑖
/2𝜎
2

− 𝑒
−𝑥
2

𝑖
/2𝜎
2

𝑒
𝑥
2

𝑖
/2𝜎
2

+ 𝑒
−𝑥
2

𝑖
/2𝜎
2
. (10)

Approximate hyperbolic tangent function is as follows:

𝑓
𝜎
(𝑥
𝑖
) =

1

8

𝑒
𝑥
2

𝑖
/2𝜎
2

− 𝑒
−𝑥
2

𝑖
/2𝜎
2

𝑒
𝑥
2

𝑖
/2𝜎
2

+ 𝑒
−𝑥
2

𝑖
/2𝜎
2
+
7

8
(1 − 𝑒

−𝑥
2

𝑖
/((1/8)𝜎

2
)
) , (11)

where 𝜎 is a parameter and 𝑥
𝑖
is a component of the vector 𝑥.

The following properties can be obtained.
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(1) For formula (11), let 𝐹
𝜎
(𝑥) = ∑

𝑁

𝑖=1
𝑓
𝜎
(𝑥
𝑖
); then ‖𝑥‖

0
=

lim
𝜎→0

𝐹
𝜎
(𝑥) since

lim
𝜎→0

𝑓
𝜎
(𝑥
𝑖
)

= lim
𝜎→0

(
1

8
⋅
𝑒
𝑥
2

𝑖
/2𝜎
2

− 𝑒
−𝑥
2

𝑖
/2𝜎
2

𝑒
𝑥
2

𝑖
/2𝜎
2

+ 𝑒
−𝑥
2

𝑖
/2𝜎
2
+
7

8
⋅ (1 − 𝑒

−𝑥
2

𝑖
/((1/8)𝜎

2
)
))

= {
0 𝑥
𝑖
= 0

1 𝑥
𝑖
̸= 0.

(12)

According to the definition of ℓ
0
norm, when 𝜎 goes infinitely

to zero, the value of 𝐹
𝜎
(𝑥) goes as well to the nonzero

elements of the vector 𝑥, that is, the ℓ
0
norm of vector

𝑥. Therefore, it can be shown with the smoothed function
‖𝑥‖
0

= lim
𝜎→0

𝐹
𝜎
(𝑥). Obviously, formulas (9) and (10)

have the same approximation property of ℓ
0
norm as that

of (11). The approximation performance of ℓ
0
norm of each

formula, however, is different. For further illustration of the
advantages of approximate hyperbolic tangent function as
smoothed continuous function, we compared the distribu-
tion of each approximation function at interval [−1, 1] when
𝜎 = 0.1. Figure 1 is the approximation quality comparison
of the smoothed ℓ

0
norm of the standard Gauss function,

inverse tangent function, hyperbolic tangent function, and
approximate hyperbolic tangent function. The estimation
of ℓ
0
norm by approximate hyperbolic tangent function

outsmarted other functions. It shows that the approximate
hyperbolic tangent function has better “steep nature” between
the intervals of [−0.5, 0.5] and the estimation of the ℓ

0
norm

is more accurate.
(2)Given𝜎 ≥ 0, approximate hyperbolic tangent function

𝑓
𝜎
(𝑥
𝑖
) has better convergence than other approximate func-

tions; that is, 𝑓
𝜎
(𝑥
𝑖
) ≥ (1 − 𝜑(𝑥

𝑖
)), for arbitrary 𝜎, 𝜑, where

𝜑(𝑥
𝑖
) = 𝑒
−𝑥
2

𝑖
/2𝜎
2

.

