

Research Article

Band-Gap Engineering of NaNbO₃ for Photocatalytic H₂ Evolution with Visible Light

Peng Li,¹ Hideki Abe,^{1,2,3} and Jinhua Ye^{1,2,4}

¹ Catalytic Materials Group, Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

² TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China

³ PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

⁴ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Correspondence should be addressed to Hideki Abe; abe.hideki@nims.go.jp

Received 4 July 2014; Accepted 3 August 2014; Published 26 August 2014

Academic Editor: Wenjun Luo

Copyright © 2014 Peng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new visible light response photocatalyst has been developed for H_2 evolution from methanol solution by elemental doping. With lanthanum and cobalt dopants, the photoabsorption edge of NaNbO₃ was effectively shifted to the visible light region. It is also found that the photoabsorption edge is effectively controlled by the dopant concentration. Under visible light irradiation, H_2 was successfully generated over the doped NaNbO₃ samples and a rate of $12 \,\mu$ mol·h⁻¹ was achieved over (LaCo)_{0.03}(NaNb)_{0.97}O₃. Densityfunctional theory calculations show that Co-induced impurity states are formed in the band gap of NaNbO₃ and this is considered to be the origin of visible-light absorption upon doping with La and Co.

1. Introduction

Because of the current energy crisis and environmental pollution from the consumption of fossil fuels, new source which can provide a big amount of maintainable energy must be developed in hurry. H₂ is considered as a candidate of the next generation energy source because of its renewable, unlimited, and environmental friendly performances [1, 2]. However, there are still several barriers to realize the practical utilization of H_2 energy, and the produce of H_2 is the most serious one. As the present H₂ is mostly generated from the reformation of fossil fuel, a new method which can produce H_2 with clean energy should be developed [3]. Photocatalysis has been developed as a candidate that can satisfy the demand of supplying H₂ by splitting water with solar energy. In the past decades, a lot of photocatalysts were developed for producing H₂ with high efficiency. But most of the photocatalysts, such as TiO₂, SrTiO₃, and NaTaO₃, have only UV light responsibility, and the low visible light utilization limited the practical

use of photocatalysis with solar light [4–6]. To improve the visible light absorption, the common method is doping with cations to adjust the electronic structures of photocatalysts [7]. When the cation dopants replace the positions of lattice cations or occupy the interstices in the crystal lattice, impurity energy levels might be generated within the band gap of the photocatalyst, which can extend the responsive region of photocatalytic reactions into visible light [8, 9].

NaNbO₃ is a typical nontoxic and highly stable semiconductor which has abundant applications in photocatalysis. In many reports, NaNbO₃ has been demonstrated to be a high efficiency photocatalyst for H₂ generation [10–17]. Under the irradiation of UV light, NaNbO₃ nanoparticles could reduce H₂O to H₂ with quite high efficiency with sacrificial agents [12]. Fiber-structured NaNbO₃ was also verified to be useful in splitting pure H₂O into H₂ and O₂ [10]. However, almost all the reported NaNbO₃ photocatalysts are only sensitive to the UV light. Although iridium doped NaNbO₃ was proved to be active in water splitting under visible light irradiation, the efficiency is still low and this method needs precious metal [18]. To achieve visible light photoactivity of NaNbO₃ without previous metal dopant is still a big challenge. Cobalt, which is a typical transition element with partially occupied d state, is commonly used as dopant to improve the visible light responsibility of wide band-gap photocatalysts [19–22]. However, simply doping binary oxide with cobalt may increase the defect concentration and negatively affect the photocatalytic performance. Thus, codoping is more popular to balance the charge state and decrease the defects [23, 24]. In this work, we developed a series of NaNbO₃ doped with lanthanum and cobalt with H₂ evolution activity under visible light irradiation. The further theoretical study indicates that the cobalt dopant creates new states in the band gap of NaNbO₃ and provides the visible light absorption.

2. Experimental Section

2.1. Material Preparation. The samples were synthesized via a hydrothermal method [12]. In a typical synthesis of NaNbO₃, 1.0 g of (C₂H₅O)₅Nb and 0.24 g of C₂H₅ONa were added into 10 mL of 2-methoxyethanol and stirred at room temperature to form a clear colloid. Next, the mixture was stirred for 30 minutes and then heated to 120°C with a rate of 1°C·min⁻¹ and maintained at this temperature until a dry gel was obtained. After that, 40 mL of 6 M NaOH solution was added to the powdered dry gel and stirred at room temperature to form a uniform precursor. Then, the mixture was transferred into a 50 mL Teflon sealed autoclave and heated at 180°C for 24 h. Finally, the product was washed with distilled water until pH was lower than 8.0 and the obtained powder was dried at 70°C overnight. To synthesize La, Co codoped NaNbO₃, the dopant reagent La(CH₃COO)₃, and Co(CH₃COO)₂ were added in the first step and all the other procedures were the same.

2.2. Sample Characterization. The crystal structure of NaNbO₃ powder was determined by an X-ray diffractometer (Rint-2000, Rigaku Co., Japan) with Cu-Ka radiation. The optical absorption spectra were measured with a UV-visible spectrophotometer (UV-2500PC, Shimadzu Co., Japan) using a BaSO₄ reference. Scanning electron microscopy images were recorded with a field emission scanning electron microscopy (JSM-6701F, JEOL Co., Japan) operated at 15 kV.

2.3. Photocatalytic H_2 Evolution. The H_2 evolution experiments were carried out in a gas closed circulation system. In a typical experiment, 0.3 g catalyst was dispersed by a magnetic stirrer in a CH₃OH solution (220 mL distilled water and 50 mL CH₃OH) in a Pyrex cell with a side window. Calculated amount of H_2 PtCl₆ solution (0.5 wt%) was added into the solution. The light source used for cocatalyst deposition was a 300 W Xe arc lamp without filter ($\lambda > 300$ nm). After the H_2 evolution rate became constant, the system was evacuated and an L-42 cutoff filter was added to the 300 W Xe arc lamp ($\lambda > 420$ nm). The H_2 evolution was measured by an in situ gas chromatograph (GC-8A, Shimadzu Co, Japan) with a thermal conductivity detector (TCD).

2.4. Theoretical Calculation. The band structures, densities of state (DOS), and partial densities of state (PDOS) of NaNbO₃ and codoped NaNbO₃ were calculated using the plane-wave density functional theory (DFT) with the CASTEP program package [25]. The doping concentration was set to 3.125% by, respectively, replacing a Na atom and a Nb atom by a La and a Co atom in a $2 \times 2 \times 1$ supercell. The electronic state of Co was [Ar]3d⁶ and high spin. The core electrons were replaced by ultrasoft pseudopotentials with a plane-wave basis cutoff energy of 410 eV, and the interactions of exchange and correlation were treated with Perdew-Burke-Ernzerhof parameterization (PBE) of the generalized gradient approximation (GGA). The FFT grids of basis in all the models were $40 \times 40 \times 108$ and the *k*-point sets of $3 \times 3 \times 1$ were used.

3. Results and Discussions

The crystallographic structures of all the synthesized NaNbO3 samples were determined by X-ray diffraction (XRD) measurement (as shown in Figure 1(a)). All the observed diffraction peaks in the XRD patterns of NaNbO₃ and doped NaNbO3 present good agreement with the reference data from the standard diffraction database (JCPDS-073-0803), showing that every sample was well crystalized in a single phase with the space group of Pbcm, which is the common phase of NaNbO3. However, slight shifts could be found when focusing on the particular diffraction peaks. Figure 1(b) gives the enlarged diffraction peaks with the highest intensity of NaNbO₃ and doped NaNbO₃. When doping NaNbO₃ with La and Co, the diffraction peak shifts to the smaller diffraction angle, suggesting that the unit cell of NanbO3 has a slight expansion. As the radius changes from Na⁺ (102 pm) and Nb⁵⁺ (64 pm) to La³⁺ (103.2 pm) and Co^{3+} (61 pm), such expansion of cell volume is understandable [26]. The XPS measurement (as shown in Figure S1 in Supplementary Material available online at http://dx.doi .org/10.1155/2014/380421) gives obvious evidence that the valance state of Co is +3 as no evident peak of Co²⁺ is observed [27]. The detailed lattice parameters of the asprepared doped and undoped NaNbO3 samples are shown in Table 1.

Since the morphology is an important factor which can greatly affect the photocatalytic performance, the scanning electron microscope (SEM) was further used to observe the morphology of the as-prepared samples and the SEM images of NaNbO₃ and $(LaCo)_{0.05}(NaNb)_{0.95}O_3$ are shown in Figure 2. The NaNbO₃ sample is constituted by particles with the cubic morphology, and the cubic particles are generally 300~1000 nm in length. The obtained NanbO₃ has the similar morphology as the sample synthesized by hydrothermal reaction in the previous report [12]. Although the crystal structure changes a little after doping with La and Co, the crystal growth process has almost no change. The doped sample has the same morphology as the pure NaNbO₃.