Proof. Let 𝑢(𝑥) = 𝑓(𝑥) − (1 − 𝜑(𝑥)), when 𝑥 = 0 or 𝑥 = ∞,
and 𝑢(𝑥) = 0, when 0 < |𝑥| < ∞,

𝑢 (𝑥) =
1

8
⋅
𝑒
𝑥
2
/2𝜎
2

− 𝑒
−𝑥
2
/2𝜎
2

𝑒𝑥
2
/2𝜎
2

+ 𝑒−𝑥
2
/2𝜎
2

+
7

8
⋅ (1 − 𝑒

−𝑥
2
/((1/8)𝜎

2
)
) − 1 + 𝑒

−𝑥
2
/2𝜎
2

=
1

8
⋅ (1 −

2𝑒
−𝑥
2
/2𝜎
2

𝑒𝑥
2
/2𝜎
2

+ 𝑒−𝑥
2
/2𝜎
2
)

+
7

8
⋅ (1 − 𝑒

−𝑥
2
/((1/8)𝜎

2
)
) − 1 + 𝑒

−𝑥
2
/2𝜎
2

= −
1

8
⋅

2𝑒
−𝑥
2
/2𝜎
2

𝑒𝑥
2
/2𝜎
2

+ 𝑒−𝑥
2
/2𝜎
2
−
7

8
⋅ 𝑒
−𝑥
2
/((1/8)𝜎

2
)

+
1

8
⋅ 𝑒
−𝑥
2
/2𝜎
2

+
7

8
⋅ 𝑒
−𝑥
2
/2𝜎
2
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Figure 1: Comparison of the four approximate ℓ
0
norm functions

with 𝜎 = 0.1.

=
1

8
⋅ (

−2𝑒
−𝑥
2
/2𝜎
2

𝑒𝑥
2
/2𝜎
2

+ 𝑒−𝑥
2
/2𝜎
2
+ 𝑒
−𝑥
2
/2𝜎
2

)

+
7

8
⋅ (𝑒
−𝑥
2
/2𝜎
2

− 𝑒
−𝑥
2
/((1/8)𝜎

2
)
)

=
1

8
⋅

𝑒
−𝑥
2
/2𝜎
2

𝑒𝑥
2
/2𝜎
2

+ 𝑒−𝑥
2
/2𝜎
2
⋅ (−2 + 𝑒

𝑥
2
/2𝜎
2

+ 𝑒
−𝑥
2
/2𝜎
2

)

+
7

8
⋅ (𝑒
−𝑥
2
/2𝜎
2

− 𝑒
−𝑥
2
/((1/8)𝜎

2
)
)

≥
1

8
⋅

1

1 + 𝑒𝑥
2
/𝜎
2
(𝑒
𝑥
2
/4𝜎
2

+ 𝑒
−𝑥
2
/4𝜎
2

)

2

≥ 0.

(13)

From (9), (10), and (11), it is clear that the smaller the 𝜎 is,
themore the local extreme values of objective functionwould
be, and it would be difficult to get the global optimal value
of the objective function. The 𝜎 determines the smoothness
of the objective function. The bigger the 𝜎, the smoother
the objective function, and the less accurate it would be
to estimate the ℓ

0
norm. Conversely, the smaller the 𝜎 is,

the better the approximation of the ℓ
0
norm would be. In

the process, we built a decreasing sequence 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛

to optimize each corresponding objective function until 𝜎
𝑖

is small enough, so as to eliminate the influence of the
local extreme value and get the global optimal value of the
smoothed function. We, thus, use approximate hyperbolic
tangent sequence for the approximation of ℓ

0
norm.

Problem (1) can be approximated by the followingmodel:

min 𝐹
𝜎
(𝑥) s.t. 𝑦 = Φ𝑥. (14)

(3) There are lots of algorithms to the solving of problem
(14), among which the most representative one is the steepest
descent method. But there still exist two drawbacks.
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(a) “Notched effect” in search direction strongly hinders
the convergence speed.

(b) Search steps cannot be estimated. Usually, it is
estimated with experiences, which lacks theoretical
support.

We, therefore, propose the modified quasi-Newton algo-
rithm to solve the above problem. First, calculate the Newton
direction of the approximate hyperbolic tangent function:

𝑑 = −∇
2
𝐹
𝜎
(𝑥)
−1
∇𝐹
𝜎
(𝑥) , (15)

where

∇𝐹
𝜎
(𝑥)

= [

[

1

8
⋅

4𝑥
1
/𝜎
2

(𝑒
𝑥
2

1
/2𝜎
2

+ 𝑒
−𝑥
2

1
/2𝜎
2

)
2

+
7

8
⋅
16𝑥
1

𝜎2
𝑒
−8𝑥
2

1
/𝜎
2

, . . . ,
1

8
⋅

4𝑥
𝑁
/𝜎
2

(𝑒
𝑥
2

𝑁
/2𝜎
2

+ 𝑒
−𝑥
2

𝑁
/2𝜎
2

)
2

+
7

8
⋅
16𝑥
𝑁

𝜎2
𝑒
−8𝑥
2

𝑁
/𝜎
2

]

]

𝑇

,

(16)

∇
2
(𝐹
𝜎 (𝑥)) =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕
2
𝑓
𝜎
(𝑥
1
)

𝜕𝑥
2

1

0 ⋅ ⋅ ⋅ 0

0
𝜕
2
𝑓
𝜎
(𝑥
2
)

𝜕𝑥
2

2

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅
𝜕
2
𝑓
𝜎
(𝑥
𝑁
)

𝜕𝑥
2

𝑁

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(17)

𝜕
2
𝑓
𝜎
(𝑥
𝑘
)

𝜕𝑥
2

𝑘

=
1

8
⋅

(4/𝜎
2
) (1 + (𝑥

2

𝑘
/𝜎
2
))

(𝑒
𝑥
2

𝑘
/2𝜎
2

+ 𝑒
−𝑥
2

𝑘
/2𝜎
2

)
2

+
7

8
⋅
16

𝜎2
𝜎
−8𝑥
2

𝑘
/𝜎
2

(1 −
16𝑥
2

𝑘

𝜎2
) .

(18)

We know that the Hesse matrix is nonpositive definite in
Newton direction 𝑑, which cannot ensure that the Newton
direction is descent direction, so the Hesse matrix should be
modified. Then, set up a new matrix:

𝐺 = ∇
2
(𝐹
𝜎
(𝑥)) + 𝜀

𝑘
𝐼, (19)

where 𝜀
𝑘
is a group of proper positive numbers, 𝐼 is identity

matrix, and the diagonal elements inmatrix𝐺 are all positive.
Since

lim
𝑥
𝑘
→0

(𝑒
𝑥
2

𝑘
/2𝜎
2

+ 𝑒
−𝑥
2

𝑘
/2𝜎
2

)

2

= 4, (20)

choose

𝜀
𝑘
=
7

8
⋅
16
2
𝑥
2

𝑘

𝜎4
𝑒
−8𝑥
2

𝑘
/𝜎
2

, (21)

as modification coefficients; then the diagonal elements in
matrix 𝐺 can be shown as

1

8
⋅

4 (1 + (𝑥
2

𝑘
/𝜎
2
))

𝜎2(𝑒
𝑥
2

𝑘
/2𝜎
2

+ 𝑒
−𝑥
2

𝑘
/2𝜎
2

)
2
+
7

8
⋅
16

𝜎2
𝑒
−8𝑥
2

𝑘
/𝜎
2

. (22)

Also, it can be obtained that

𝑑 = −∇
2
𝐹
𝜎
(𝑥)
−1

⋅ ∇𝐹
𝜎
(𝑥)

= [−
𝜎
2
𝑥
1
+ 28 ⋅ 4𝜎

2
𝑥
1
𝑒
−8𝑥
2

1
/𝜎
2

𝜎2 + 𝑥
2

1
+ 28 ⋅ 4𝜎2𝑒

−8𝑥
2

1
/𝜎
2
, . . . ,

−
𝜎
2
𝑥
𝑁
+ 28 ⋅ 4𝜎

2
𝑥
𝑁
𝑒
−8𝑥
2

𝑁
/𝜎
2

𝜎2 + 𝑥
2

𝑁
+ 28 ⋅ 4𝜎2𝑒

−8𝑥
2

𝑁
/𝜎
2
]

𝑇

.