UV-visible absorption spectra of NaNbO₃ and La, Co codoped NaNbO₃ powder samples are shown in Figure 3(a). The pure NabO₃ sample only has an intense absorption

International Journal of Photoenergy

Materials	Crystal system	Lattice parameters (Å)		
		а	b	С
NaNbO ₃	Orthorhombic	5.5028(7)	5.5474(3)	15.4988(6)
$(LaCo)_{0.01}(NaNb)_{0.99}O_3$	Orthorhombic	5.5098(4)	5.5542(2)	15.5047(4)
$(LaCo)_{0.03}(NaNb)_{0.97}O_3$	Orthorhombic	5.5122(5)	5.5650(2)	15.5321(3)
(LaCo) _{0.05} (NaNb) _{0.95} O ₃	Orthorhombic	5.5128(7)	5.5674(4)	15.5388(3)

TABLE 1: Crystal structures of the as-prepared doped and undoped NaNbO3 samples.

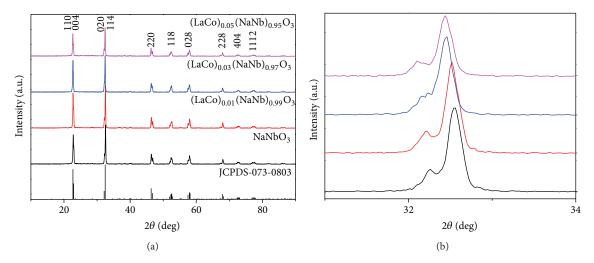


FIGURE 1: (a) XRD patterns of the as-prepared NaNbO₃ and La, Co codoped NaNbO₃ compared with the standard NaNbO₃ XRD pattern. (b) The enlarged XRD patterns of the highest diffraction peak of NaNbO₃.

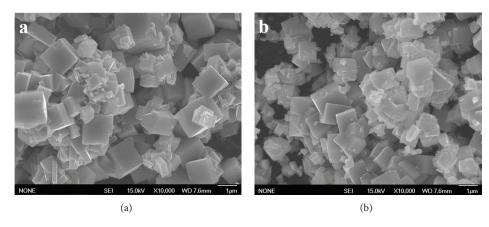


FIGURE 2: SEM images of the as-prepared (a) NaNbO₃ and (b) La, Co codoped NaNbO₃.

with steep edges in the UV region. Different from the pure NaNbO₃, the samples have evident absorptions in the visible light region. The optical band gaps E_g of the as-prepared NaNbO₃ samples were determined according to the following equation:

$$\left(\alpha h\nu\right)^{n} = A\left(h\nu - E_{q}\right),\tag{1}$$

in which α , ν , A, and E_g are absorption coefficient, light frequency, proportionality constant, and optical band gap, respectively [28]. The value of index *n* depends on the property of materials, whereas n = 2 for the direct transition

and n = 1/2 for the indirect transition. For NaNbO₃, the index *n* was determined to be 1/2 according to the relationship between $lg(\alpha h\nu)$ and $lg(h\nu - E_g)$. For La, Co codoped NaNbO₃, the indexes *n* were determined to be 2. The different indexes of NaNbO₃ and doped NaNbO₃ indicate that NaNbO₃ is an indirect band-gap semiconductor, while the doped NaNbO₃ samples have direct transitions with visible light absorptions. From Figure 3(b), the values of the optical band gaps for NaNbO₃, (LaCo)_{0.01}(NaNb)_{0.95}O₃ are determined to be 3.42, 2.74, 2.70, and 2.65 eV, respectively.

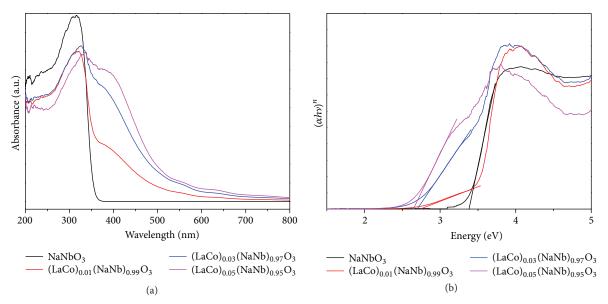


FIGURE 3: (a) UV-visible absorption spectra of the as-prepared NaNbO₃ and La, Co codoped NaNbO₃. (b) The corresponding $(\alpha h\nu)^n \sim h\nu$ curves of the as-prepared NaNbO₃ and La, Co codoped NaNbO₃.

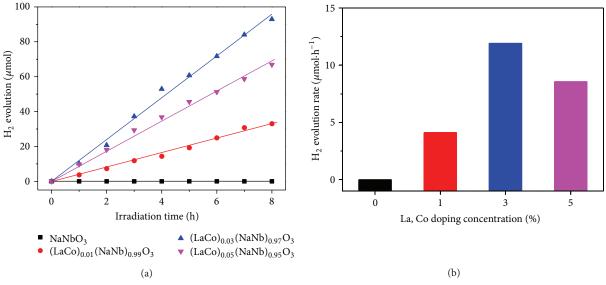


FIGURE 4: (a) Photocatalytic H₂ evolutions from the aqueous methanol solution over the as-prepared NaNbO₃ and La, Co codoped NaNbO₃ with 0.5 wt% Pt loading under the irradiation of visible light ($\lambda > 420$ nm). (b) The comparison of average photocatalytic H₂ evolution rates from the aqueous methanol solution over NaNbO₃ and La, Co codoped NaNbO₃ with 0.5 wt% Pt loading under the irradiation of visible light ($\lambda > 420$ nm). (b) The comparison of average photocatalytic H₂ evolution rates from the aqueous methanol solution over NaNbO₃ and La, Co codoped NaNbO₃ with 0.5 wt% Pt loading under the irradiation of visible light ($\lambda > 420$ nm).

With the increasing of doping concentration, the optical band gap of NaNbO₃ is continuously decreasing.

The H₂ evolutions from aqueous CH₃OH solution (50 mL CH₃OH + 220 mL H₂O) over NaNbO₃ and La, Co codoped NaNbO₃ (0.3 g) with 0.5 wt% Pt loading under the irradiation of visible light ($\lambda > 420$ nm) are presented in Figure 4(a). As shown by the UV-visible absorption in the previous part, NaNbO₃ has no visible light absorption. Under the irradiation of visible light, there is no H₂ detected during the experiment in 8 hours, while the doped NaNbO₃ samples exhibit photoactivities for H₂ evolution in the presence of methanol as sacrificial reagent. H₂ was generated

almost linearly over all the doped samples in 8 hours. As plotted in Figure 4(b), the H₂ evolution rates are significantly different: $(LaCo)_{0.03}(NaNb)_{0.97}O_3 > (LaCo)_{0.05}(NaNb)_{0.95}O_3 > (LaCo)_{0.01}(NaNb)_{0.99}O_3$. Over the best catalyst $(LaCo)_{0.03}(NaNb)_{0.97}O_3$, 11.9 µmol H₂ could be produced every hour.

To understand the mechanism of visible light photocatalytic activity of La, Co codoped NaNbO₃, theoretical calculation based on density functional theory (DFT) was carried out. The density of states (DOS) in Figure 5 indicates that the undoped NaNbO₃ has simple valence band maxima (VBM) and conduction band minima (CBM). Its VBM and CBM

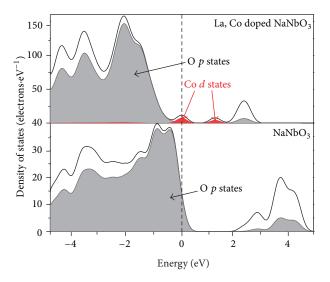


FIGURE 5: The calculated density of states and partial density of states of NaNbO₃ and La, Co codoped NaNbO₃.

are mainly composited by O p states and Nb d states. Under light irradiation, the electrons are excited from O p orbitals to Nb *d* orbitals and the holes are left in O *p* orbitals. Then, the photogenerated electrons and holes migrate to the surface and react with water and sacrificial reagent, respectively. With La and Co doping, significant changes could be found with VBM and CBM. Two dopant states are observed between the original VBM and CBM, which narrow the band gap of doped NaNbO₃ and induce the visible light absorption and visible light response H₂ evolution activity. However, these two states are hybrid by Co d states and O p states and Co d states have larger combination ratio. Thus, the improved visible light absorption is mostly caused by the *d*-*d* transition of Co. Since the electrons excited from *d* states to *d* states have a high backward transition rate, the photogenerated electrons could hardly migrate to the surface and perform photocatalytic reactions. This is the reason why the photoactivity of La, Co codoped NaNbO3 under visible light is not as high as pure NaNbO₃ under UV light. The general mechanism of the visible light activity over La, Co codoped NaNbO₃ could be concluded in Figure 6. The doping with Co element creates new occupied and unoccupied energy levels in the band gap of NaNbO₃. The transition between the new CBM and VBM could absorb visible and make the visible light photocatalytic reaction possible.