(23)

(4) Usually, parameter 𝜎 is chosen as 𝜎
𝑗
= 𝛾 ⋅ 𝜎

𝑗−1
, 𝑗 =

1, 2, . . ., and 𝐽, 𝛾 ∈ (0.5, 1). 𝜎
1
and 𝜎

𝑗
are chosen as follows.

Let 𝑥 = max
𝑖
|𝑥
0

𝑖
|, for faster algorithm convergence;

parameter 𝜎 should meet the following:

ℎ
𝜎
1
(𝑥) =

2

𝜋
arctan( 𝑥

2

2𝜎
2

1

) ≤
1

2
⇒ 𝜎
1
≥

𝑥

√2

, (24)

and choosing 𝜎
1
= max

𝑖
(|𝑥
0

𝑖
|/√2), when 𝜎

𝑗
→ 0, we can

obtain 𝐹
𝜎
𝑗

(𝑥) → ‖𝑥‖
0
, so when 𝜎

𝑗
is smaller, 𝐹

𝜎
𝑗

(𝑥) can
better reflect the sparsity of vector 𝑥. Meanwhile, however,
it is more sensitive to noise; the value of 𝜎

𝑗
should not be too

small. In summary, the steps are as follows.

Algorithm 2. The approximate smoothed ℓ
0
norm (ASL0

algorithm) is as follows.

(1) Initialization: 𝑥 = Φ
𝑇
𝑦, initial residual 𝑟

0
= 0, and

smoothed function’s initial parameter 𝜎 = 1.
(2) Calculate the modified Newton direction with (23)

and use modified Newton algorithm to get 𝑥 = 𝑥 + 𝑑.
(3) Use gradient projection to have 𝑥 = 𝑥 −

Φ
𝑇
(ΦΦ
𝑇
)
−1

(Φ𝑥 − 𝑦), and calculate the residual 𝑟 =

𝑦 − Φ𝑥.
(4) If the residual of the adjacent iterations meets ‖𝑟 −

𝑟
0
‖ ≤ 𝜀, then stop. Otherwise, let 𝑟

0
= 𝑟, continue,

and return to (2).
(5) Further decrease 𝜎, let 𝜎 = 𝛾 ⋅ 𝜎 (0 < 𝛾 < 1), usually

set 𝛾 = 0.7, and return to (2). Otherwise, stop iterating
and get the optimal value 𝑥.

3.2. Reweighting the Approximate ℓ
0
NormMinimization. It is

well known that all solutions ofΨ𝑥 = 𝑦 can be parameterized
as

𝑥 = 𝑥
𝑠
+ 𝑉
𝑛
𝜉, (25)
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where 𝑥
𝑠
is a solution of Ψ𝑥 = 𝑦 and 𝑉

𝑛
is a matrix whose

columns constitute an orthogonal basis of the null space of
Ψ [19]. Vector 𝑥

𝑠
and matrix 𝑉

𝑛
can be evaluated by using

the singular-value decomposition (SVD) or by using the QR
decomposition of matrix Ψ [20]. Using (25) the problem in
(14) is reduced to

minimize
𝜉

𝑁

∑

𝑖=1

𝑓
𝜎
(𝑥
𝑠𝑖
+ 𝑉
𝑇

𝑖
𝜉) , (26)

where

𝑓
𝜎
(𝑥
𝑠𝑖
+ 𝑉
𝑇

𝑖
𝜉)

=
1

8
⋅
𝑒
[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/2𝜎
2

− 𝑒
−[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/2𝜎
2

𝑒
[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/2𝜎
2

+ 𝑒
−[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/2𝜎
2

+
7

8
⋅ (1 − 𝑒

−[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/((1/8)𝜎
2
)
) .

(27)

Signal reconstruction based on the solution of the prob-
lem in (28) works well, but the technique can be considerably
enhanced by incorporating a reweighting strategy, and the
reweighted unconstrained problem can be formulated as
follows [21]:

minimize
𝜉

𝑁

∑

𝑖=1

𝑤
𝑖
⋅ 𝑓
𝜎
(𝑥
𝑠𝑖
+ 𝑉
𝑇

𝑖
𝜉) , (28)

where 𝑤
𝑖
are positive scalars that are from a weight vector

𝑤 = [𝑤
1
𝑤
2
⋅ ⋅ ⋅ 𝑤
𝑁
]. Startingwith an initial𝑤0 = 𝑒

𝑁
, where 𝑒

𝑁

is the all-one vector of dimension𝑁, in the (𝑘+1)th iteration
the weight vector is updated to 𝑤(𝑘+1) with its 𝑖th component
given by

𝑤
(𝑘+1)

𝑖
=

1


𝑥
(𝑘)

𝑖


+ 𝜏

, (29)

where 𝑥(𝑘)
𝑖

denotes the 𝑖th component of vector 𝑥(𝑘) obtained
in the 𝑘th iteration as 𝑥(𝑘) = 𝑥

𝑠
+ 𝑉
𝑛
𝜉
(𝑘) and 𝜏 is a small

positive scalar which is used to prevent numerical instability
when |𝑥

(𝑘)

𝑖
| approaches zero. As long as 𝜎 > 0, the objective

function in (28) remains differentiable and its gradient can be
obtained as

𝑔
𝑖
(𝑥) = 𝑤

𝑖
(
1

8
⋅

4 [𝑥
𝑠𝑖
+ V𝑇
𝑖
𝜉]

𝜎2

+
7

8
⋅

16 [𝑥
𝑠𝑖
+ V𝑇
𝑖
𝜉]

𝜎2
𝑒
−8[𝑥
𝑠𝑖
+V𝑇
𝑖
𝜉]
2

/𝜎
2

) .

(30)

For a fixed value of 𝜎, the problem in (26) is solved by using
a quasi-Newton algorithm where an approximation of the
inverse of the Hessian is obtained by using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update formula. It can be
shown that function (28) remains convex in the region where
the largest magnitude of the components of 𝑥 = 𝑥

𝑙
2

+ 𝑉
𝑛
𝜉 is

less than 𝜎, where vector 𝑥
𝑠
is chosen to be the least squares

solution 𝑥
𝑙
2

of 𝑦 = Ψ𝑥; namely, 𝑥
𝑠
= 𝑥
𝑙
2

= Ψ
𝑇
(ΨΨ
𝑇
)
−1
𝑦.

Based on this, a reasonable initial value of 𝜎 can be chosen as
𝜎
0
= max |𝑥

𝑙
2

| + 𝜏, where 𝜏 is a small positive scalar. As the
algorithm starts at the origin 𝜉

(0)
= 0, the above choice of 𝜎

0

ensures that the optimization starts in a convex region. This
greatly facilitates the convergence of the proposed algorithm.

Algorithm 3. The reweighted approximate smoothed ℓ
0
norm

(RASL0 algorithm) is as follows.

(1) Initialization: inputΨ,𝑥
𝑙
2

,𝜎
𝑇
, 𝑟, 𝜏, and 𝜀, and set 𝜉(0) =

0, 𝑤(0) = 𝑒
𝑁
, 𝜎 = max |𝑥

𝑙
2

| + 𝜏, and 𝑘 = 0.

(2) Perform the 𝑄𝑅 decomposition of Ψ𝑇 = 𝑄𝑅 and
construct 𝑉

𝑛
using the last columns of 𝑄.

(3) With 𝑤 = 𝑤
(𝑘) and 𝜉

(0) as an initial point, apply the
BFGS algorithm to solve the problem in (28), where
reweighting with parameter 𝜀 is applied using (29) in
each iteration; denote the solution by 𝜉(𝑘).