4. Conclusions

In conclusion, La, Co codoped NaNbO₃ were synthesized to realize the visible light response photocatalytic H₂ evolution. The doped NaNbO₃ samples showed narrower optical band gaps (2.65, 2.70, and 2.74 eV for $(LaCo)_{0.05}(NaNb)_{0.95}O_3$, $(LaCo)_{0.03}(NaNb)_{0.97}O_3$, and $(LaCo)_{0.01}(NaNb)_{0.99}O_3$, resp.) than the pure NaNbO₃ (3.42 eV). In photocatalytic H₂ evolution experiments, the doped NaNbO₃ samples showed activity under the visible light irradiation, while the undoped

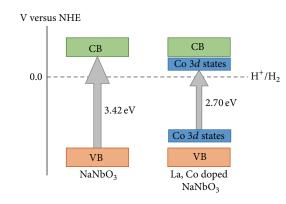


FIGURE 6: The schematic band structures of $NaNbO_3$ and La, Co codoped $NaNbO_3$.

NaNbO₃ was not active. According to the theoretical calculation, the visible light activity of La, Co codoped NaNbO₃ could be attributed to the new impurity electronic states of Co dopant. Therefore, this work presented a new material for visible light photocatalytic H_2 evolution.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank Professor Naoto Umezawa for the result discussion and Dr. Akihiro Tanaka and Dr. Hideo Iwai of Materials Analysis Station of NIMS for the XPS measurement and analysis. This work was supported by Japan Science and Technology Agency (JST) and Precursory Research for Embryonic Science and Technology (PRESTO) program.

References

- A. J. Bard and M. A. Fox, "Artificial photosynthesis: solar splitting of water to hydrogen and oxygen," *Accounts of Chemical Research*, vol. 28, no. 3, pp. 141–145, 1995.
- [2] T. J. Meyer, "Chemical approaches to artificial photosynthesis," Accounts of Chemical Research, vol. 22, pp. 163–170, 1989.
- [3] M. D. Hernández-Alonso, F. Fresno, S. Suárez, and J. M. Coronado, "Development of alternative photocatalysts to TiO₂: challenges and opportunities," *Energy and Environmental Science*, vol. 2, no. 12, pp. 1231–1257, 2009.
- [4] Y. Yoshida, M. Matsuoka, S. C. Moon, H. Mametsuka, E. Suzuki, and M. Anpo, "Photocatalytic decomposition of liquid-water on the Pt-loaded TiO₂ catalysts: effects of the oxidation states of Ptspecies on the photocatalytic reactivity and the rate of the back reaction," *Research on Chemical Intermediates*, vol. 26, no. 6, pp. 567–574, 2000.
- [5] H. Kato and A. Kudo, "New tantalate photocatalysts for water decomposition into H₂ and O₂," *Chemical Physics Letters*, vol. 295, no. 5-6, pp. 487–492, 1998.