(4) Compute 𝑥(𝑘) = 𝑥
𝑙
2

+𝑉
𝑛
𝜉
(𝑘) and update weight vector

to 𝑤(𝑘+1) with (29).
(5) If 𝜎 ≤ 𝜎

𝑇
, stop and output 𝑥(𝑘) as the solution;

otherwise set 𝜉(0) = 𝜉
(𝑘), 𝜎 = 𝑟 ⋅ 𝜎, 𝑘 = 𝑘 + 1, and

repeat from step (3).

4. Simulation Result

This section describes some experiments testifying to the
performances of the proposed algorithm. All experiments are
performed under Windows 7 and MATLAB V8.0 (R2012a)
running on a Lenovo workstation with an Intel (R) Core
(TM), CPU i7 at 2.40GHz, and 6GB of memory.

Simulation 1: Algorithm Performances Comparison of One-
Dimensional Signal. In the experiment, the signal length and
number of measurements were set to𝑁 = 256 and𝑀 = 100,
respectively. A total of 16 sparse signals with sparsity 𝐾 =

4𝑞 − 3, 𝑞 = 1, 2, . . . , 16, were used. Then a 𝐾-sparse signal
𝑥 was constructed as follows.

(1) Set 𝑥 to zero vector of length𝑁.
(2) Generate a vector 𝑢 of length 𝐾 assuming that each

component 𝑢
𝑖
is a randomvalue drawn from a normal

distribution𝑁(0, 1).
(3) Randomly select 𝐾 indices from the set 1, 2, . . . , 𝑁,

and set 𝑥
𝑖1

= 𝑢
1
, and 𝑥

𝑖2
= 𝑢
2
, . . . , 𝑥

𝑖𝐾
= 𝑢
𝐾
. The

measurement matrix was assumed to be of size𝑀 ×

𝑁 and was generated by drawing its elements from
𝑁(0, 1), followed by a normalization step to ensure
that the ℓ

2
norm of each column is unity.

The performance of iteratively reweighted (IR) algorithm
[22, 23] with 𝑝 = 0.1, the SL0 algorithm, ASL0 algorithm
and RASL0 algorithm with 𝜎

𝑇
= 10
−4, 𝑟 = 1/3, 𝜏 = 0.01,

and 𝜖 = 0.08 was measured in terms of the number of
perfect reconstructions over 100 runs. The results obtained
were plotted in Figure 2. It can be observed that the RASL0
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Figure 2:Number of perfect reconstructions by each algorithmover
100 runs with𝑁 = 256 and𝑀 = 100.

algorithm outperforms the IR algorithm. On comparing the
SL0 algorithm and the ASL0 algorithm, we note that the
two algorithms are comparable for 𝐾 smaller than 45 but
the RASL0 algorithm performs better for 𝐾 larger than
45.

The mathematical complexity of the SL0 algorithm, IR
algorithm, ASL0 algorithm, and RASL0 algorithm was mea-
sured in terms of average CPU time over 100 runs for typical
instances with 𝑀 = 𝑁/2 and 𝐾 = round(𝑀/2.5) where
𝑁 varies in the range between 128 and 512. In Figure 3, it
is noted that the RASL0 algorithm and the SL0 algorithms
weremore efficient than the IR algorithm, and the complexity
of the RASL0 algorithm was slightly higher than that of the
SL0 algorithm. The moderate increase in the mathematical
complexity of the RASL0 algorithm was primarily due to the
fact that the objective function in (26) needed to be modified
in each iteration using (29). Typically the RASL0 algorithm
converges in a small number of iterations. Figure 4 showed
how the objective function in (26) converges in 24 iterations,
where the parameters were set to𝑁 = 256,𝑀 = 100,𝐾 = 40,
and 𝜎 = 0.0212.