- [6] K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, "Photocatalytic decomposition of water vapour on an NiO–SrTiO₃ catalyst," *Journal of the Chemical Society, Chemical Communications*, no. 12, pp. 543–544, 1980.
- [7] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic materials: possibilities and challenges," *Advanced Materials*, vol. 24, no. 2, pp. 229–251, 2012.
- [8] J. Y. Cao, Y. J. Zhang, H. Tong, P. Li, T. Kako, and J. H. Ye, "Selective local nitrogen doping in a TiO₂ electrode for enhancing photoelectrochemical water splitting," *Chemical Communications*, vol. 48, pp. 8649–8651, 2012.
- [9] J. W. Shi, J. H. Ye, L. J. Ma, S. X. Ouyang, D. W. Jing, and L. J. Guo, "Site-selected doping of upconversion luminescent Er³⁺ into SrTiO₃ for visible-light-driven photocatalytic H₂ or O₂ evolution," *Chemistry*, vol. 18, no. 24, pp. 7543–7551, 2012.
- [10] H. F. Shi, X. K. Li, D. F. Wang, Y. P. Yuan, Z. G. Zou, and J. H. Ye, "NaNbO₃ nanostructures: facile synthesis, characterization, and their photocatalytic properties," *Catalysis Letters*, vol. 132, pp. 205–212, 2009.
- [11] P. Li, S. Ouyang, G. Xi, T. Kako, and J. Ye, "The effects of crystal structure and electronic structure on photocatalytic H₂ evolution and CO₂ reduction over two phases of perovskitestructured NaNbO₃," *The Journal of Physical Chemistry C*, vol. 116, no. 14, pp. 7621–7628, 2012.
- [12] G. Li, T. Kako, D. Wang, Z. Zou, and J. Ye, "Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods," *Journal of Physics and Chemistry of Solids*, vol. 69, no. 10, pp. 2487–2491, 2008.
- [13] P. Li, H. Xu, L. Liu et al., "Constructing cubic-orthorhombic surface-phase junctions of NaNbO₃ towards significant enhancement of CO₂ photoreduction," *Journal of Materials Chemistry A*, vol. 2, no. 16, pp. 5606–5609, 2014.
- [14] N. Chen, G. Li, and W. Zhang, "Effect of synthesis atmosphere on photocatalytic hydrogen production of NaNbO₃," *Physica B*, vol. 447, pp. 12–14, 2014.
- [15] G. Li, W. Wang, N. Yang, and W. F. Zhang, "Composition dependence of AgSbO₃/NaNbO₃ composite on surface photovoltaic and visible-light photocatalytic properties," *Applied Physics A: Materials Science & Processing*, vol. 103, pp. 251–256, 2011.
- [16] G. Li, Z. Yi, Y. Bai, W. Zhang, and H. Zhang, "Anisotropy in photocatalytic oxidization activity of NaNbO₃ photocatalyst," *Dalton Transactions*, vol. 41, no. 34, pp. 10194–10198, 2012.
- [17] X. Li, G. Li, S. Wu, X. Chen, and W. Zhang, "Preparation and photocatalytic properties of platelike NaNbO₃ based photocatalysts," *Journal of Physics and Chemistry of Solids*, vol. 75, pp. 491–494, 2014.
- [18] A. Iwase, K. Saito, and A. Kudo, "Sensitization of NaMO₃ (M: Nb and Ta) photocatalysts with wide band gaps to visible light by Ir doping," *Bulletin of the Chemical Society of Japan*, vol. 82, pp. 514–518, 2009.
- [19] J. Choi, H. Park, and M. R. Hoffmann, "Effects of single metalion doping on the visible-light photoreactivity of TiO₂," *The Journal of Physical Chemistry C*, vol. 114, no. 2, pp. 783–792, 2010.
- [20] D. Dvoranova, V. Brezova, M. Mazur, and M. A. Malati, "Investigations of metal-doped titanium dioxide photocatalysts," *Applied Catalysis B*, vol. 37, no. 2, pp. 91–105, 2002.
- [21] M. Iwasaki, M. Hara, H. Kawada, H. Tada, and S. Ito, "Cobalt ion-doped TiO₂ photocatalyst response to visible light," *Journal* of Colloid and Interface Scienc, vol. 224, pp. 202–204, 2000.

- [22] B. Zhou, X. Zhao, H. Liu, J. Qu, and C. P. Huang, "Visiblelight sensitive cobalt-doped BiVO₄ (Co-BiVO₄) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions," *Applied Catalysis B*, vol. 99, pp. 214–221, 2010.
- [23] Z. G. Yi and J. H. Ye, "Band gap tuning of $Na_{1-x}La_xTa_{1-x}Co_xO_3$ solid solutions for visible light photocatalysis," *Applied Physics Letters*, vol. 91, Article ID 254108, 2007.
- [24] Z. G. Yi and J. H. Ye, "Band gap tuning of Na_{1-x}La_xTa_{1-x}Cr_xO₃ for H₂ generation from water under visible light irradiation," *Journal of Applied Physics*, vol. 106, Article ID 074910, 2009.
- [25] M. D. Segall, P. J. D. Lindan, M. J. Probert et al., "First-principles simulation: ideas, illustrations and the CASTEP code," *Journal* of *Physics Condensed Matter*, vol. 14, no. 11, pp. 2717–2744, 2002.
- [26] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica A, vol. 32, pp. 751–767, 1976.
- [27] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni," *Applied Surface Science*, vol. 257, no. 7, pp. 2717–2730, 2011.
- [28] M. A. Butler, "Photoelectrolysis and physical properties of the semiconducting electrode WO₂," *Journal of Applied Physics*, vol. 48, pp. 1914–1920, 1977.

International Journal of Medicinal Chemistry

 (\mathbf{O})

International Journal of Analytical Chemistry

Advances in Physical Chemistry

Theoretical Chemistry

International Journal of Inorganic Chemistry

Chromatography Research International

International Journal of Electrochemistry

Journal of Applied Chemistry