Simulation 2: Algorithm Performances Comparison of Two-
Dimensional Signal. As to examine the algorithms’ perfor-
mances for different images, the reconstruction performance
of each method is evaluated in terms of two indicators: the
reconstruction relative error (RE) and peak signal-to-noise
ratio (PSNR). The relative error of reconstructed image is
defined as follows:

RE (𝑥) = ‖𝑥 − 𝑥‖2

‖𝑥‖2

, (31)

where 𝑥 and 𝑥 are the original and the reconstructed image,
respectively. Apparently, the lower the value of relative error
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Figure 3: Average CPU time required by each algorithm over 100
runs with𝑀 = 𝑁/2 and 𝐾 = round(𝑀/2.5).
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Figure 4: Function 𝐹
𝜎
(𝜉) for 𝑁 = 256, 𝑀 = 100, 𝐾 = 40, and

𝜎 = 0.0212.

is, the better the reconstructed performance will be. The
PSNR of reconstructed images is defined by

PSNR (𝑥) = 10 log
10
(
𝑚 × 𝑛 × 255

2

‖𝑥 − 𝑥‖2

) , (32)

where𝑚, 𝑛 are the size of the image.
In experiment, the DCT basis is selected as the sparse

representation dictionary; compression ratio is𝑀/𝑁 = 0.25.
Figure 5 shows that the quality of the reconstruction with
RASL0 algorithm has been improved and details of images
are better reconstructed.

Table 1 shows three different 256 × 256 images, with the
same compression ratio 𝑀/𝑁 = 0.5. From the comparison
of the PSNR, the RE, the signal-to-noise ratio (SNR), and
the matching degree (MD) among RASL0 algorithm, SL0
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Figure 5: The quality of the reconstruction with different algorithms in different images. Original image.
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Figure 6: Reconstruction quality comparison with four other algorithms.
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Table 1: Reconstruction quality comparison with different images and different approximation smoothed ℓ
0
algorithms.

Image Algorithm PSNR (dB) RE SNR (dB) MD

Lena
SL0 29.6238 0.0947 34.3124 0.9831
ASL0 32.2244 0.0742 36.2702 0.9893
RASL0 36.9566 0.0578 39.9432 0.9926

Camera
SL0 26.4476 0.0921 30.6337 0.9846
ASL0 29.0284 0.0747 32.2134 0.9873
RASL0 33.3116 0.0634 36.2727 0.9912

Boat
SL0 28.1573 0.0852 31.3023 0.9813
ASL0 29.5001 0.0786 33.7382 0.9865
RASL0 30.5814 0.0614 34.3743 0.9908

Table 2: Reconstruction quality comparison with four other algo-
rithms.

Algorithm PSNR (dB) RE Runtime (s)
OMP 30.5951 0.0812 48.32
GP 30.7121 0.0803 12.23
SP 31.2486 0.0702 8.82
GPSR 34.2154 0.0656 11.38
RASL0 36.9566 0.0578 13.36

algorithm, and ASL0 algorithm, it is clear that the relative
errors with RASL0 algorithm are 0.02% smaller than the SL0
algorithm, the SNR ratio is 3 dB higher, the PSNR is improved
by 2 db, and the matching degree is also improved.

Figure 6 is the reconstruction effect comparison of image
(Lena) with different algorithms. It shows that RASL0 outper-
forms OMP, GP, GPSR, and NSL0 algorithms. Table 2 is the
quality comparison of different algorithms, indicating that
RASL0 algorithm is better in all aspects.

5. Conclusion and Future Work

In this paper, we use approximate hyperbolic tangent func-
tion to estimate ℓ

0
norm and design a RSNL0 algorithmbased

on minimizing an approximate ℓ
0
norm of the signal in the

null space of the measurement matrix, where a reweighting
technique is used to force the solution’s sparsity and a quasi-
Newton algorithm is used to accelerate the optimization.
Simulation results are presented which demonstrate that the
proposed algorithm yields improved signal reconstruction
performance and requires a reduced amount of computation
relative to iteratively reweighted algorithms based on the ℓ

𝑝

norm, with 𝑝 < 1. When compared with a known algorithm
based on a smoothed ℓ

0
norm, improved signal reconstruc-

tion is achieved although the amount of computation is
increased somewhat. However, how to choose the parameter
decreasing sequence so as to eliminate the disturbance of the
minimal value to the solution of the minimum value would
be our future work.
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